

Incidence of Shock in Patients Treated in an Emergency Department after Sustaining a Road Traffic Injury

Petcharat Eiamla-or, Orapan Thosingha*, Suporn Danaidutsadeekul, Chukiat Viwatwongkasem, Kathy Hegadoren

Abstract: Road traffic injuries in Thailand are the major cause of death and disabilities in young adults. The presence of shock plays an important role in clinical outcomes. This cross-sectional study aimed to determine the incidence of shock and to identify factors predicting the presence of shock on discharge from the emergency department in patients sustaining moderate to serious road traffic injuries in Thailand. Five hundred and three patients (N=503), who scored at least 16 on the Injury Severity Score on admission to an emergency department were recruited. Population and contextual variables were collected from patients' medical records and patients and triage nurses' interviews. Two standardized tools were used to measure the severity of injury and the presence of shock. Data analyses included descriptive statistics, univariate analysis and multivariate logistical regression.

Results indicated that the majority of patients were males, wearing no safety devices and had consumed alcohol prior to driving their motorcycle. The incidence of shock on discharge from the emergency department to the operating room, intensive care unit or general ward was 35%. Transport time, injury severity, shock on arrival and time spent in the emergency department all made significant contributions to whether patients were in shock on discharge from the emergency department. Our findings suggest that emergency nurses should perform routine ongoing calculation of Modified Shock Index scores for monitoring the moderately to severely injured. Further studies examining the superiority of the Modified Shock Index over cardiorespiratory parameters alone could provide evidence to consider the inclusion of this Index into best practice guidelines.

Pacific Rim Int J Nurs Res 2020; 24(4) 436-447

Keywords: Injury Severity, Modified Shock Index, Morbidity, Mortality, Road Traffic Injury, Shock

Received 30 August 2019; Revised 30 September 2019; Accepted 27 January 2020

Introduction

Consistent with global figures, road traffic injury (RTI) in Thailand is the major cause of premature death and disability among young adults. According to the reported road traffic fatalities in Thailand by

Petcharat Eiamla-or, PhD (Candidate), Joint Program between Faculty of Nursing and Ramathibodi School of Nursing, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand. E-mail: petcharat@apiu.edu

Correspondence to: Orapan Thosingha*, RN, DNS, Faculty of Nursing, Mahidol University, Thailand. E-mail: orapan.tho@mahidol.ac.th

Suporn Danaidutsadeekul, RN, DNS, Faculty of Nursing, Mahidol University, Thailand. E-mail: suporn.dan@mahidol.ac.th

Chukiat Viwatwongkasem, PhD, Faculty of Public Health, Mahidol University, Thailand. E-mail: chukiat.viw@mahidol.ac.th

Kathy Hegadoren, RN, PhD, Professor Emeritus, University of Alberta, Faculty of Nursing, Canada. E-mail: kathy.hegadoren@ualberta.ca

WHO 2018, there were 21,745 cases and 32.7/100,000 deaths from RTI, compared to a rate of 12.4/100,000 deaths in the Americas.^{1,2} Most Thai fatalities involve motorcycles, the most commonly registered vehicle in Thailand (74.4%). Compulsory helmet use was enacted in 1996 but the legislation did not specify a helmet quality standard. Lack of reinforcement about the use of a helmet, alcohol consumption, improper use of a helmet and low-quality helmets have all contributed to the limited success in decreasing motorcycle-related deaths and serious life-threatening injuries.³⁻⁴

The consequences of an RTI can have pervasive and life-altering impacts on patients and their families, as well as financial and human resource implications for the health care delivery system. Accordingly, the National Institute for Emergency Medicine in Thailand was established in 2008 to create and deliver a comprehensive care system for patients with emergency care needs, such as post-RTI. The care system was structured to include care from first responders, pre-hospital care, care on arrival at an emergency department (ED) and emergency surgical and/or ICU intervention. Currently in Thailand the care system involves a range of people, including volunteers from foundations such as Poh Teck Tung and ambulance personnel providing pre-hospital care, multidisciplinary ED staff and surgical/ICU staff. Volunteer pre-hospital care providers are all registered members of faith-based foundations and are trained in first aid, cardiopulmonary resuscitation (CPR) and safe patient handling and transfer, although there is no standardized training program across all foundations. When a bystander calls the national emergency number the dispatcher calls one of the foundations who sends a volunteer to the scene. This first responder decides if an ambulance is necessary and calls for one if required. They do not have direct contact with ED staff. Ambulance personnel includes emergency nurses and some paramedics. For consistency across EDs in Thailand, the Canadian Triage and Acuity Scale (CTAS) is used and this has

been shown to be an effective triage system for ED care in a recent metanalysis.⁵

In addition to reducing the time from the RTI to hospital care, a desired outcome of trauma care is a reduction in preventable deaths in patients with RTIs due to shock (typically due to hypovolemia). Consistent with framing the study using Anderson's Behavioral Model of Health Service Use, factors related to the care system and those related to patient characteristics have been shown in other countries and regions to influence this type of preventable death.⁶⁻⁹ It is essential that ongoing efforts to improve ED patient outcomes are based on country-specific evidence of modifiable factors that influence health outcomes after an RTI.

