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Clustering of observations is a frequent occurrence in 

epidemiological and clinical research.1–3 When planning 

a study, it can be beneficial to consider whether 

clusters exist in the population and whether the 

sampling approach takes them into account. For 

instance, in two-stage sampling, where clusters (e.g., 

villages) are selected first and units (e.g., households) 

are sampled within them, clustering within such 

hierarchical structure may substantially impact 

statistical analysis results.3 Individuals within the 

same group in a population may not be independent—

for example, those who share health-related 

environments or affect each other’s behaviors and 

exposures in a cohort study.1 In complex surveys, 

where participants are drawn from the same setting 

(e.g., students in a classroom or family members in a 

household), recruitment may be planned to examine 

group membership effects.2 In cluster-randomized 

trials where randomization occurs at the cluster level 

rather than the individual level, clustering can affect 

study conclusions, particularly when treatment effects 

vary across clusters.3    

Even when clustering is present in the designs 

described, it is often not considered in statistical 

analyses. In this paper, we explore how clustering 

affects the analysis of clustered data using logistic 

regression. 

Clustered Data: Concept and Implications 

Several terms are commonly used to describe clustered 

data, including “clustering,” “nesting,” “grouping,” and 

“hierarchies,” which are often used interchangeably. 

All of these terms refer to the concept that observations 

that can be organized into several distinct groups at a 

lower, micro level within one or more higher-level, 

macro units. Each macro unit represents a “level,” and 

datasets can include multiple levels (multilevel), such 

as in two-level or three-level sampling designs.4,5 As 

shown in Figure 1, clustered data can occur at multiple 

levels. Patients are nested within doctors, and doctors 

are, in turn, grouped within hospitals. Similarly, 

repeated measurements on the same individual can be 

viewed as nested data, where the observations are 

nested within the person. The impact of clustering may 

differ across hierarchical levels. For example, patients 

(level-1 units) within a single hospital or community 

(level-2 units) may show minimal variation in 

background characteristics. By contrast, differences in 

infrastructure, preparedness, and patient backgrounds 

across hospitals or communities lead to greater 

heterogeneity among these units.6 

 

Figure 1. Multilevel structure of clustered data 

Level 1: Patients are clustered within a clinic. Level 1: Patient visits are repeated measures. 

Level 2: Clinics are clustered within a district. Level 2: Patients are clustered within a doctor. 

 Level 3: Doctors are clustered within a hospital. 
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Clustered data are common and could be problematic. 

A fundamental assumption underlying most standard 

statistical methods is that individual observations are 

independent, meaning that the value of one 

observation does not affect another.1,7,8 Clustering 

often causes observations within the same cluster to be 

more alike than measurements from different 

clusters.9 When individuals are clustered, they are not 

fully independent of each other. Similarities, or 

homogeneity, between subjects in clusters reduces the 

variability of their responses, compared with that 

expected from a random sample.  

Failing to account for clustering can lead to substantial 

increases in Type I error rates and reduce the 

statistical power to detect differences between groups. 
10,11 Generally, analyzing clustered data requires a 

larger sample size than independent data to achieve 

comparable person-level power. Incorporating more 

clusters and allowing for varying cluster sizes can 

improve estimate accuracy and enhances the ability to 

detect differences between clusters.4 It is important to 

note that, when the statistical model is correctly 

specified and the degree of clustering is moderate, 

coefficient estimates typically remain unbiased. 

However, if the correlation among observations within 

clusters is ignored, the estimation of standard errors 

can be substantially biased—either underestimated or 

overestimated—leading to incorrect inferences and 

potentially misleading conclusions.7 Some researchers 

even suggest that, in cases where statistical analysis 

taking into account clustering effect may not be strictly 

necessary, applying it can still yield approximately 

correct standard errors.3 

Clustering can influence statistical inference in 

regression analyses, especially when the outcome 

variable remains clustered even after accounting for 

all measured predictors.2 It also matters when both 

residuals and predictor variables are correlated within 

clusters.3 Ignoring clustering may lead to biased 

estimates or inaccurate standard errors in regression 

model. When observations vary more between clusters 

than within clusters, standard regression models tend 

to overestimate the precision of predictor effects. 

