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Clustering of observations is a frequent occurrence in
epidemiological and clinical research.'® When planning
a study, it can be beneficial to consider whether
clusters exist in the population and whether the
sampling approach takes them into account. For
instance, in two-stage sampling, where clusters (e.g.,
villages) are selected first and units (e.g., households)
are sampled within them, clustering within such
hierarchical structure may substantially impact
statistical analysis results.® Individuals within the
same group in a population may not be independent—
health-related

environments or affect each other’s behaviors and

for example, those who share
exposures in a cohort study.! In complex surveys,
where participants are drawn from the same setting
(e.g., students in a classroom or family members in a
household), recruitment may be planned to examine
group membership effects.? In cluster-randomized
trials where randomization occurs at the cluster level
rather than the individual level, clustering can affect
study conclusions, particularly when treatment effects
vary across clusters.?

Even when clustering is present in the designs
described, it is often not considered in statistical
analyses. In this paper, we explore how clustering

affects the analysis of clustered data using logistic
regression.

Clustered Data: Concept and Implications

Several terms are commonly used to describe clustered
data, including “clustering,” “nesting,” “grouping,” and
“hierarchies,” which are often used interchangeably.

” <«

All of these terms refer to the concept that observations
that can be organized into several distinct groups at a
lower, micro level within one or more higher-level,
macro units. Each macro unit represents a “level,” and
datasets can include multiple levels (multilevel), such
as in two-level or three-level sampling designs.*® As
shown in Figure 1, clustered data can occur at multiple
levels. Patients are nested within doctors, and doctors
are, in turn, grouped within hospitals. Similarly,
repeated measurements on the same individual can be
viewed as nested data, where the observations are
nested within the person. The impact of clustering may
differ across hierarchical levels. For example, patients
(level-1 units) within a single hospital or community
(level-2 wunits) may show minimal variation in
background characteristics. By contrast, differences in
infrastructure, preparedness, and patient backgrounds
across hospitals or communities lead to greater
heterogeneity among these units.®
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Level 1: Patients are clustered within a clinic.
Level 2: Clinics are clustered within a district.

Level 1: Patient visits are repeated measures.
Level 2: Patients are clustered within a doctor.
Level 3: Doctors are clustered within a hospital.

Figure 1. Multilevel structure of clustered data
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Clustered data are common and could be problematic.
A fundamental assumption underlying most standard
statistical methods is that individual observations are
independent, meaning that the value of one
observation does not affect another.'”® Clustering
often causes observations within the same cluster to be
more alike than measurements from different
clusters.® When individuals are clustered, they are not
fully independent of each other. Similarities, or
homogeneity, between subjects in clusters reduces the
variability of their responses, compared with that

expected from a random sample.

Failing to account for clustering can lead to substantial
increases in Type I error rates and reduce the
statistical power to detect differences between groups.
1011 Generally, analyzing clustered data requires a
larger sample size than independent data to achieve
comparable person-level power. Incorporating more
clusters and allowing for varying cluster sizes can
improve estimate accuracy and enhances the ability to
detect differences between clusters.* It is important to
note that, when the statistical model is correctly
specified and the degree of clustering is moderate,
coefficient estimates typically remain wunbiased.
However, if the correlation among observations within
clusters is ignored, the estimation of standard errors
can be substantially biased—either underestimated or
overestimated—leading to incorrect inferences and
potentially misleading conclusions.” Some researchers
even suggest that, in cases where statistical analysis
taking into account clustering effect may not be strictly
necessary, applying it can still yield approximately
correct standard errors.?

Clustering can influence statistical inference in
regression analyses, especially when the outcome
variable remains clustered even after accounting for
all measured predictors.? It also matters when both

residuals and predictor variables are correlated within
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clusters.? Ignoring clustering may lead to biased
estimates or inaccurate standard errors in regression
model. When observations vary more between clusters
than within clusters, standard regression models tend
to overestimate the precision of predictor effects.
Conversely, when observations are less clustered, the
precision may be slightly underestimated.?