Review of the literature and Conceptual framework

In much of the published literature regarding pre-hospital care, for those that have sustained a serious RTI it is recommended that immediate on-scene assessment be provided by first responders trained in field emergency care [usually paramedics and emergency medical technicians (EMT)] who are in contact with ED staff and can provide symptom management with timely transportation to highly-equipped hospitals. On-scene advanced life support (including cardiopulmonary resuscitation) provided by health professionals with advanced training has been shown to improve outcomes.¹⁰⁻¹¹ Literature regarding non-professional first responders is sparse.^{11,12} A longer time providing on-scene care and transport are associated with poorer outcomes.^{10,13} On arrival to an ED, severity of injury, type of triage system (nurse- or physician-led)¹⁴ and years of triage nurses' experience have been shown to affect triage accuracy, increasing the likelihood of appropriate treatment and improved patient outcomes.¹⁵⁻¹⁷ The majority of patients sustaining a serious RTI experience blunt force trauma, long bone fracture and hemorrhage, which can be life-threatening due to blood loss and hypovolemic shock.⁶ Trauma

care guidelines emphasize the importance of accurate assessment and rapid intervention for hypovolemic shock to prevent premature death in patients with multiple injuries.^{6,8,18} Although the 2004 WHO guidelines for essential trauma care suggest that assessment for shock only requires collecting heart rate (HR) and blood pressure (BP), as well as visual assessment of circulation, the Shock Index and the later adapted version, the Modified Shock Index (MSI) have been used extensively to increase accuracy in identifying shock from HR and BP data.¹⁹ The MSI is calculated by using patients' HR divided by mean arterial pressure (MAP) (MSI = HR / MAP).⁸ In terms of the MSI, a low or high score indicates hemodynamic instability in injured patients.²⁰ Patients with MSI scores of < 0.7 or >1.3 are defined as experiencing shock. This range of values was determined by setting the threshold values at a heart rate of 120 beats per minute and a systolic blood pressure (BP) at less than 90 and calculating the largest possible odds ratio (OR) for higher mortality rates.²⁰ Comparisons between the SI and MSI have yielded equivocal results; however, the populations involved, and the details of the research method differed across studies.²¹⁻²⁴ For the aims of this study, the term shock will be defined as MSI scores of < 0.7 or >1.3. Individual patient characteristics that have been shown to increase the risk of experiencing a serious RTI include age and sex, use of alcohol, use of personal safety equipment, type of vehicle and position in vehicle (driver or passenger).²⁵

Relevant components of the updated Anderson Behavioral Model (BM) of Health Service Use were used to frame this study.²⁶ Although the original intent of the BM was to investigate predisposing, enabling and need factors as they relate to health care utilization, the model has been used extensively to examine both individual and contextual factors that impact how and why patients access health care for a variety of health conditions.²⁷ We applied the BM model to examine how both contextual (operationally defined here as the characteristics of the care system from pre-hospital care to ED discharge) and individual factors (related

to a population of those who had experienced a RTI) can influence a specific health outcome after RTI (defined here as the incidence of shock).

The objectives of the study

The first objective of this study was to determine the incidence of shock at the time of discharge from an ED in patients who had suffered a moderate or serious RTI [Injury Severity Score (ISS score) >16]. The second was to examine the impact of pre-hospital- and ED-related variables and individual patient-related variables on the incidence of shock on discharge from ED care.

Methods

Design: A cross-sectional study was used.

Setting and Sample

The study was conducted in 12 tertiary care hospitals (of which 7 were designated as Level 1 trauma centers) in Bangkok and neighboring provinces. The sample size comprised of 503 patients with RTI who were transported to an ED for trauma care. Inclusion criteria included those aged 18 years and older and with an Injury Severity Score (ISS) ≥ 16 ^{28,29} (score typically associated with requiring care from a Level 1 Trauma Center). The sample size estimation was calculated by using Schlessman's equation.³⁰ The Schlessman's equation is an equation for logistic regression. Level of significance was set at $\alpha = 0.05$ with 80% on power of test. It was calculated that a sample size of 520 was required.

Ethical Considerations: Research ethics approval was obtained from the Siriraj Institutional Review Board (IRB), Faculty of Medicine Siriraj Hospital, Mahidol University (No.IRB-SI120/2016) and the IRBs of the 11 participating hospitals. After providing detailed information about the study, including the right to withdraw at any time, safeguards related to anonymity and participation did not affect care in the ED, eligible and willing participants or their relatives signed consent.

Tools: Participant demographic data, details of the road traffic incident and the resultant injury and

ED data were collected to provide clinical information as well as contextual information as proposed by Anderson's model. The following tools were employed. A template sheet was developed specifically for the study to collect data from triage nurses and included age, gender, years of work in ED, educational level and training experience related to trauma nursing and triage. Another template was developed specifically to collect data from patients and/or their relatives and extract data from the patient's ED record. The sheet collected information on the following: (a) patient demographics; (b) details of the road traffic incident (cause of injury, information of vehicle type, status of the injured, safety devices used and consumption of alcohol before the accident); (c) details of pre-hospital care; (type of first responder on-scene, on-scene care, transport time from the injury scene to the hospital); (d) admission to ED (wait time, triage nurse experience). Both tools were reviewed by five experts in emergency medicine for content items and clinical relevance.