Conversely, when observations are less clustered, the 

precision may be slightly underestimated.2  

Logistic Regression vs. Multilevel Mixed 

Logistic Regression 

Logistic regression is a widely used statistical method, 

especially in epidemiology. In particular, binary 

logistic regression describes the relationship between 

one or more predictor variables (X) and a binary 

outcome (Y), where Y takes one of two possible values: 

0 (no event) or 1 (event occurs).  

Unlike linear regression, which assumes a continuous 

and normally distributed outcome, logistic regression 

applies a logit (log-odds) transformation to the outcome. 

The log-odds is the natural logarithm of the odds, 

where odds represent the ratio of the probability of the 

event occurring to the probability of it not occurring, 

ln(Py/1-Py) or ln(Py=1/Py=0). As illustrated in Figure 

2(a), in a simple logistic regression model, a one-unit 

increase in predictor X changes the log-odds of the 

outcome by an amount equal to the coefficient β1. When 

this coefficient (β1) is exponentiated, it produces the 

odds ratio (OR), which represents the multiplicative 

change in odds associated with a one-unit increase in 

the predictor.12,13 

The logistic function, also called the sigmoid function, 

produces an S-shaped curve (Figure 2(b)) that maps 

log-odds to probabilities. The resulting probability,  

P(Y=1), is referred to as a conditional probability 

because it is calculated given specific values of the 

predictors (X). In other words, the probability of the 

event occurring depends on the values of the variables 

included in the model—P(Y=1|X).14   

 

Figure 2. Logistic regression model 
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Multilevel mixed logistic regression extends the 

traditional logistic regression framework by 

incorporating the dependency among observations 

caused by clustering.6,15 This method is frequently used 

in health research to properly handle clustered data 

when estimating the influence of both individual-level 

and group-level predictors on binary outcomes.6 

Ignoring clustering in a standard logistic regression, 

rather than addressing it with a multilevel mixed 

model, can result in substantial problems due to 

variability within clusters.16 When a multilevel 

approach is not applied, an alternative is to include 

cluster indicators as dummy variables—though this is 

only practical when the number of clusters is relatively 

small. Nevertheless, this approach is often inefficient 

and less parsimonious.17 

Notably, multilevel mixed models are extensions of the 

three most common regression approaches: linear, 

logistic, and Poisson. These models, also known as 

mixed-effects, hierarchical, or multilevel models, 

provide a statistical framework for analyzing data 

organized into multiple levels.18 They are designed for 

situations where observations are clustered, enabling 

researchers to estimate both overall effects and 

cluster-specific differences.19 Derived from the general 

linear mixed-effects model framework, they are termed 

“mixed” because they combine fixed effects—

parameters that remain the same across clusters—

with random effects, which vary between clusters.4 

Fixed effects capture consistent influences across all 

units, whereas random effects represent variability 

among them. When the units are individuals, random 

effects reveal individual-level differences. Common 

types include random intercepts, which account for 

differences in cluster means, and random slopes, which 

reflect variations in how predictors affect outcomes 

across clusters.18  

The random intercept model includes a cluster-specific 

intercept that is estimated separately for each cluster. 

Its fixed component consists of the overall intercept (β₀) 

and slope (β₁), which apply to all observations, while 

the random component represents the unique 

intercept (U₀) for each cluster (Figure 3(a)). By 

incorporating random intercepts, the model accounts 

for unobserved group-level heterogeneity in the 

outcome, allowing baseline differences between groups 

to be properly reflected in the analysis.20 This is 

especially useful for evaluating how much of the 

outcome’s variation exists between clusters compared 

to within clusters. When clusters differ substantially, 

their intercepts deviate from the fixed component, 

resulting in a larger standard deviation of cluster-

specific intercepts. Conversely, when observations 

within clusters are very similar, their outcomes tend to 

align closely with the fixed component.1 

The random slope model allows the relationship 

between a predictor (or predictors) and the outcome to 

vary across clusters.2,21 In contrast, the random 

intercept model allows intercepts to differ by group but 

assumes the slope (β₁) is the same across all groups. 