Logistic Regression vs. Multilevel Mixed
Logistic Regression

Logistic regression is a widely used statistical method,
especially in epidemiology. In particular, binary
logistic regression describes the relationship between
one or more predictor variables (X) and a binary
outcome (Y), where Y takes one of two possible values:
0 (no event) or 1 (event occurs).

Unlike linear regression, which assumes a continuous
and normally distributed outcome, logistic regression
applies a logit (log-odds) transformation to the outcome.
The log-odds is the natural logarithm of the odds,
where odds represent the ratio of the probability of the
event occurring to the probability of it not occurring,
In(Py/1-Py) or In(Py=1/Py=0). As illustrated in Figure
2(a), in a simple logistic regression model, a one-unit
increase in predictor X changes the log-odds of the
outcome by an amount equal to the coefficient B1. When
this coefficient (B1) is exponentiated, it produces the
odds ratio (OR), which represents the multiplicative
change in odds associated with a one-unit increase in
the predictor.1?1?

The logistic function, also called the sigmoid function,
produces an S-shaped curve (Figure 2(b)) that maps
log-odds to probabilities. The resulting probability,
P(Y=1), is referred to as a conditional probability
because it is calculated given specific values of the
predictors (X). In other words, the probability of the
event occurring depends on the values of the variables
included in the model—P(Y=1|X).1
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Figure 2. Logistic regression model
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Multilevel mixed logistic regression extends the

traditional logistic regression framework by
incorporating the dependency among observations
caused by clustering.®' This method is frequently used
in health research to properly handle clustered data
when estimating the influence of both individual-level
and group-level predictors on binary outcomes.®
Ignoring clustering in a standard logistic regression,
rather than addressing it with a multilevel mixed
model, can result in substantial problems due to

6 When a multilevel

variability within clusters.
approach is not applied, an alternative is to include
cluster indicators as dummy variables—though this is
only practical when the number of clusters is relatively
small. Nevertheless, this approach is often inefficient

and less parsimonious.’

Notably, multilevel mixed models are extensions of the
three most common regression approaches: linear,
logistic, and Poisson. These models, also known as
mixed-effects, hierarchical, or multilevel models,
provide a statistical framework for analyzing data
organized into multiple levels.!® They are designed for
situations where observations are clustered, enabling
researchers to estimate both overall effects and
cluster-specific differences.'® Derived from the general
linear mixed-effects model framework, they are termed
effects—
parameters that remain the same across clusters—

“mixed” because they combine fixed
with random effects, which vary between clusters.*
Fixed effects capture consistent influences across all
units, whereas random effects represent variability
among them. When the units are individuals, random
effects reveal individual-level differences. Common
types include random intercepts, which account for

differences in cluster means, and random slopes, which

Q
X X
X

Log(Odds Y) =Ln(Py/ 1-Py)

Predictor X
In (Py=1/Py=0) = B, + Uy + X
Random intercept model

reflect variations in how predictors affect outcomes
across clusters.!®

The random intercept model includes a cluster-specific
intercept that is estimated separately for each cluster.
Its fixed component consists of the overall intercept (Bo)
and slope (B1), which apply to all observations, while
the random component represents the
intercept (U,) for each cluster (Figure 3(a)). By
incorporating random intercepts, the model accounts
for unobserved group-level heterogeneity in the
outcome, allowing baseline differences between groups

unique

to be properly reflected in the analysis.?’ This is
especially useful for evaluating how much of the
outcome’s variation exists between clusters compared
to within clusters. When clusters differ substantially,
their intercepts deviate from the fixed component,
resulting in a larger standard deviation of cluster-
specific intercepts. Conversely, when observations
within clusters are very similar, their outcomes tend to
align closely with the fixed component.!