ED care-related parameters included initial and ongoing assessments of pulse, respiratory rate (RR), diastolic blood pressure (DBP), systolic blood pressure (SBP), pupillary reaction to light, mobility, oxygen saturation and level of consciousness.^{31,32} The cardiovascular parameters were used to calculate admission and discharge MSI scores. Although other standardized tools were used by the involved EDs, the Injury Severity Score (ISS) was the most consistently used across all sites. Thus, the ISS was used in this study to classify the severity of injury according to the regions of body that sustained injuries. ISS scores range from 1 to 75, with a score ≥ 16 indicative of moderate to severe injury.³³ Time in the ED and the details of where each patient went on discharge from the ED were also obtained from the ED record. **Table 1** summarizes the operational definitions, the source of data and how each variable was measured for each of the included contextual and individual factors, as well as the specific health outcome.

Data Collection: Of the 566 patients or family members that the researcher approached in the ED, 503 agreed to participate. If the patient was unable to provide informed consent, consent was obtained from relatives if available. Data were also collected from 157 ED nurses who were responsible for triage.

Data Analysis: Descriptive statistics were tabulated [frequency (percentages and n)] for all the variables of interest. Univariate analyses were completed for each variable to examine if the variable (or the various categories within categorical variables) had a significant ($p \leq 0.05$ with a 95% confidence interval) impact on the likelihood of being in shock on discharge from the ED. Variables that were significantly associated with shock on discharge in the univariate analyses or have been shown to be associated with shock in previous studies was further analyzed using multivariate logistical regression modeling.

Results

Among the 503 patients who received care in one of the twelve EDs, the majority were male motorcycle drivers with ages ranging from 18 to 88 years (average age close to 35 years of age). Almost half of the patients (48.9%) did not have compulsory motor vehicle insurance, despite it being mandatory. The majority (89.1%) were not wearing any protective safety devices (motorbike helmet or car seatbelt) and more than one third had consumed alcohol before driving. All suffered blunt force injuries.

Eighty-five percent of patients were connected to the emergency care system by the national emergency telephone number. Although bystanders were often first on scene, foundation volunteers provided most of the initial care. More than half of patients (58%) arrived at an ED within 1 hour of the RTI; however, transit time from the scene to an ED was longer than an hour for a significant proportion of patients, as treatment was often initiated on scene. Wait times were relatively short with only a small percentage of

patients waiting more than 10 minutes before assessment and treatment was initiated. The major body regions of injury were head (72%) and extremities (61%). More than a half (59.2%) had ISS scores between 25 and 49, which is indicative of a severe injury (**Table 1**). **Table 2** highlights the distribution of patients who were in shock on discharge based on their shock/no shock

status on ED admission and their admission ISS scores. No patient was discharged home, most were discharged from the ED to a general ward in the hospital or less commonly to the ICU or immediate surgery (**Table 3**). A total of 17 individuals were deceased on arrival at an ED and another 109 patients died after discharge from an ED.

Table 1 Frequency of variables regarding contextual environment, population and health outcomes (n=503)

Variables	How defined; source of data	How measured/ categorized	Frequency % (N)
1. CONTEXTUAL ENVIRONMENT			
a. Pre-hospital			
Type of responder (categorical)	On-scene care providers; interview & ED ¹ record	Bystander Volunteer ² Ambulance-based HCP ³	6 (30) 71 (357) 23 (116)
On-scene care (dichotomous)	Requiring CPR or not; ED record	CPR ⁴ provided no CPR provided	1.6 (8) 98.4 (495)
Time from scene to ED (categorical)	Time from leaving scene to arrival at an ED; ED record	< 60 min ⁵ ≥ 60 min	57.7 (290) 42.3 (213)
b. ED care			
Wait time (categorical)	Time from triage to initiation of treatment; ED record	Immediate care 1-10 min ≥ 11 min	84.1 (423) 10.7 (54) 5.2 (26)
Years of triage experience collected in relation to each participant. (categorical)	Triage experience of nurse who provided triage; interview	1-5 yrs ⁶ 6-10 yrs 11-20 yrs ≥ 21 yrs	37 (186) 27.6 (139) 30.4 (153) 5 (25)
Severity of Injury (categorical)	As rated by ED staff on admission using the ISS ⁷ ; ED record	16-24 25-49 ≥ 50	196 (39) 293 (58.3) 14 (2.8)
Total time in ED (categorical)	From arrival to discharge in mins; ED record	≤ 60 min 6-120 min 121-180 min 181-240 min 241-300 min ≥ 301 min	6.2 (31) 36.4 (183) 24.3 (122) 12.3 (62) 7.8 (39) 13.1 (66)
2. POPULATION CHARACTERISTICS			
Age (continuous)	Interview & ED record	In yrs ⁸	Mean=34.7 (SD ⁹ 16.4)
Sex (dichotomous)	Male or female; ED record	Male Female	422 (83.9) 81 (16.1)
RTI ¹⁰ details			
Type of vehicle (categorical)	Type involved in the RTI; Interview & ED record	Motorcycle Personal car or truck Other type of vehicle or pedestrian Pedestrian	79.3 (399) 7.6 (38) 13 (66) 8.9 (45)

Table 1 Frequency of variables regarding contextual environment, population and health outcomes (n=503) (Cont.)