The random slope model relaxes this assumption by 

letting slopes vary randomly between groups.1,20 As a 

result, both slopes and intercepts are treated as 

random effects, giving each cluster its own intercept 

(U₀) and slope (U₁). The model equation is adjusted 

accordingly to account for variability in both intercepts 

and slopes across clusters (Figure 3(b)). This flexibility 

is particularly useful for understanding how 

regression patterns differ across various group-level 

contexts.20,22 

 

Figure 3. Multilevel mixed logistic regression models 
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In theory, the random slope model is appealing 

because it allows the relationship between predictor(s) 

and the outcome to vary across clusters. When the 

lower-level unit is at the individual level, it is even 

more plausible that individual characteristics will 

influence the outcome differently. There is 

considerable debate on this issue. If there are strong a 

priori reasons to believe that a fixed effect should vary 

across individuals or clusters, random slopes should be 

included, provided the data can support such a 

model.23,24 This is particularly important when 

examining cross-level interactions, where the effect of 

a variable at one level (e.g., individual-level) on the 

outcome is influenced by a variable at a higher level 

(e.g., cluster-level). In such cases, the literature 

recommends using a random slope model. Ignoring 

these interactions can lead to seriously biased and 

anti-conservative inferences.25 

Selecting a random slope model, however, comes with 

several challenges. Most studies using multilevel 

mixed models prefer a random intercept model, as it is 

simpler to assume that the relationship between 

predictors and the outcome is consistent across all 

groups. The rationale for including random slopes is 

less straightforward and should be guided by subject-

matter knowledge. It is generally recommended to first 

identify variables for which a group-dependent effect 

(random slope) is plausible.26 If the model converges 

without warnings, random slopes can generally be 

retained in the model. Inclusion decisions are usually 

driven by theoretical considerations rather than 

statistical significance in a particular sample. 

Nevertheless, likelihood ratio tests can be applied, and 

slopes that do not improve model fit should be removed 

to maintain model parsimony.23 

There are several drawbacks associated with random 

slope models. They can sometimes encounter singular 

fits, either because the correlation between slopes and 

intercepts is estimated near ±1, or because the 

variance of the random slopes is estimated near zero. 

In the first case, a model without the correlation can 

be fitted; in the latter, the random slopes are typically 

removed.23 In practice, including random slopes often 

leads to overfitting. Moreover, mixed models assume 

that random effects are multivariate normal—a 

condition that may not hold, particularly when random 

slopes are included.24 

When choosing between a random intercept and a 

random slope model, researchers can fit both models 

and compare model fit metrics. Prioritize variables 

expected to have the strongest effects, then estimate 

the model including the selected fixed and random 

effects. Note that data generally contain less 

information about random effects than fixed effects, so 

including many random slopes can slow estimation or 

even prevent convergence. Importantly, not all 

predictors need random slopes; only those for which a 

group-dependent effect is theoretically justified should 

be considered. Evaluate the significance of random 

slopes and remove those that are not significant. 

Similarly, assess regression coefficients and exclude 

non-significant predictors and consider whether to 

include interaction effects between predictors in level-

one variables. Random slopes for interaction terms are 

generally discouraged, as they are often difficult to 

interpret.26 

Goodness of Fit of the Model 

The concept of goodness of fit refers to how effectively 

a statistical model captures the patterns in observed 

data. It assesses the agreement between predicted 

results and actual outcomes, providing an indication of 

the model fit. Selecting an appropriate model often 

involves a trade-off between accurately explaining the 

data and avoiding overfitting or unnecessary 

complexity. Several metrics are available to guide this 

decision, with the most widely used being the Akaike 

Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC). These criteria help 

balance model fit and simplicity, leading to models 

that explain the data well without adding excessive 

complexity.27–30 

AIC evaluates models by considering both fit and 

complexity. It measures how well the model explains 

the data while applying a penalty for the inclusion  

of additional parameters to prevent overfitting.  

