

รายงานผู้ป่วยเยื่อหุ้มสมองอักเสบจากเชื้อ Group B Streptococcus 1 รายในวัยรุ่นแบ็งแรงดี

สุวดี จิราศักดิ์พิศาล พ.บ.

โรงพยาบาลพระนั่งเกล้า ตำบลบางกระสอ อำเภอเมืองนนทบุรี จังหวัดนนทบุรี 11000

Abstract: A Case Report of GBS Meningitis in Healthy Adolescent

Suwadee Jirasakpisarn, M.D.

Pranangkla Hospital, Bang Kra Sor, Mueang Nonthaburi, Nonthaburi, 11000

(E-mail: phon@ymail.com)

(Received: 25 July, 2022; Revised: 25 January, 2023; Accepted: 8 July, 2023)

Streptococcus agalactiae (Group B, β -hemolytic Streptococcus; GBS) is a common causative agent of infection in pregnant women, newborns, and children less than three-year-old. GBS consists of naturally colonized bacteria in the gastrointestinal and genitourinary tract of adults. Invasive GBS infection cases in non-pregnant adults had been a two to four-fold increase in the last two decades. Commonly, those were individuals with underlying disease; diabetes mellitus, cancer, immunocompromised, and immunosuppressive drug use. The most common manifestation of invasive GBS infection is primary bloodstream infection (bacteremia without a localized source). While localized GBS infection, skin-soft tissue infection (subcutaneous abscess) is the most frequent form. GBS meningitis is a rare condition in adults (incidence is approximately 0.15 cases in 100,000 persons), additional reported risk factors are craniotomy, cerebrospinal fluid leakage, infective endocarditis, and sexual intercourse.

This case report described GBS meningitis in an uncommon aged group, a male adolescent with no underlying disease and risk factors. He presented with high-grade fever and severe headache. GBS was identified from cerebrospinal fluid and blood culture, leading to a confirmed diagnosis of GBS meningitis and bacteremia. Appropriate antibiotic and supportive treatment were given to this patient. He was in complete recovery without sequelae.

Keywords: GBS meningitis, Group B streptococcus infection, *Streptococcus agalactiae* infection

บทคัดย่อ

Streptococcus agalactiae (Group B, β -hemolytic Streptococcus; GBS) เป็นเชื้อแบคทีเรียก่อโรคที่พบบ่อยในการติดเชื้อที่สัมพันธ์กับการตั้งครรภ์ การคลอด หลังคลอด และการติดเชื้อในเด็กทารกแรกเกิด รวมถึงเด็กอายุน้อยกว่า 3 ปี เช่นนี้ ตามธรรมชาติ (colonization) จะอยู่ในลำไส้และในระบบทางเดินปัสสาวะของผู้ใหญ่ และอวัยวะสืบพันธุ์สตรี จำนวนผู้ป่วยที่เกิดการติดเชื้อรุนแรงจากเชื้อ GBS ในผู้ใหญ่ที่ไม่ตั้งครรภ์มีแนวโน้มเพิ่มสูงขึ้น 2-4 เท่าในช่วง 2 ทศวรรษที่ผ่านมาโดยส่วนใหญ่ของผู้ป่วยเหล่านี้จะมีโรคประจำตัว เช่น เบาหวานมะเร็ง ภูมิคุ้มกันบกพร่อง หรือไข้ยากดภูมิคุ้มกัน การติดเชื้อในกระแสเลือดโดยปราศจากตำแหน่ง การติดเชื้อหลัก (primary blood stream infection) เป็นรูปแบบที่พบบ่อยที่สุดของการติดเชื้อในผู้ใหญ่ที่ไม่ตั้งครรภ์ ส่วนการติดเชื้อ GBS เฉพาะที่ (localized infection) ที่พบบ่อยคือเป็นฝีที่ผิวนัง (subcutaneous abscess) ส่วนภาวะเยื่อหุ้มสมองอักเสบ

จากเชื้อ GBS (GBS meningitis) ในผู้ใหญ่พนักน้อย (ความชุกอยู่ที่ประมาณ 0.15 ใน 100,000) โดยปัจจัยเสี่ยงของภาวะนี้ที่พบได้คือ การผ่าตัดกะโหลกศีรษะ (craniotomy) การร้าวของน้ำไขสันหลัง (cerebrospinal fluid leakage) การติดเชื้อที่เนื้อเยื่อหัวใจ (infective endocarditis) และการมีเพศสัมพันธ์ เป็นต้น