Variables	How defined; source of data	How measured/ categorized	Frequency % (N)
Participant position in vehicle (categorical)	Where the participant was at the time of the RTI; Interview & ED record	Driver Passenger Pedestrian	78.5 (395) 12.5 (63) 8.9 (45)
Shock on admission; dichotomous	MSI ¹¹ score (< 0.7 or > 1.3); calculated by research team	Yes No	38.6 (176) 61.4 (309)
Safety devices employed (dichotomous)	Helmets for motorcycles or bicycles, seat belts for cars/ trucks; Interview & ED record	Yes No	10.9 (55) 89.1 (448)
Use of alcohol (dichotomous)	Prior to or at time of RTI; Interview & ED record	Yes No	37.2 (187) 62.8 (316)
3. HEALTH OUTCOME			
Shock at discharge from ED; dichotomous		Yes No	35 (176) 65 (327)

Legend: 1=emergency department; 2=volunteer from a foundation; 3=health care professional; 4=cardiopulmonary resuscitation; 5=kilometers; 6=minutes; 7= Injury Severity Score; 8= years; 9=standard deviation; 10=road traffic injury; 11=Modified Shock Index

Table 2 Frequencies of shock on discharge and ISS scores by shock status¹ on ED arrival (n=503)

	Shock on ED arrival 38.6% (194/503)	No shock on ED arrival 61.4% (309/503)
Shock on discharge from ED ²	55.7% (108)	22.0% (68)
No shock on discharge from ED	44.3% (86)	78.0% (241)
ISS scores		
16-24	31.4% (61)	43.7% (135)
25-49	63.4% (123)	55% (170)
≥ 50	5.2% (10)	1.3% (4)

Legend: 1= shock or no shock according to MIS value; 2=emergency department

Table 3 Patient destinations from ED and deaths by destination (n = 503)

Destination	Total n =503 % (n)	Deaths after discharge from ED % (n)
Operating room for surgery	30.6 (159)	0
Transfer to ICU	20.2 (105)	59 (62/105)
Transfer to general ward	46 (239)	19.7 (47/239)

Univariate analysis of all the variables of interest revealed four variables that were significantly associated with shock on discharge from the ED (**Table 4**). Those that took longer to be transported to an ED, arrived in shock, spent from 3 to 5 hours in the ED and had an ISS score between 25 and 49 were more likely to have MSI scores indicative of shock in discharge from the ED. Interestingly, the type of responder and what care

was provided at the scene, and many of the population demographics and triage experience were not significantly related to shock on discharge. Three variables (spending 2-3 hours, or more than 5 hours, in the ED and those with ISS scores greater than 49) showed a trend towards significance. **Table 5** highlights the results of multivariate logistical regression analyses. The same four variables that were significant in the univariate analyses remained

so in the regression model, reinforcing the importance of timing in transporting patients to an ED, the presence of shock on admission to the ED, the severity of the injuries and the total time spent in the ED to the

incidence of shock on discharge. However, the three variables that showed a trend towards significance when analyzed on their own became insignificant when put in the regression model with all the other variables.

Table 4 Results of the univariate analyses: Variables that were significantly associated with shock on discharge (n = 503)

Variables	Pseudo R ²	Wald	Shock on Discharge		
			Odds Ratio	95% Confidence Interval	p-value
Shock on arrival (N)					
No (n=309)	.153	56.09	1	Ref.	
Yes (n=194)			.225	.152-.332	0.000*
Total time in ED					
1-60 min (n=31)			1	Ref.	
61-120 min (n=183)			.554	.258-1.192	.131
121-180 min (n=122)	.018	6.42	.492	.222-1.092	.081
181-240 min (n=62)			.354	.144-.870	.024*
241-300 min (n=39)			.368	.137-.992	.048*
≥ 301 min (n= 66)			.469	.196-1.120	.088
Total transport time to ED					
< 60 min (n= 290)	.013	4.73	1	Ref.	
≥ 60 min (n= 213)			.658	.451-.959	.030*
Severity of Injury					
ISS 16 -24 (N=196)	.023	8.38	1	Ref.	
ISS 25 -49 (N=293)			1.699	1.149-2.513	.008*
ISS > 50 (N=14)			2.630	.881-7.846	.083

Table 5 Results of the multivariate regression analysis: variables that significantly impact the incidence of shock on discharge from the ED (n = 503)

Variables	Pseudo R ²	Beta	Wald	Shock on discharge from ED		
				OR	95% CI	P-value
Constant	.093	-.858	8.010			
Shock on arrival				2.13	1.414-3.218	.000*
Total time in ED						
61-120 min				.633	.282-1.421	.267
121-180 min				.514	.221-1.193	.121
181-240 min				.341	.131-.884	.027*
241-300 min				.311	.109-.886	.029*
≥ 301 min				.472	.187-1.191	.112
Total transport time to ED				.568	.377-.854	.007*
Severity of Injury						
ISS 25-49				1.560	1.042-2.335	.031*
ISS ≥50				1.622	.499-5.273	.421