The formula is: AIC = −2 ln(Likelihood) + 2k where 

“Likelihood” reflects the model’s fit to the data and k is 

the number of parameters. In essence, AIC combines 

the log-likelihood with a complexity penalty, ensuring 

a balance between model fit and parsimony. For 

example, in logistic regression, adding extra predictors 

will only improve AIC if they substantially enhance the 

model’s fit, thereby reducing the risk of overfitting. In 

practice, goodness of fit is closely tied to model 

selection, especially in deciding how many significant 

predictors should be included in the model. 

BIC is similar to AIC but imposes a stronger penalty 

for complexity, particularly in large datasets. Its 

formula is: BIC = −2 ln(Likelihood) + k ln(n) where n 

represents the sample size. BIC is based on Bayesian 

probability principles and tends to favor simpler 

models when the evidence for added complexity is 

weak. Consequently, BIC is particularly useful in 

large-sample contexts where the risk of overfitting is 

high. 
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Both AIC and BIC estimates how much information 

is lost when a candidate model is used to approximate 

reality. Lower values indicate better models, but 

these metrics are meaningful only when comparing 

models estimated on the same dataset. In general, 

AIC tends to favor more complex models relative to 

BIC, making it a preferred criterion for smaller 

datasets where over-penalizing complexity could 

eliminate relevant predictors. Conversely, BIC is 

often preferred in large datasets because of its stricter 

penalty, which helps prevent overfitting. In practice, 

neither AIC nor BIC provides an absolute measure of 

model quality; rather, they are comparative tools that 

aid in selecting the most appropriate model among 

competing alternatives.27–30  

Model Accuracy in Outcome Classification 

Logistic regression is one of the most widely used 

algorithms for classification purposes. Its predictive 

performance is typically evaluated using the Receiver 

Operating Characteristic (ROC) curve and the Area 

Under the Curve (AUC).17,30,31 

Initially developed in signal detection theory, ROC 

curves have become a widely used method for 

evaluating classification performance. Classification 

involves predicting the category an observation 

belongs to based on given features. To illustrate this 

classification concept, let us consider a diagnostic test 

evaluated against a ‘gold standard’ that determines 

the true disease status.32 If the test predicts positive 

and the true condition is positive, it is a True Positive 

(TP). If the prediction is positive but the condition is 

negative, it is a False Positive (FP). Similarly, a 

negative prediction that matches a negative condition 

is a True Negative (TN), and a negative prediction for 

a positive condition is a False Negative (FN). From 

these, Sensitivity (or True Positive Rate, TPR) is 

calculated as TP/(TP+FN), representing the proportion 

of correctly identified positives. Specificity (or True 

Negative Rate, TNR) is TN/(TN+FP). The False 

Positive Rate (FPR) is FP/(FP+TN), which equals 

(1−Specificity), and the False Negative Rate (FNR) is 

FN/(FN+TP), or (1−Sensitivity). While some diagnostic 

tests produce binary results (positive or negative), 

others provide continuous scores. For such cases, a 

cutoff threshold is applied to determine the predicted 

class. Adjusting this threshold impacts sensitivity and 

specificity—improving one often reduces the other. 

ROC curves illustrate this trade-off by plotting FPR on 

the x-axis against TPR on the y-axis across various 

threshold values. Lower values on the x-axis 

correspond to fewer false positives, while higher values 

on the y-axis indicate more true positives. This 

visualization provides a comprehensive view of a 

classifier’s performance under different threshold 

settings.30,33,34 

So, how does logistic regression perform classification? 