กรณีศึกษานี้เป็นการรายงานคดีผู้ป่วยเด็กวัยรุ่นชายไทย อายุ 14 ปี แข็งแรงดีไม่มีโรคประจำตัว ไม่มีปัจจัยเสี่ยง มาโรงพยาบาลด้วยไข้สูง ปวดศีรษะรุนแรง ผลพิษเชื้อในน้ำไขสันหลัง และในเลือดขึ้นเชื้อ GBS จึงได้รับการวินิจฉัยว่าเป็นเยื่อหุ้มสมองอักเสบจากเชื้อ GBS ร่วมกับมีการติดเชื้อในกระแสเลือด ผู้ป่วยได้รับยาปฏิชีวนะและการดูแลรักษาประคบประคองอย่างเหมาะสม จนหายเป็นปกติ

คำสำคัญ: เยื่อหุ้มสมองอักเสบจากเชื้อแบคทีเรีย, การติดเชื้อสเตรีบโตค็อกคัสรูบบี

Introduction

Group B streptococcus (GBS) or *Streptococcus agalactiae* is a common causative agent in newborn and early childhood infections related to childbirth contamination¹. Invasive GBS infection in a non-pregnant adult is commonly found in elderly, immunocompromised, or severe underlying patients. There are wide-range manifestations of invasive GBS infections; mild to severe diseases such as urinary tract infections, skin and soft tissue infections, pneumonia, bone and joint infections, and bloodstream infections including a rare form of disease-meningitis². This case report described GBS meningitis in the uncommon aged group; a male adolescent with no underlying disease.

Case History

A 14-year-old male patient presented with severe headache and high-grade fever for three days associated with retrobulbar pain, neck pain, myalgia, and poor appetite. His past history was unremarkable. Physical examination revealed that he looked sick. His vital signs were: body temperature of 39.2°C, blood pressure of 122/59 mmHg, pulse rate of 100 bpm, and respiratory rate of 22/min. Neurological examination showed stiffness of the neck and photophobia. There was no abnormality detection on other system examinations. Laboratory results showed a white blood cell count of 16,900 cells/uL (78.8% of neutrophils, 12% of lymphocytes, and 8.7% of monocytes), hemoglobin 12.6 g/dL, hematocrit

38%, platelet count 378,000 cells/uL. Urine analysis and electrolyte results were unremarkable. Lumbar puncture was done on the first day of admission, revealing clear and colorless cerebrospinal fluid (CSF), open pressure of 32 mmH₂O/closed pressure of 30 mmH₂O, few red blood cells, white blood cell 688 cells/uL (polymorphic cells 81%, mononuclear cells 19%), protein 66 mg/dL, sugar 55 mg/dL (DTX 121 mg/dL, ratio 0.45), negative gram stain, fresh smear, and latex agglutination of *Streptococcus* group B, *Hemophilus influenza* type B, *Streptococcus pneumoniae*, and *Neisseria meningitidis*. Blood culture was also collected. Other laboratory results were BUN/Cr 8.3/0.79 mg/dL, LFT: TP/Alb 7.49/4.08 gm/dL, AST/ALT 13/24 U/L, TB/DB 0.56/0.17 mg/dL. The empirical antimicrobial agent was ceftriaxone. After blood culture reported gram-positive cocci in the cluster, vancomycin was given to the patient. CT brain with contrast imaging and chest radiography showed no abnormality detection (Figure 1). Forty-eight hours later, hemoculture and CSF culture identified *Streptococcus agalactiae* (*Streptococcus* group B) as sensitive to penicillin, ampicillin, ceftriaxone, clindamycin, and vancomycin. Ceftriaxone and vancomycin were discontinued, while penicillin G was started due to susceptibility testing results for a full course of 21 days. An echocardiogram was done to exclude infective endocarditis; the result was normal. The clinical of this patient was improved correlated with the fever subsided (Figure 2).