Discussion

In general, the Anderson's Behavioral Model of Health Service Use served as a useful framework for the study, highlighting the various contextual and patient characteristics that potentially influenced the outcome of interest. However, only one patient characteristic (shock on arrival to the ED) was found to be related to the incidence of shock on discharge from the ED. The remaining three significant variables were contextual in nature. It is likely that the severity of injury of all the participants in this study overshadowed any contribution that other patient characteristics may have had in previous studies.²⁵

On arrival to the ED, a total of 194 patients demonstrated shock (MSI<0.7 or >1.3) and, at discharge from the ED to other hospital services, more than half of these patients remained in shock. Four factors emerged as predictors of risk for shock on discharge. Severity of injuries is well recognized as being closely associated to mortality and morbidity.³⁴ Only ISS scores between 25 and 49 (indicative of severe injuries) were associated with shock on discharge from the ED. Contributing to this finding is that 62.3% of patients with severe injuries (ISS score>25) had a moderate to severe traumatic brain injury with associated injuries, such as facial or chest injuries. These injuries can result in altered consciousness and respiratory system failure, leading to decreased oxygen perfusion of the vital organs, thus compounding the effects of intravascular volume depletion and hypovolemic shock.³⁵⁻³⁷ The majority of those with scores 50 and above (9/14) were immediately transferred out of the ED, which may account for the finding of statistical non-significance for that category of ISS scores in the multivariate regression model.

Time in the ED was another predictive variable. However, this variable reflects multiple dynamic components. It would be expected that those patients that were rapidly sent to ICU or required immediate surgery upon arrival would be more likely to arrive at

an ED in shock and remain in shock on discharge from the ED. However, that was not always the case. For example, of the patients who were transferred to ICU and later died from their injuries, 71% had ISS scores in the 25–29 range and 35.5% were not in shock on arrival. Access to specialized cardiopulmonary support equipment and higher staff: patient ratio may also influence decisions about ICU transfer.

Separating the time in ED into discrete time periods allowed us to remove those that were rapidly assessed and discharged and highlight that shock can remain or emerge after 3 to 5 hours of ED care. Indeed, the 101 patients (62 + 39) who spent 3 to 5 hours in the ED made up the majority of the total patient population who were in shock on discharge. This underscores the importance of ongoing assessment of hemodynamic status in the ED. Developing shock after admission can arise from many alterations in physiological perfusion-related processes.^{22,24} Continuous scheduled monitoring that includes BP, mean arterial pressure, oxygen saturation and respiratory rate is routine throughout the emergency phase of trauma.²² However, our findings suggest that using these cardiopulmonary data to calculate MSI scores on an ongoing basis may be of benefit, especially to those patients whose initial ISS scores are between 25 and 49. Transit time from the scene to an ED was also a significant factor. This finding is similar to previous studies that showed that the quicker seriously and severely injured individuals can access skilled trauma assessment and treatment, the better the health outcomes.³⁸

Interestingly, three contextual factors that have been shown to affect health outcomes in previous studies were found not to make a significant contribution to shock on discharge in this study. Although Thailand does not meet the pre-hospital standards of the National Institute for Emergency Medicine in Thailand related to the training and credentials of first responders,⁶ it does have a national pre-hospital trauma system. Foundation members volunteering as first responders have been in place for more than 20 years and a

nation-wide emergency telephone number is in place. Foundation members and ambulance staff are directed to the nearest appropriate emergency department. Budget constraints make it unlikely that the routine use of foundation volunteers for on-scene care will be replaced or augmented with healthcare professionals. Whether CPR was provided on the scene of an accident did not affect the risk of shock at ED discharge, which differs from other studies regarding pre-hospital care in developing countries.^{10,11} However, their outcomes examined mortality and morbidity, rather than the specific clinical outcome related to shock.

Perhaps there was a “ceiling effect” that under-laid the lack of significance in terms of triage experience. Even with limited experience (1 to 5 years), nurses would be more likely to accurately assess and score a more severely injured person than those that have lower ISS scores. Some hospitals in the study expressed that although they were experiencing critical ED staff shortages, they routinely assigned the more experienced nurses to triage. This may also have impacted our results.

Limitations

Many factors beyond the studied variables can affect clinical outcomes in patients who experience RTI. The multiplicity of process elements across the entire trajectory of care from on-scene care to ED care and beyond can also impact mortality and morbidity. Important confounds (both population and contextual characteristics) include medications that can directly or indirectly affect cardiovascular status, staff expertise in delivering trauma care, the availability of space to transfer patients out of the ED and the health status of individuals prior to the RTI. We considered only one clinical outcome at one time point, which limits any general statements in terms of improving overall health-related outcomes post-RTI.