The process starts by fitting a model and computing 

predicted conditional probabilities P(Y) for each 

observation. A threshold—commonly 0.5—is then used 

to assign class labels: predictions above 0.5 are 

classified as 1 (positive), and those below as 0 (negative). 

ROC analysis is then applied to assess the model’s 

ability to discriminate between actual outcomes (Y = 

0/1) across different thresholds using P(Y). Here, TPR 

is the proportion of actual positives correctly classified 

as positive, while FPR is the proportion of actual 

negatives incorrectly classified as positive.17,30,31 

The Area Under the Curve (AUC) summarizes the 

ROC curve into a single value that reflects a model’s 

overall capability to distinguish between positive and 

negative outcomes. It represents the likelihood that a 

randomly chosen positive case and a negative case are 

correctly ranked by the model. AUC values range from 

0 to 1, where 0.5 indicates no discrimination 

(equivalent to random guessing), and 1 represents 

perfect classification performance (Figure 4).17,30,31 

 

Figure 4. ROC curve & AUC for logistic regression classification 

 Observed outcome (Y) 

Classified outcome 
(Based on P(Y=1) 

Y=1 Y=0 Total 

P(Y=1) ≥ 0.05 → 1 True positive 
(TP) 

False positive 
(FP) 

TP+FP 

P(Y=1) < 0.05 → 1 False Negative 
(FN) 

True Negative 
(TN) 

FN+TN 

Total TP+FN FP+TN  

 

True positive rate (sensitivity) = TP / (TP + FN) 

True negative rate (specificity) = TN / (FP + TN) 

False positive rate (1–specificity) = FP / (FP + TN) 

False negative rate (1–sensitivity) = FN / (FN + TP) 
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Relevancy of Clustering in the Model 

One major challenge is that the degree of correlation 

among observations within a cluster can significantly 

impact study results. Even when this correlation is 

small or statistically insignificant, it can still affect 

the validity of the analysis.16 Ignoring such 

correlation may lead to inaccurate p-values, overly 

narrow confidence intervals, and biased parameter 

estimates, ultimately resulting in misleading 

interpretations.5 

Several metrics help quantify and interpret between-

cluster heterogeneity and the influence of cluster-level 

variables. Examples include the median odds ratio 

(MOR), the 80% interval odds ratio (IOR-80), and the 

sorting out index (SOI).6 Among these, the most 

commonly used measure is the intra-cluster 

correlation coefficient (ICC). The ICC, denoted by the 

Greek letter ρ (rho), indicates the similarity or 

relatedness of observations within the same cluster. It 

reflects the proportion of outcome variance explained 

by differences between clusters.1,11 (ICC can also serve 

other purposes, such as evaluating measurement 

reliability/stability by assessing the correlation 

between two observations from the same group).9 

There are multiple ways to compute the ICC, but the 

basic approach defines it as the ratio of variance 

between clusters to the total variance in the data. Like 

other correlation measures, ICC ranges from 0 to 1 and 

can be interpreted in both positive and negative 

directions. Its magnitude represents the degree of 

similarity within clusters: a higher ICC implies 

stronger clustering effects.16 When all clusters have 

unique values, the ICC approaches 1; when clusters 

are identical, it approaches 0. In practical terms, an 

ICC near 0 suggests minimal contribution of clustering 

to the model, whereas an ICC close to 1 indicates 

strong clustering and significant relevance of clusters 

(Figure 5).3,19 

 

Figure 5. Intra-cluster correlation coefficients 

 

Case Study 

To illustrate the impact of clustering, consider two 

simulated datasets, each containing 200 observations 

divided into 20 clusters (10 observations per cluster). 

Both datasets include a binary outcome variable  

 

(Y=0/1) and two predictors (X1, X2). The primary 

distinction between them is the degree of clustering in 

the outcome: one dataset demonstrates a strong 

clustering effect, while the other shows a weak effect 

(Figure 6). 