The random slope model allows the relationship
between a predictor (or predictors) and the outcome to
vary across clusters.??! In contrast, the random
intercept model allows intercepts to differ by group but
assumes the slope (B;) is the same across all groups.
The random slope model relaxes this assumption by
letting slopes vary randomly between groups.’?* As a
result, both slopes and intercepts are treated as
random effects, giving each cluster its own intercept
(Up) and slope (U;). The model equation is adjusted
accordingly to account for variability in both intercepts
and slopes across clusters (Figure 3(b)). This flexibility
is particularly useful for understanding how
regression patterns differ across various group-level

contexts.2022
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Figure 3. Multilevel mixed logistic regression models
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In theory, the random slope model is appealing
because it allows the relationship between predictor(s)
and the outcome to vary across clusters. When the
lower-level unit is at the individual level, it is even
more plausible that individual characteristics will
differently.
considerable debate on this issue. If there are strong a
priori reasons to believe that a fixed effect should vary
across individuals or clusters, random slopes should be
included, provided the data can support such a
model.2>** This is particularly important when
examining cross-level interactions, where the effect of
a variable at one level (e.g., individual-level) on the
outcome is influenced by a variable at a higher level
(e.g., cluster-level). In such cases, the literature
recommends using a random slope model. Ignoring
these interactions can lead to seriously biased and
anti-conservative inferences.?®

influence the outcome There is

Selecting a random slope model, however, comes with
several challenges. Most studies using multilevel
mixed models prefer a random intercept model, as it is
simpler to assume that the relationship between
predictors and the outcome is consistent across all
groups. The rationale for including random slopes is
less straightforward and should be guided by subject-
matter knowledge. It is generally recommended to first
identify variables for which a group-dependent effect
(random slope) is plausible.?® If the model converges
without warnings, random slopes can generally be
retained in the model. Inclusion decisions are usually
driven by theoretical considerations rather than
statistical significance in a particular sample.
Nevertheless, likelihood ratio tests can be applied, and
slopes that do not improve model fit should be removed
to maintain model parsimony.?

There are several drawbacks associated with random
slope models. They can sometimes encounter singular
fits, either because the correlation between slopes and
intercepts is estimated near =*1, or because the
variance of the random slopes is estimated near zero.
In the first case, a model without the correlation can
be fitted; in the latter, the random slopes are typically
removed.?® In practice, including random slopes often
leads to overfitting. Moreover, mixed models assume
that random effects are multivariate normal—a
condition that may not hold, particularly when random
slopes are included.?*

When choosing between a random intercept and a
random slope model, researchers can fit both models
and compare model fit metrics. Prioritize variables
expected to have the strongest effects, then estimate
the model including the selected fixed and random

effects. Note that data generally contain less

information about random effects than fixed effects, so
including many random slopes can slow estimation or
even prevent convergence. Importantly, not all
predictors need random slopes; only those for which a
group-dependent effect is theoretically justified should
be considered. Evaluate the significance of random
slopes and remove those that are not significant.
Similarly, assess regression coefficients and exclude
non-significant predictors and consider whether to
include interaction effects between predictors in level-
one variables. Random slopes for interaction terms are
generally discouraged, as they are often difficult to
interpret.28

Goodness of Fit of the Model

The concept of goodness of fit refers to how effectively
a statistical model captures the patterns in observed
data. It assesses the agreement between predicted
results and actual outcomes, providing an indication of
the model fit. Selecting an appropriate model often
involves a trade-off between accurately explaining the
data and avoiding overfitting or unnecessary
complexity. Several metrics are available to guide this
decision, with the most widely used being the Akaike
Information Criterion (AIC) and the Bayesian
Information Criterion (BIC). These criteria help
balance model fit and simplicity, leading to models
that explain the data well without adding excessive

complexity.27-30

AIC evaluates models by considering both fit and
complexity. It measures how well the model explains
the data while applying a penalty for the inclusion
of additional parameters to prevent overfitting.
The formula is: AIC = -2 In(Likelihood) + 2k where
“Likelihood” reflects the model’s fit to the data and k is
the number of parameters. In essence, AIC combines
the log-likelihood with a complexity penalty, ensuring
a balance between model fit and parsimony. For
example, in logistic regression, adding extra predictors
will only improve AIC if they substantially enhance the
model’s fit, thereby reducing the risk of overfitting. In
practice, goodness of fit is closely tied to model
selection, especially in deciding how many significant
predictors should be included in the model.