Conclusions and Implications for Nursing Practice

RTIs have serious implications for the individual, their families and the health care system. In this study 25% of those that were involved in an RTI either died on transit to an ED ($n=17$) or after transfer to ICU or a general ward ($n=109$). Of those that arrived in an ED after an RTI ($n=503$), the incidence of shock on discharge from the ED was 35%. Transit time to an ED, the severity of their injuries, whether they were in shock on arrival and time spent in ED care all made significant contributions to whether they were in shock on discharge. Shock is a life-threatening circumstance and its presence needs to be identified quickly and accurately to establish a baseline and then monitored on an ongoing basis to identify a change in status in such a physiologically unstable population. The MSI provides such identification. Although the MSI must be calculated, the time required to calculate the score could be minimized by having the formula readily available in the trauma record or easily accessed via electronic means. Accordingly, on ED arrival emergency nurses should use the MSI as a routine component of care for those with moderately to severe injuries to identify patients' hemodynamic status. This can then be used as a baseline from which to systematically identify any changes in hemodynamic status patients throughout their stay in the ED. Our findings suggest that further study on the superiority of routine use of MSI over recording HR and BP in the ED could be advantageous and lead to its inclusion in best practice guidelines.

Acknowledgement

The authors would like to deeply thank all patients and their families, and registered nurses for their participation in this study. This research project was sponsored by Mission Faculty of Nursing, Asia Pacific International University and the Mitsui Sumitomo Insurance, Thailand.

References

1. World Health Organization. Global status report on road safety 2018. [cited 2019 Sep 5] Available from: https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/.
2. World Health Organization. Road safety institutional and legal assessment Thailand. [cited 2019 Sep 5] Available from: <http://www.searo.who.int/thailand/areas/rs-legal-eng11.pdf?ua=1>.
3. World Health Organization. Harm to others from drinking: patterns in nine societies. [cited 2019 Nov 5] Available from: <https://www.who.int/publications-detail/harm-to-others-from-drinking-patterns-in-nine-societies>
4. Stephan K, Kelly M, McClure R, Seubsmar S, Yiengprugsawan V, Bain C. Distribution of transport injury and related risk behaviors in a large national cohort of Thai adults. *Accid Anal Prev* 2011;43(3):1062-7. doi: 10.1016/j.aap.2010.12.011.
5. Mirhaghi A, Heydari A, Mazlom R, Ebrahimi M. The reliability of the Canadian triage and acuity scale: meta-analysis. *N Am J Med Sci* 2015;7(7):299-305. doi:10.4103/1947-2714.161243.
6. Lilitsis E, Xenaki S, Athanasakis E, Papadakis E, Syrigianni P, Chalkiadakis G, et al. Guiding management in severe trauma: reviewing factors predicting outcome in vastly injured patients. *J Emerg Trauma Shock* 2018;11(2):80-7. doi: 10.4103/JETS.JETS_74_17
7. Shiryazdi SM, Mirshamsi M, Piri-Ardekani HR, Shiryazdi SA. Relationship between shock index and clinical outcome in patients with multiple traumas. *IMMINV* 2017;2(3): 94-6. doi.org/10.24200/imminv.v2i3.90
8. Singh A, Ali S, Agarwal A, Srivastava RN. Correlation of shock index and modified shock index with the outcome of adult trauma patients: A prospective study of 9860 patients. *N Am J Med Sci* 2014;6(9):450-2. PMID: 25317389. doi:10.4103/1947-2714.141632.
9. Balikuddembe JK, Ardalan A, Khorasani-Zavareh D, Nejati A, Raza O. Weaknesses and capacities affecting the prehospital emergency care for victims of road traffic incidents in the greater Kampala metropolitan area: a cross-sectional study. *BMC Emerg Med* 2017;17(1):29. doi:10.1186/s12873-017-0137-2.
10. Funder KS, Petersen JA, Steinmetz J. On-scene time and outcome after penetrating trauma: an observational study. *Emerg Med J*. 2011 Sep; 28(9):797-801. PMID: 20935332. doi: 10.1136/emj.2010.097535.
11. Bakke HK, Steinvik T, Eidissen S-I, Gilbert M, Wisborg T. Bystander first aid in trauma – prevalence and quality: a prospective observational study. *Acta Anaesthesiol Scand* 2015 Oct; 59(9): 1187-93. PMID: 26088860. doi: 10.1111/aas.12561
12. Pallavisarji U, Gururaj G, Girish RN. Practice and perception of first aid among lay first responders in a southern district of India. *Arch Trauma Res* 2013; 1(4):155-60. PMID: 24396770. doi: 10.5812/atr.7972
13. Gauss T, Ageron FX, Devaud ML, Debaty G, Travers S, Garrigue D, et al. Association of prehospital time to in-hospital trauma mortality in a physician-staffed emergency medicine system. *JAMA Surg* 2019 Sep 25. [Epub ahead of print] PMID: 31553431. doi: 10.1001/jamasurg.2019.3475. Published online September 25, 2019.
14. Burström L, Nordberg M, Örnung G, Castrén M, Wiklund T, Engström M, et al. Physician-led team triage based on lean principles may be superior for efficiency and quality? A comparison of three emergency departments with different triage models. *Scand J Trauma Resusc Emerg Med* 2012 Aug 20; 20(1):57. PMID: 22905993. doi: 10.1186/1757-7241-20-57
15. Becker JB, Lopes MC, Pinto MF, Campanharo CR, Barbosa DA, Batista RE. Triage at the emergency department: Association between triage levels and patient outcome. *Rev Esc Enferm USP* 2015; 49(5):783-9. PMID: 2651 6748. doi: 10.1590/S0080-623420150000500011.
16. Alexander D, Abbott L, Zhou Q, Staff I. Can triage nurses accurately predict patient dispositions in the emergency department? *J Emerg Nurs* 2016; 42(6): 513-8. PMID: 27637406 doi: 10.1016/j.jen.2016.05.008.
17. Soontorn T, Sitthimongkol Y, Thosingha O, Viwatwongkasem C. Factors influencing the accuracy of triage by registered nurses in trauma patients. *Pacific Rim Int J Nurs R* 2018; 22(2): 120-30.
18. Shiryazdi SM, Mirshamsi M, Piri-Ardekani HR, Shiryazdi SA. Relationship between shock index and clinical outcome in patients with multiple traumas. *IMMINV* 2017; 2(3): 94-6. doi.org/10.24200/imminv.v2i3.90

