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Statistical Significance (SS) vs. Effect Size (ES) 

Most researchers are quite happy when they get 

statistically significant result (say, p-value <0.05).  But 

statistical significance (SS) may or may not reflect 

clinical or practical importance. Compared to the 

standard treatment, your new treatment may increase 

statistically significant cure rate for five percent, but—

is it good enough to change the treatment? Your 

innovative counseling program may reduce depression 

score of the patients with statistically significant at 3.6 

score, but—is it a high enough score change? When 

your study result shows statistically significant 

relationship between the exposure(s) and the outcome 

variables—does mean it mean the exposure(s) have a 

substantial, negligible, or trivial impact on the 

outcome?   

SS does not always provide all information about the 

magnitude or the meaningfulness of the effect or the 

relationship between variables.1 On the other hand, 

effect size (ES) is the statistics that is helpful in 

determining whether the effect is practically 

meaningful in real-world applications.2 ES will 

indicate not only the likely direction of the effect but 

also the magnitude of the effect whether it is important 

enough to care about.3 A large effect size may reflect 

the practical importance of the research finding while 

a small effect size indicates limited practical 

applications.4 

ES reflects the magnitude of differences found whereas 

SS examines whether the findings are likely to be due 

to chance.5 SS can be affected due to large or small 

sample size but ES is independent of the sample 

size.1,4,6 The relationship may change when sample size 

changes; and, simply increasing sample size may allow 

for easier rejection of the null hypothesis.1 With a large 

sample size, the probability of getting small p-value 

will increase even with a very faint effect.7 Unlike SS 

(with varying p-value), ES can be used to 

quantitatively compare the results of studies done in a 

different setting.6  

Types of ES 

It is noteworthy that much of the work regarding ES 

measures was developed as part of the meta-analysis, 

initiated by statistician and psychologist Jacob 

Cohen.6,7 ES is the effect indicating the relationship 

between the variables of interest and thus derived 

from the objective of the analysis and the statistical 

procedure used to capture the effect it attempts to 

measure. However, it should be noted that ES is 

nonetheless a new statistic but rather amplifying the 

concept of statistical power, the probability that a test 

of significance will detect a deviation from the null 

hypothesis, should such a deviation exist.7,8 In 

comparison between groups, ES could be calculated 

from the statistical testing methods, typically 

including: t-test, ANOVA, or chi-square test. In 

assessing the relationship between variables, ES could 

be estimated from the types of correlation or regression 

used in data analysis. Some ES measures are the 

known statistics regarding the correlation or strength 

of association between the two variables such as  

R-square (R 2) in linear regression, odds ratio (OR) in 

logistic regression and relative risk (RR) in Poisson 

regression.  Table 1 summarizes different types of ES 

from literature.1,6,7,9–15  

 

 

  

mailto:phirunwut@gmail.com


OSIR, March 2024, Volume 17, Issue 1, p.56-61 

https://doi.org/10.59096/osir.v17i1.268240 | 57 

Table 1. Types of effect sizes 

Statistical 

procedures 
Objectives Types of ES 

Sizes of ES 

Small Medium Large 

Comparison between groups     

t-test Difference between means with 

equal or unequal SD 

Cohen's d 0.2 0.5 0.8 

 Difference between means with 

equal sample size 

Hedges' g 0.2 0.5 0.8 

 Difference between means, 

compared with control group 

(typically assumed equal SD) 

Glass's  0.2 0.5 0.8 

ANOVA Difference among means Cohen's f  

(extended Cohen's d) 

0.14 0.39 0.59 

 Eta-square, measure of degree 

that a model explains the data. 