BIC is similar to AIC but imposes a stronger penalty
for complexity, particularly in large datasets. Its
formula is: BIC = -2 In(Likelihood) + k In(n) where n
represents the sample size. BIC is based on Bayesian
probability principles and tends to favor simpler
models when the evidence for added complexity is
weak. Consequently, BIC is particularly useful in
large-sample contexts where the risk of overfitting is
high.
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Both AIC and BIC estimates how much information
is lost when a candidate model is used to approximate
reality. Lower values indicate better models, but
these metrics are meaningful only when comparing
models estimated on the same dataset. In general,
AIC tends to favor more complex models relative to
BIC, making it a preferred criterion for smaller
datasets where over-penalizing complexity could
eliminate relevant predictors. Conversely, BIC is
often preferred in large datasets because of its stricter
penalty, which helps prevent overfitting. In practice,
neither AIC nor BIC provides an absolute measure of
model quality; rather, they are comparative tools that
aid in selecting the most appropriate model among
competing alternatives.?’-30

Model Accuracy in Outcome Classification

Logistic regression is one of the most widely used
algorithms for classification purposes. Its predictive
performance is typically evaluated using the Receiver
Operating Characteristic (ROC) curve and the Area
Under the Curve (AUC).173031

Initially developed in signal detection theory, ROC
curves have become a widely used method for
evaluating classification performance. Classification
involves predicting the category an observation
belongs to based on given features. To illustrate this
classification concept, let us consider a diagnostic test
evaluated against a ‘gold standard’ that determines
the true disease status.?? If the test predicts positive
and the true condition is positive, it is a True Positive
(TP). If the prediction is positive but the condition is
negative, it is a False Positive (FP). Similarly, a
negative prediction that matches a negative condition
is a True Negative (TN), and a negative prediction for
a positive condition is a False Negative (FN). From
these, Sensitivity (or True Positive Rate, TPR) is
calculated as TP/(TP+FN), representing the proportion
of correctly identified positives. Specificity (or True

Negative Rate, TNR) is TN/(TN+FP). The False
Positive Rate (FPR) is FP/(FP+TN), which equals
(1-Specificity), and the False Negative Rate (FNR) is
FN/(FN+TP), or (1-Sensitivity). While some diagnostic
tests produce binary results (positive or negative),
others provide continuous scores. For such cases, a
cutoff threshold is applied to determine the predicted
class. Adjusting this threshold impacts sensitivity and
specificity—improving one often reduces the other.
ROC curves illustrate this trade-off by plotting FPR on
the x-axis against TPR on the y-axis across various
threshold values. Lower values on the x-axis
correspond to fewer false positives, while higher values
on the y-axis indicate more true positives. This
visualization provides a comprehensive view of a
classifier’s performance under different threshold
settings.30,33,34

So, how does logistic regression perform classification?
The process starts by fitting a model and computing
predicted conditional probabilities P(Y) for each
observation. A threshold—commonly 0.5—is then used
to assign class labels: predictions above 0.5 are
classified as 1 (positive), and those below as 0 (negative).
ROC analysis is then applied to assess the model’s
ability to discriminate between actual outcomes (Y =
0/1) across different thresholds using P(Y). Here, TPR
is the proportion of actual positives correctly classified
as positive, while FPR is the proportion of actual
negatives incorrectly classified as positive.l73031

The Area Under the Curve (AUC) summarizes the
ROC curve into a single value that reflects a model’s
overall capability to distinguish between positive and
negative outcomes. It represents the likelihood that a
randomly chosen positive case and a negative case are
correctly ranked by the model. AUC values range from
0 to 1, where 0.5 indicates no discrimination
(equivalent to random guessing), and 1 represents
perfect classification performance (Figure 4).17:3%3!