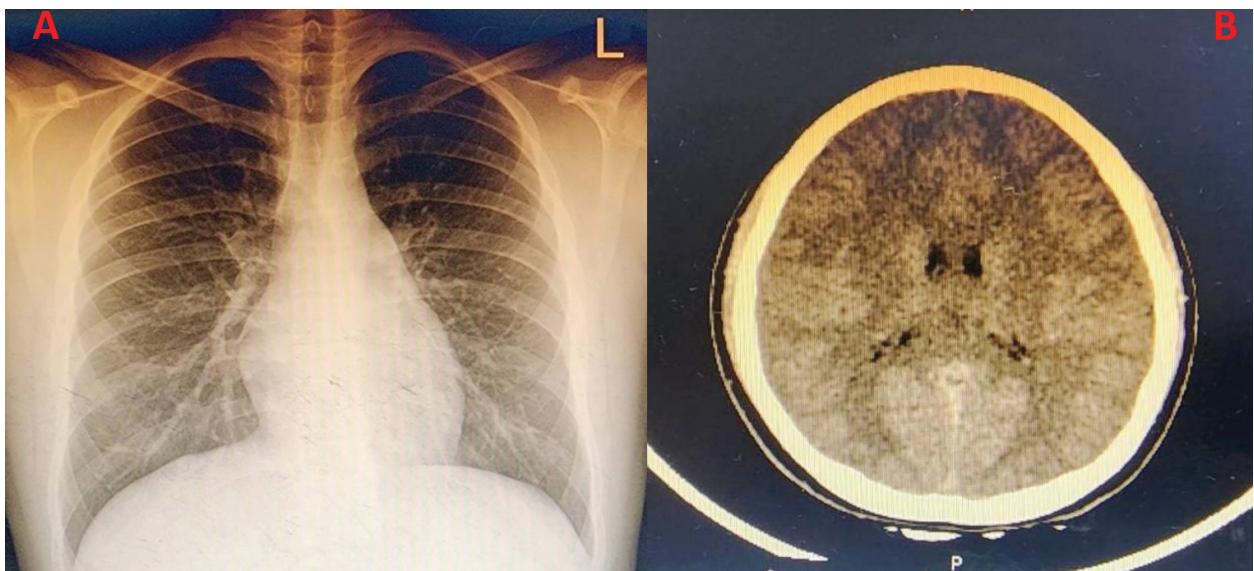


Figure 1: This figure showed the normal chest radiography (A) and CT brain (B) of this patient.