η2 (equivalent to R2) 0.01 0.06 0.14 

 Eta-square measure for two-way 

factorial design 

Partial η2 0.01 0.06 0.14 

 Correct the biasedness of Eta 

square measure 

ω2  0.01 0.06 0.14 

 One-way MANOVA Multivariate η2 0.01 0.06 0.14 

Chi-square 2 x 2 contingency table Phi 0.1 0.3 0.5 

 r x c contingency table   

(based on degree of freedom 

(df)) 

Cramer's V 0.1 (df=1), 

0.07 (df=2), 

0.06 (df=3) 

0.3 (df=1), 

0.21 (df=2), 

0.17 (df=3) 

0.5 (df=1), 

0.35(df=2), 

0.29 (df=3) 

 r x c contingency table Cohen's ω2  0.1 0.3 0.5 

Strength of associations between variables     

Correlation Between continuous variables 

(normal distribution) 

Pearson's r 0.1 0.3 0.5 

 Between continuous variables 

(non-parametric) 

Spearman's r 0.1 0.3 0.5 

 Between dichotomous variable 

and continuous variable 

Point-biserial r 0.1 0.3 0.5 

Linear regression  Measure of degree that an 

outcome explained by the 

independent variable 

R-square (R2) 0.01 0.09 0.25 

Logistic regression Odds of outcome in one group vs 

another 

Odds ratio (OR) 1.5 3.5 9 

Poisson regression  Risk/chance of getting outcome 

in one group vs another 

Risk ratio (RR) 1.5 3.5 9 

Definitions and Formula of Different ES  

The definitions and formula of different ES are briefly 

described as follow: 

Cohen’s d  

Cohen’s d is defined as a standardized difference,  

[d = (µ1 − µ2)/], between the two sample means (µ1 and 

µ2) and the common (pooled) standard deviation of the 

two comparison groups ().  

Hedges’ g 

Hedges’ g is the same as Cohen’s d, [g = (µ1 − µ2)/], 

with the common (pooled) standard deviation () 

weighted by standard deviation of each comparison 

group. 

Glass’  

Glass’  is the same as Cohen’s d, [ = (µ1 − µ2) /], with 

the standard deviation () of the control group. 
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Cohen’s f 

Cohen’s f is an extended version of Cohen’s d,  

[f = sqrt {[ j=1,p (µj − µ)2/p] /2}], where p is the number 

of groups, the numerator is an average difference of 

group means (µj) from the grand mean (µ) and 

denominator represents the common standard 

deviation ().  

Eta Square 

Eta square (η2) is the same as the usual R squared 

(R 2) which represent a measure of degree that a 

model explains by the data, [η2 = SSeffect / SStotal], 

where SSeffect represents variation of data due to 

group effect (between groups) and SStotal is the overall 

variation of the data of the dependent variable. Eta 

square can be converted into Cohen’s f and vice versa, 

[f = sqrt (η2 / (1 − η2)] or [η2 = f 2 / (1 + f 2)]. 

Partial Eta Square 

Partial eta square (ηp
2) is an extended version of η2 

used for a two-way factorial design, [ηp
2 = SSeffect / 

(SSeffect + SSerror)], taking into consideration of SSerror, 

the residual variation of data fit in the model. Partial 

eta square can also be converted into Cohen’s f, [f = sqrt 

{ηp
2 / (1 − ηp

2)}]. 

Omega Square 

Omega square (ω2) adjusts the η2 (which is based on 

statistics from the sample) to population inference by 

accounting for variances of residual term (MSerror) in 

relation to sample sizes (i.e., degree of freedom − dfeffect), 

[ω2 = (SSeffect − dfeffect MSerror) / (SStotal − MSerror)]. Omega square 

can be converted into Cohen’s f, [f ≈ sqrt {ω2 / (1 − ω2 )}]. 

Multivariate Eta Square  

Multivariate eta square (ηm
2) is the η2 for multivariate 

analysis of variance (MANOVA) with more than one 

dependent variables, [η2 = 1 - Λ1/s ], where Λ is Wilk’s 

lambda and s is equal to the number of levels of the 

factor minus 1 or the number of dependent variables, 

whichever is the smaller. 

Phi 

Phi (φ ) is the ES for Chi-square test of 2x2 contingency 

table, [ φ = sqrt(2/ n)], where n is total number of 

observation. 