 

Figure 6. Clustering effect in two hypothetical datasets 

ICC: intra-cluster correlation coefficient 

Similar values  
in all clusters 

ICC=0 

Unique value 
in each cluster 

ICC=1 

High clustering effect 

 Low clustering effect 
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To evaluate model performance, two approaches 

were applied: standard logistic regression (which 

ignores clustering) and multilevel mixed-effects 

logistic regression with random intercepts (which 

accounts for clustering). 

In the high-clustering dataset (Figure 7), the mixed-

effects model substantially outperformed standard  
 

logistic regression in terms of fit. Classification 

accuracy showed a marked difference: the AUC for 

logistic regression was approximately 61%, compared 

to 97% for the mixed model. Here, the ICC was 0.89, 

underscoring the critical importance of accounting for 

clustering. 

 

Figure 7. Performance of models accounting for clustering versus ignoring clustering in a high-ICC dataset 
 

In contrast, in the low-clustering scenario (Figure 8), 

both models produced similar fit statistics (AIC, BIC). 

Classification performance was also comparable: the 

AUC for logistic regression was about 71%, while the 

mixed model achieved 76%. The intraclass correlation 

coefficient (ICC) for the mixed model was 0.07, 

indicating that adjusting for clustering offered little 

advantage. 

 
Figure 8. Performance of models accounting for clustering versus ignoring clustering in a low-ICC dataset 

    Logistic regression Mixed model–Logistic regression 
     (with cluster effect) 
  Y=0 Y=1 Odds ratio (95% CI)     p-value Odds ratio (95% CI)         p-value 

X1 1 44 52 2.41 (1.36–4.29) 0.003 9.05 (2.74–29.81) <0.001 
 0 70 34 1  1  
X2 1 46 38 1.12 (0.63–2.00) 0.699 2.81 (0.93–8.47) 0.066 
 0 68 48 1  1  

Model goodness of fit    
AIC 269.71 158.41 
BIC 279.61 171.61 

Relevancy of clustering  
ICC (95% CI) - 0.89 (0.62–0.98) 

Accuracy of model classification  
AUC (95% CI)    0.61 (0.54–0.69)  
 
 
 
 
 
 

0.97 (0.95–0.99)  

CI: confidence interval. AIC: Akaike information criterion. BIC: Bayesian information criterion. AUC: area under the curve. ICC:  intra-cluster 
correlation coefficient. 

    Logistic regression Mixed model–Logistic regression 
     (with cluster effect) 
  Y=0 Y=1 Odds ratio (95% CI)     p-value Odds ratio (95% CI)         p-value 

X1 1 30 69 4.47 (2.44–8.18) <0.001 4.90 (2.55–9.42) <0.001 
 0 66 35 1  1  
X2 1 32 51 2.05 (1.11–3.79) 0.022 2.12 (1.11–4.04) 0.022 
 0 64 53 1  1  

Model goodness of fit    
AIC 252.44 252.70 
BIC 262.34 265.90 

Relevancy of clustering  
ICC (95% CI) - 0.07 (0.01–0.37) 

Accuracy of model classification  
AUC (95% CI)    0.71 (0.64–0.78)  
 
 
 
 
 
 

0.76 (0.70–0.83)  

CI: confidence interval. AIC: Akaike information criterion. BIC: Bayesian information criterion. AUC: area under the curve. ICC:  intra-cluster 
correlation coefficient. 
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These examples show that the importance of clustering 

largely depends on the level of ICC. When ICC is low, 

using either a standard logistic regression or a mixed-

effects model makes little difference. However, when 

ICC is high, ignoring clustering can result in poorer 

model fit, biased estimates, and reduced predictive 

accuracy.  

Key Takeaways: Do Clusters Really Matter? 

Clustering matters most when ICC is high—ignoring 

it can affect your results. When ICC is low, simpler 

models work fine, but with high ICC, mixed-effects 

models are recommended for more accurate and 

reliable predictions. 
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