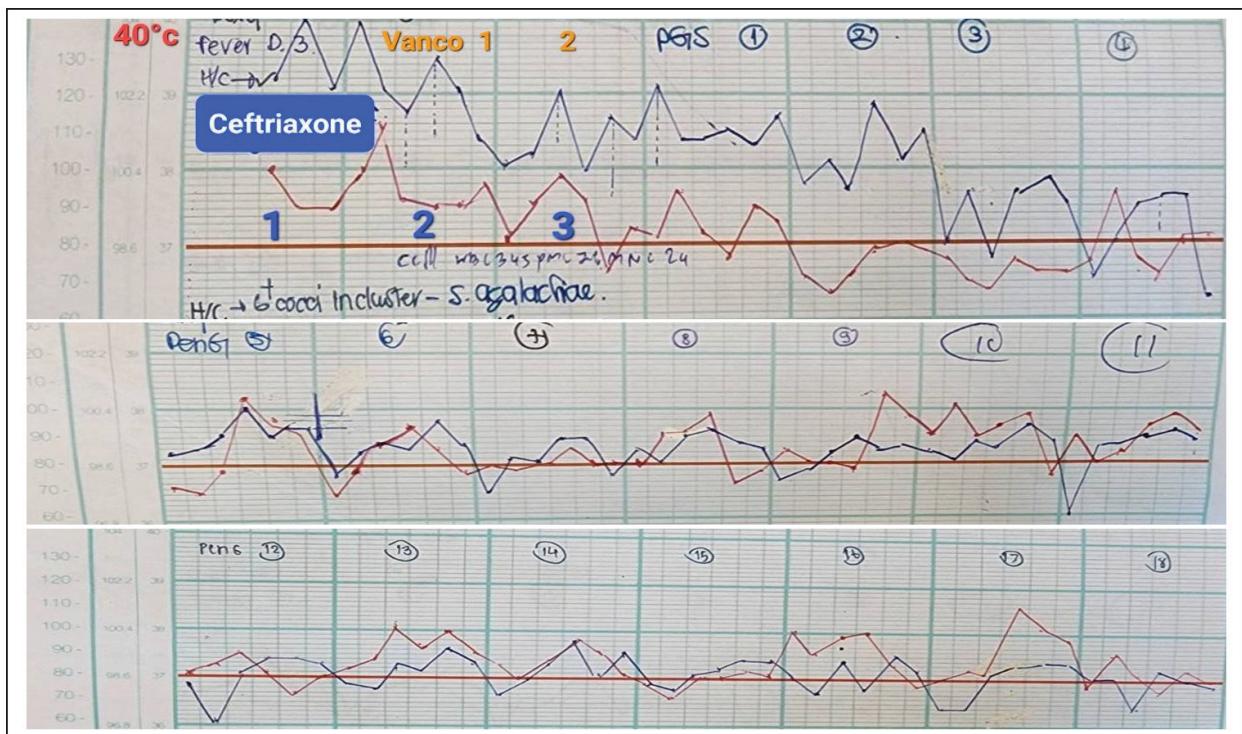


Figure 2: Vital signs form showed the trend of temperature and pulse rate of this patient.

Discussion

GBS is the leading cause of illness and death in young infant³ naturally colonized in the genitourinary tract and GI tract of adult⁴. The global incidence of GBS in young infants is 0.49 cases/1,000 live births⁵. The clinical manifestation of invasive GBS disease is bacteremia and localized infection. Primary bacteremia (bacteremia without focal infection) is the most common form of invasive GBS infection. Bacteremia can occur secondary to the localized source of infection⁶⁻¹⁰. Risk factors of invasive GBS infection in the adult are pregnancy, elderly, and comorbidities such as diabetes mellitus, malignancy, cirrhosis, HIV infection, steroid intake¹¹, neurological disorders, heart disease, kidney disease, liver disease, smoking, alcohol abuse, and immunosuppressive conditions^{4, 6, 12}. For GBS meningitis in non-pregnant adults, the reported additional predisposing factors are craniotomy¹³, cerebrospinal fluid leakage, infective endocarditis¹⁴, and post-sexual intercourse¹⁵. Although the increase of invasive forms of *Streptococcus agalactiae* infection in non-pregnant hosts worldwide (from 3.6 cases/100,000 persons in 1990 to 7.3 cases/100,000 persons in 2007)⁶, GBS meningitis is still rare in previously healthy young adults with no comorbidity or immunosuppressive condition. The estimated incidence of GBS meningitis in adults is 0.15 per 100,000¹⁶. This patient diagnosed with GBS meningitis with bacteremia is a male adolescent with no underlying disease and identified risk factors (negative echocardiogram and history taking such as previous sexual activity or illness except that he went swimming in a waterfall one day before the illness. A fresh smear of CSF was done to exclude *Naegleria*

fowleri: a common ameba found in freshwater leading to primary amebic meningoencephalitis. Although there is no association between GBS infection and swimming in a waterfall from the literature review, an outbreak was reported in 2017 related to raw consumption of improper preparation of fish in Singapore¹⁷. The clinical manifestation and CSF profile of GBS meningitis are not different from the other bacterial meningitis¹⁸. In this case, the definite diagnosis came from culture confirmation of both blood and CSF (latex agglutination negative). The sensitivity of latex agglutination was 66.66% when compared with conventional culture for detecting bacterial meningitis¹⁹. Penicillin G is the first-line antibiotic for GBS treatment. In the sense of GBS meningitis, the minimum duration of antibiotics is 14 days (range 14-21 days)². The antibiotic of this patient was de-escalated to penicillin G when GBS was identified from the CSF culture. Penicillin G was continued to complete a 21-day course of treatment.

Conclusions

Streptococcus agalactiae can be a causative agent of invasive disease not only in newborns but also in adults. Although invasive GBS infection in non-pregnant adults is commonly found in hosts with chronic medical conditions or decreased immune function, it still appears in healthy persons without risk factors by unclear mechanisms. GBS is an uncommon pathogen of meningitis in adults, but it should not be overlooked. When GBS is identified, treatment with appropriate antimicrobial agents and duration leads to a good outcome.