Cramer's V  

Cramer's V is the ES for Chi-square test of r x c 

contingency table, [V = sqrt (2/(n(df))], where n is total 

number of observation, and df is degrees of freedom 

calculated by (r − 1)(c − 1). 

Cohen's ω2  

Cohen's ω2 is the Chi-square test for r x c contingency 

table, [ω2 = sqrt {(observed proportion − expected 

proportion)2 / (expected proportion)}] 

Pearson’s r 

Pearson’s r is the product-moment correlation for two 

continuous variables with normal distribution (X and Y) 

reflecting the ratio of covariance between the two 

variables and the variances of each variable, [rXY = 

covariance (X,Y) / {sqrt (Variance X)(Variance Y)}]   

Spearman’s r 

Spearman’s r or Spearman’s rho () is similar to the 

Pearson’s r but it does not require normally distributed 

continuous-level data (interval or ratio). It can be used 

to analyze the association between variables of ordinal 

measurement levels as the calculation is based on 

ranks of the data, [ = 1−( d 2 / n (n2 − 1)], where d is 

the difference between the two ranks of each 

observation, and n is the number of observations. 

Point-biserial r 

Point-biserial r is the correlation between a 

dichotomous variable and a continuous variable; rpb is 

mathematically equivalent to the Pearson’s r, [rpb ≈ rXY]. 

R-square 

R-square (R2), so-called coefficient of determination, is 

the measure of degree that an outcome explained by 

the independent variable in Linear regression model, 

[R2 = 1 – (SSregression / SStotal) ], where SSregression represents 

the variation of the residuals or distance from the raw 

data and its predicted value in the model and SStotal is the 

variation of the distance all data from the mean value.  

Odds Ratio 

Odds ratio (OR) is the strength of association 

regarding odds of having the outcome (chance of 

having outcome vs. not having outcome) between the 

two comparison groups. OR can be calculated when 

performing Logistic regression, [OR = Odds_group1 / 

Odds_group2 = (a1/b1) / (a2/b2)] where a1 and a2 are the 

numbers of events (outcome), b1 and b2 are the number 

of non-events (no outcome) in the two groups. 

Risk Ratio or Relative Risk 

Risk ratio or relative risk (RR) is the strength of 

association regarding risk (chance) of having the 

outcome between the two comparison groups. RR can 

be calculated when performing Poisson regression, 

[RR = Risk_group1 / Risk_group2 = (a1/n1) / (a2/n2)] 

where a1 and a2 are the numbers of events (outcome), n1 

and n2 are the number of observations in the two groups. 
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Sizes of ES 

Let’s look at the concept behind ES in an example of 

ES, Cohen’s d, that is based on “normal distribution” 

of the data. A normal distribution is unimodal and 

symmetrically distributed with a bell-shaped curve 

with its mean and standard deviation (SD). The 

standard normal distribution, also called the  

z-distribution, is a special normal distribution where 

the mean=0 and the SD=1. Any normal distribution 

can be standardized by converting its values into z 

scores, [z-score = x−mean/SD].16 As shown in Figure 1, 

z scores are corresponding to the SD and the area 

under the normal curve.  

 