Observed outcome (Y)

Classified outcome

1)

Y=1 Y=0 Total

> 075 \ (Based on P(Y=1) .
z P(Y=1) 20.05 > 1 | True positive | False positive | TP+FP o
L R (TP) (FP) £
2 / P(Y=1)<0.05-> 1 |False Negative|True Negative| FN+TN o
2B (FN) (TN) =
Total TP+FN FP+TN 8
0.00 it e . v
1 2 3 4 5 =

Predictor X True positive rate (sensitivity) =TP /(TP + FN)

p(ve1)= P Bo +BX) True negative rate (specificity) =TN/(FP +TN) o

T Tvexp (B, +AX) False positive rate (1-specificity) =FP / (FP + TN) 0  False positiverate 1

False negative rate (1-sensitivity) = FN / (FN + TP)

Figure 4. ROC curve & AUC for logistic regression classification
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Relevancy of Clustering in the Model

One major challenge is that the degree of correlation
among observations within a cluster can significantly
impact study results. Even when this correlation is
small or statistically insignificant, it can still affect
the wvalidity of the analysis.'® Ignoring
correlation may lead to inaccurate p-values, overly

such

narrow confidence intervals, and biased parameter
estimates, ultimately resulting in misleading
interpretations.®

Several metrics help quantify and interpret between-
cluster heterogeneity and the influence of cluster-level
variables. Examples include the median odds ratio
(MOR), the 80% interval odds ratio (IOR-80), and the
sorting out index (SOI).® Among these, the most
commonly used measure is the intra-cluster
correlation coefficient (ICC). The ICC, denoted by the
Greek letter p (rho), indicates the similarity or
relatedness of observations within the same cluster. It

reflects the proportion of outcome variance explained
by differences between clusters.!! (ICC can also serve
other purposes, such as evaluating measurement
reliability/stability by assessing the correlation
between two observations from the same group).®

There are multiple ways to compute the ICC, but the
basic approach defines it as the ratio of variance
between clusters to the total variance in the data. Like
other correlation measures, ICC ranges from 0 to 1 and
can be interpreted in both positive and negative
directions. Its magnitude represents the degree of
similarity within clusters: a higher ICC implies
stronger clustering effects.’® When all clusters have
unique values, the ICC approaches 1; when clusters
are identical, it approaches 0. In practical terms, an
ICC near 0 suggests minimal contribution of clustering
to the model, whereas an ICC close to 1 indicates
strong clustering and significant relevance of clusters
(Figure 5).319

2
G petween cluster

ICC (p) = 5 5
between cluster + 0 within cluster (residual)
cluster Y cluster Y
1 10 [N\ 1 10 [
1 10 1 34
1 10 1 a5
2 15 2 10
2 15 2 34
2 15 Unique value 2 43 Similar values
3 21 3 10
3 21 >_ in each cluster 3 34 >- in all clusters
3 21 3 45
4 34 ICC=1 4 10 ICC=0
a 34 4 34
4 34 4 45
5 45 5 10
5 as 5 34
5 a5 5 45 ICC: intra-cluster correlation coefficient

Figure 5. Intra-cluster correlation coefficients

Case Study

To illustrate the impact of clustering, consider two
simulated datasets, each containing 200 observations
divided into 20 clusters (10 observations per cluster).

(Y=0/1) and two predictors (X1, X2). The primary
distinction between them is the degree of clustering in
the outcome: one dataset demonstrates a strong

clustering effect, while the other shows a weak effect

Both datasets include a binary outcome variable (Figure 6).
Cluster

1|2 3|a/s5|6|7 |89 10]/11]12/13[1415]16 17[18 19 20
Y High clustering effect
0 10 | 4 10 |1 9 10| 1 3 7 |10 3 10|10 | 5 6 5 1 10
1 6 1 9|7 |10 3 10| 7 5 4 5 10
Y Low clustering effect
0 4 5 5|5 5 71 4 4 6 | 4 8 3 5 3 2 5 7 2 3
1 6 5 5 55 3 6 6 4|6 2 7 5 7 8 5 3 8 7 1

Figure 6. Clustering effect in two hypothetical datasets
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To evaluate model performance, two approaches
were applied: standard logistic regression (which
ignores clustering) and multilevel mixed-effects
logistic regression with random intercepts (which
accounts for clustering).