19. Gruartmoner G, Mesquida J, Ince C. Fluid therapy and the hypovolemic microcirculation. *Curr Opin Crit Care* 2015; 21(4): 276–84. PMID: 26103148. doi: 10.1097/MCC.0000000000000220.
20. Cannon JW. Hemorrhagic shock. *N Engl J Med* 2018; 378: 370–9. doi: 10.1056/NEJMra1705649.
21. Wang IJ, Bae BK, Park SW, Cho YM, Lee DS, Min MK, et al. Pre-hospital modified shock index for prediction of massive transfusion and mortality in trauma patients. *Am J Emerg Med* 2019 Feb 1. pii: S0735-6757(19)30034-8. [Epub ahead of print]. doi: 10.1016/j.ajem.2019.01.056.
22. Abreu G, Azevedo P, Braga CG, Vieira C, Pereira MA, Martins J, et al. Modified shock index: A bedside clinical index for risk assessment of ST-segment elevation myocardial infarction at presentation. *Rev Port Cardiol* 2018; 37(6): 481–8. PMID: 29807676 doi.org/10.1016/j.repc.2017.07.018
23. Elbain AH, Houssein AM. Validity of shock index, modified shock index, central venous pressure, and inferior vena cava collapsibility index in evaluation of intravascular volume among hypovolemic Egyptian patients. *IJDI* 2018;4(1),5–13. doi:10.5455/ajdi.20180318114502
24. Bhuvanenswari T, Devaraj B. Evaluation of modified shock index and mortality rate of patients at emergency department of tertiary care hospital in Tamil Nadu. *IAIM* 2017;4(11): 47–51.
25. Seesen M, Siviroj P, Sapbamrer R, Morarit S. High blood alcohol concentration associated with traumatic brain injury among traffic injury patients during New Year festivals in Thailand. *Traffic Injury Prevention* 2019;20(2):115–21. doi:10.1080/15389588.2018.1547379
26. Anderson R. Revisiting the behavioral model and access to medical care: Does it matter? *J Health and Social Behav.* 1995; 36(1): 1–10. Available from: <http://dx.doi.org/10.2307/2137284>
27. Babitsch B, Gohl D, von Lengerke T. Re-revisiting Andersen's Behavioral Model of Health services Use: a systematic review of studies from 1998–2011. *Psychosoc Med* 2012; 9: 1–15. PMID: 23133505. doi: 10.3205/psm000089. Epub 2012 Oct 25.
28. Boyd CR, Tolson MA, Copes WS. Evaluating trauma care: The TRISS method. trauma score and the injury severity score. *J of Trauma* 1987; 27(4):370–80.
29. Ebrahimi M, Pirazghandi H, Reihani H. How is the injury severity scored? A brief review of scoring systems. *RCM* 2015;2(3):125–8. doi: 10.17463/RCM.2015.03.004
30. Viwatwongkasem C. Sample size determination for research. *J Health Res.* 1994;8(2):121–46.
31. Gill M, Martens K, Lynch EL, Salih A, Green SM. Interrater reliability of 3 simplified neurologic scales applied to adults presenting to the emergency department with altered levels of consciousness. *Ann Emerg Med* 2007 Apr; 49(4): 403–7.e1. PMID: 17141146. doi: 10.1016/j.annemergmed.2006.03.031
32. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. *Lancet* 1974 Jul 13; 2(7872): 81–4. PMID: 4136544. doi: 10.1016/s0140-6736(74)91639-0
33. Rennie CP, Brady PC. Advances in injury severity scoring. *J Emerg Nurs* 2007;33(2):179–81. PMID: 17379041 doi: 10.1016/j.jen.2006.12.006
34. Celik S, Dursun R, Aycan A, Gönüllü H, Adanaş C, Eryılmaz M, et al. The dynamics of prehospital/hospital care and modes of transport during civil conflict and terrorist incidents. *Public Health* 2017;152: 108–16. PMID: 28886492. doi: 10.1016/j.puhe.2017.07.029.
35. Fleischman RJ, Mann NC, Dai M, Ewen Wang N, Jason H, Renee YH, et al. Validating the use of ICD-9 code mapping to generate injury severity scores. *J Trauma Nurs* 2017; 24(1):4–14. PMID: 28033134. doi:10.1097/JTN.000000000000255.
36. Cecconi M, De D B, Antonelli M, Richard B, Jan B, Christoph H, et al. Consensus on circulatory shock and hemodynamic monitoring: Task force of the European society of intensive care medicine. *Intensive Care Med* 2014;40(12):1795–815. PMID: 25392034. doi: 10.1007/s00134-014-3525-z
37. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. Trial of intracranial-pressure monitoring in traumatic brain injury. *N Engl J Med* 2012; 367(26): 2471–81. PMID: 23234472. doi: 10.1056/NEJMoa1207363
38. Rogers A, Rogers FB, Schwab CW, Bradburn E, Lee J, Wu D, et al. Increased mortality with undertriaged patients in a mature trauma center with an aggressive trauma team activation system. *Eur J Trauma Emerg Surg* 2013 Dec; 39(6):599–603. PMID: 26815543. doi: 10.1007/s00068-013-0289-z.