Figure 1. Normal distribution 

Cohen’s d is based on z-score distribution. In 

comparing two groups under the normal distribution 

concept, the ES (Cohen’s d) is simply a measure of 

how far the difference between the two groups drifts 

away from the “true” difference between the groups 

as stated in the null hypothesis (H0). Cohen suggested 

interpretation of effect sizes expressed as “small”, 

“medium” and “large”.17 To depict the interpretation 

of sizes of ES at different cutoffs in a comparison of 

the mean scores between two groups, ES can be 

thought of as the average percentile of the mean of 

the treatment group [µ2] relative to the mean of the 

control group [µ1]. As shown in Figure 2, ES can be 

interpreted in terms of the percent of nonoverlap of 

the two groups.12 Based on the normal distribution of 

the data of the two groups, the ES=0.0 indicates that 

the distribution of scores for the two group overlaps 

completely with one another, i.e., there is 0% of 

nonoverlap. With a small ES (Cohen’s d=0.2), the 

distributions of the two groups overlap for 85%, or the 

nonoverlap of the two groups is 15%. With a medium 

ES (Cohen’s d=0.5), the distributions of the two 

groups overlap for 67%, or the nonoverlap of the two 

groups is 33%. With a large ES (Cohen’s d=0.8), the 

distributions of the two groups overlap for 53%, or the 

nonoverlap of the two groups is 47%. With a very 

large ES (Cohen’s d=2.0), the distributions of the two 

groups overlap for 19%, or the nonoverlap of the two 

groups is 81%. When the means of the two groups are 

at farther distance, the ES and the nonoverlapping of 

the distributions of the two groups becomes larger. 

Nonoverlapping area is also related to the level of SS.  

As noted in literature that ES is the difference between 

two conditions, the bigger the ES, the easier it is to tell 

the two conditions apart.18 In comparison between the 

means of two groups, we may say that the bigger the 

ES, the farther between the means of the two groups. 

Several other types and sizes of ES have been proposed 

and recommended in literature as shown in Table 1. 

 

Figure 2. Effect sizes and overlap areas between two-group 

distributions 

Calculating, Interpreting and Reporting the ES 

It is recommended to calculate ES both before the 

study starts and after the study completes.  Before 

starting the study, expected ES is typically a part of 

the sample size calculation formula to obtain the 

statistical power that could detect an effect of that size. 

After completing the study, the researchers can 

calculate and report actual ES of the study results.4 

Interpreting the magnitude of ES started with Cohen 

who set “rules of thumb” to qualify the sizes of an effect 

as small, medium and large. The sizes or values of ES 

simply represent arbitrary cutoffs that are subject to 

interpretation.1,2,12,15,17 Cohen acknowledged that the 

use of ES cutoffs is a certain risk in inherent in offering 

conventional operational definitions for power 
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analysis.12 It is recommended the use of these 

cutoffs only when there is no better frame of reference 

for practical importance, and one should make decision 

on the effect based on clinical or practical importance 

which requires domain knowledge.3 The small or large 

effect may depend on the application and the context 

of use.  

In testing hypothesis, you may have either negative or 

positive results. A bias in publishing study result may 

occur when the paper tends to get published only the 

one with “positive” outcome (statistically significant 

results) regardless to the size or magnitude of the 

outcome. Thus, it is suggested in literature that 

presenting the study results with both chance (SS) and 

magnitude (ES) would give a comprehensible picture 

of scientific achievement.7 Presenting both SS and ES 

may reveal an apparent sizeable effect in the study 

result that is not significant. On the other hand, when 

the study results are statistically significant, ES may 

be used to determine whether it is practically 

important.2 However, Cohen as well as some others 

also noted that researchers should report ES as a 

complement to standard SS testing but should not 

think that reporting ES is a mandatory requirement 

when writing up a paper.1,3,17,19 ES is the abstract 

statistics that could be used to determine of what 

constitutes an effect of practical significance, but such 

interpretation depends on the context of the research 

and the judgment of the researcher.1 Thus, one may 

decide to present ES with its unit in a clear manner 

and let the readers make the judgment on  

practical importance related to their own 

setting/application.3,4,18 Moreover, ES is sometimes not 

easy to compute or to interpret. The main focus of the 

study is sometimes on the direction rather than 

magnitude of the effect; thus, one may decide to report 

only SS, and not necessarily ES.3 

Conclusion 

In conclusion, guidelines for calculating, reporting, 

and interpreting ES in literature are as follow: (1) 

choose the most suitable type of ES based on the 

purpose, design, and outcome(s) of the study, (2) be 

explicit about the type of ES that is used, (3) present 

the ES for all outcomes regardless of achieving 

positive or negative SS, (4) interpret effects in the 

context of the research settings and the study result 

application.3,7,14,15,19 
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