References

1. Wolfe RR Jr, Norwick ML, Bofill JA. Fatal maternal beta-hemolytic group B streptococcal meningitis: a case report. Am J Perinatol 1998;15(11):597-600.
2. Raabe VN, Shane AL. Group B Streptococcus (*Streptococcus agalactiae*). Microbiol Spectr 2019;7(2):10.1128/microbiolspec.GPP3-0007-2018.
3. Ding Y, Wang Y, Hsia Y, Russell N, Heath PT. Systematic review and meta-analyses of incidence for Group B Streptococcus disease in infants and antimicrobial resistance, China. Emerg Infect Dis 2020;26(11):2651-59.
4. Farley MM, Harvey RC, Stull T, Smith JD, Schuchat A, Wenger JD, et al. A population-based assessment of invasive disease due to group B Streptococcus in nonpregnant adults. N Engl J Med 1993;328(25):1807-11.
5. Madrid L, Seale AC, Kohli-Lynch M, Edmond KM, Lawn JE, Heath PT, et al. Infant Group B Streptococcal disease incidence and Serotypes Worldwide: Systematic Review and Meta-analyses. Clin Infect Dis 2017;65(suppl_2):S160-S72.

6. Skoff TH, Farley MM, Petit S, Craig AS, Schaffner W, Gershman K, et al. Increasing burden of invasive group B streptococcal disease in nonpregnant adults, 1990-2007. *Clin Infect Dis* 2009; 49(1):85-92.
7. Schwartz B, Schuchat A, Oxtoby MJ, Cochi SL, Hightower A, Broome CV. Invasive group B streptococcal disease in adults. A population-based study in metropolitan Atlanta. *JAMA* 1991; 266(8):1112-4.
8. Tazi A, Morand PC, Réglier-Poupet H, Dmytruk N, Billoët A, Antona D, et al. Invasive group B streptococcal infections in adults, France (2007-2010). *Clin Microbiol Infect* 2011; 17(10):1587-9.
9. Chaiwarith R, Jullaket W, Bunchoo M, Nuntachit N, Sirisanthana T, Supparatpinyo K. Streptococcus agalactiae in adults at Chiang Mai University Hospital: a retrospective study. *BMC Infect Dis* 2011;11:149.
10. Muñoz P, Llancaqueo A, Rodríguez-Créixems M, Peláez T, Martín L, Bouza E. Group B streptococcus bacteremia in nonpregnant adults. *Arch Intern Med* 1997;157(2):213-6.
11. Peirotti MG, Gonzalez SE, Littvik AM, Vacaflo L, Kassar MA, Moreno S, et al. Infecciones por estreptococos grupo B en adultos excluyendo infecciones genitales [Group B streptococcal infections in adults, excluding genital infections]. *Rev Argent Microbiol* 2002;34(4):226-9.
12. Phares CR, Lynfield R, Farley MM, Mohle-Boetani J, Harrison LH, Petit S, et al. Epidemiology of invasive group B streptococcal disease in the United States, 1999-2005. *JAMA* 2008;299(17): 2056-65.
13. Cabellos C, Viladrich PF, Corredoira J, Verdaguer R, Ariza J, Gudiol F. Streptococcal meningitis in adult patients: current epidemiology and clinical spectrum. *Clin Infect Dis* 1999; 28(5):1104-8.
14. van Kassel MN, van Haeringen KJ, Brouwer MC, Bijlsma MW, van de Beek D. Community-acquired group B streptococcal meningitis in adults. *J Infect* 2020;80(3):255-60.
15. Agouridakis P, Ioannidou E, Dalezios M, Panagopoulou V, Drandakis P. "Honey moon" meningitis. *Emerg Med J* 2005; 22(11):803-4.
16. Jackson LA, Hilsdon R, Farley MM, Harrison LH, Reingold AL, Plikaytis BD, et al. Risk factors for group B streptococcal disease in adults. *Ann Intern Med* 1995;123(6):415-20.
17. Chau ML, Chen SL, Yap M, Hartantyo SHP, Chiew PKT, Fernandez CJ, et al. Group B Streptococcus infections caused by improper sourcing and handling of fish for raw consumption, Singapore, 2015-2016. *Emerg Infect Dis* 2017; 23(12):2002-10.
18. Li LQ, Cheema S, Goel N. Group B streptococcal meningitis in a previously healthy man. *BMJ Case Rep* 2016;2016:bcr2015213999.
19. Mohammadi SF, Patil AB, Nadagir SD, Nandihal N, Lakshminarayana SA. Diagnostic value of latex agglutination test in diagnosis of acute bacterial meningitis. *Ann Indian Acad Neurol* 2013;16(4):645-9.