In the high-clustering dataset (Figure 7), the mixed-
effects model substantially outperformed standard

logistic regression in terms of fit. Classification
accuracy showed a marked difference: the AUC for
logistic regression was approximately 61%, compared
to 97% for the mixed model. Here, the ICC was 0.89,
underscoring the critical importance of accounting for

clustering.

Logistic regression Mixed model-Logistic regression
(with cluster effect)
Y=0 Y=1 | Odds ratio (95% Cl) p-value Odds ratio (95% Cl) p-value

X1 1 44 52 2.41 (1.36-4.29) 0.003 9.05 (2.74-29.81) <0.001

0 70 34 1 1
X2 1 46 38 1.12 (0.63-2.00) 0.699 2.81(0.93-8.47) 0.066

0 68 48 1 1
Model goodness of fit
AIC 269.71 158.41
BIC 279.61 171.61

Relevancy of clustering
ICC (95% ClI) -

0.89 (0.62—-0.98)

Accuracy of model classification
AUC (95% ClI) 0.61 (0.54-0.69)

050 075 1.00

Sensitivity

025

-~

000

0.00 025 050 075
1-Speaficty
Ao under ROC curve = 02180

0.97 (0.95-0.99) .

050 075 1.00
1-Specticty

Cl: confidence interval. AIC: Akaike information criterion. BIC: Bayesian information criterion. AUC: area under the curve. ICC: intra-cluster

correlation coefficient.

Figure 7. Performance of models accounting for clustering versus ignoring clustering in a high-ICC dataset

In contrast, in the low-clustering scenario (Figure 8),
both models produced similar fit statistics (AIC, BIC).
Classification performance was also comparable: the
AUC for logistic regression was about 71%, while the

mixed model achieved 76%. The intraclass correlation
coefficient (ICC) for the mixed model was 0.07,
indicating that adjusting for clustering offered little
advantage.

Logistic regression Mixed model-Logistic regression
(with cluster effect)
Y=0 Y=1 | Odds ratio (95% Cl) p-value Odds ratio (95% Cl) p-value
X1 1 30 69 4.47 (2.44-8.18) <0.001 4.90 (2.55-9.42) <0.001
0 66 35 1 1
X2 1 32 51 2.05(1.11-3.79) 0.022 2.12 (1.11-4.04) 0.022
0 64 53 1 1
Model goodness of fit
AIC 252.44 252.70
BIC 262.34 265.90
Relevancy of clustering
ICC (95% Cl) - 0.07 (0.01-0.37)
Accuracy of model classification g .. 8 s
AUC (95% ClI) 0.71 (0.64-0.78) : ” 0.76 (0.70-0.83) e il
' il
I
:f

Cl: confidence interval. AIC: Akaike information criterion. BIC: Bayesian information criterion. AUC: area under the curve. ICC: intra-cluster

correlation coefficient.

Figure 8. Performance of models accounting for clustering versus ignoring clustering in a low-ICC dataset
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These examples show that the importance of clustering
largely depends on the level of ICC. When ICC is low,
using either a standard logistic regression or a mixed-
effects model makes little difference. However, when
ICC is high, ignoring clustering can result in poorer
model fit, biased estimates, and reduced predictive
accuracy.

Key Takeaways: Do Clusters Really Matter?

Clustering matters most when ICC is high—ignoring
it can affect your results. When ICC is low, simpler
models work fine, but with high ICC, mixed-effects
models are recommended for more accurate and
reliable predictions.
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