อุบัติการณ์ของการเกิดภาวะซื้อกินผู้บาดเจ็บจากการจราจรทางบกที่เข้ารับการรักษาในแผนกฉุกเฉิน

เพชรัตน์ เอี่ยมละออ อรพรรณ โถลิงห์* ลุพร ดันยดุษฎีกุล ชุเกียรติ วิวัฒน์วงศ์เกษม *Kathy Hegadoren*

บทคัดย่อ: อุบัติเหตุจากการจราจรทางบกเป็นปัญหาสำคัญในประเทศไทยที่ส่งผลต่อการเสียชีวิตก่อนวัยอันควรและพิการอย่างถาวรในบุคคลวัยผู้ใหญ่ต่อนัตตัน การเกิดภาวะซื้อกินเป็นผลลัพธ์ทางคลินิกที่สำคัญ สำหรับผู้ป่วยกลุ่มนี้ การวิจัยแบบตัวบ่งชี้ที่มีวัตถุประสงค์เพื่อหาอุบัติการณ์และปัจจัยที่มีผลต่อการเกิดภาวะซื้อกินในผู้ป่วยบาดเจ็บระดับปานกลางหรือรุนแรงจากอุบัติเหตุการจราจรทางบกขณะที่ได้รับการนำร่องน้ำยาจากแผนกฉุกเฉินของโรงพยาบาล 12 แห่งในประเทศไทย กลุ่มตัวอย่างประกอบด้วย ผู้บาดเจ็บจากการจราจรทางบกจำนวน 503 คน ที่มีค่าคะแนนความรุนแรงของการบาดเจ็บตั้งแต่ 16 คะแนนขึ้นไป โดยเก็บข้อมูลที่เกี่ยวข้องกับปัจจัยด้านผู้ป่วยและปัจจัยด้านบริบทจากแฟ้มประวัติของผู้บาดเจ็บ การสัมภาษณ์ผู้บาดเจ็บ ญาติและพยาบาลที่ทำหน้าที่ด้วยกัน ใช้เครื่องมือมาตราฐานเพื่อประเมินความรุนแรงของการบาดเจ็บและการเกิดภาวะซื้อกิน วิเคราะห์ข้อมูลโดยใช้สถิติพรรณนาและสถิติการวิเคราะห์ทดสอบโดยโลจิสติกแบบดัวแปรเดียวและหลายตัวแปร

ผลการศึกษาพบว่า กลุ่มตัวอย่างประกอบด้วย ผู้บาดเจ็บ ส่วนใหญ่เป็นเพศชาย ไม่สูบหมวนนิรภัย และตื่มแอลกอฮอล์ขณะขับรถจักรยานยนต์ ร้อยละ 35 ที่ยังคงมีภาวะซื้อกินขณะที่ได้รับการเจ็บหน้ายื่นจากแผนกฉุกเฉินจะถูกข้อจำกัดในการรักษาต่อขึ้นของผู้ป่วยวิกฤต หรือห้องผ่าตัด ระยะเวลาในการส่งต่อจากจุดเกิดเหตุจนถึงโรงพยาบาล ความรุนแรงของการบาดเจ็บ ภาวะซื้อกินก่อนถึงแผนกฉุกเฉิน และระยะเวลาในการเข้ารับการรักษาในแผนกฉุกเฉิน มีผลต่อภาวะซื้อกินขณะที่ได้รับการเจ็บหน้ายื่นจากแผนกฉุกเฉินอย่างมีนัยสำคัญ จากผลการศึกษา มีข้อเสนอแนะว่า พยาบาลควรนำค่าดัชนีภาวะซื้อกินไปใช้เป็นเครื่องมือเพื่อวัดภาวะซื้อกินสำหรับผู้ป่วยบาดเจ็บรุนแรงระหว่างการรักษาตัวในแผนกฉุกเฉิน ในการศึกษาครั้งต่อไปควรศึกษาเปรียบเทียบคุณสมบัติของค่าดัชนีภาวะซื้อกิน กับระดับสัญญาณชีพที่แสดงถึงค่าการทำงานของหัวใจและการให้เลือดเวียนอื่น ๆ เพื่อแสดงให้เห็นถึงความตรง ความเที่ยง และความถูกต้องของค่าดัชนีภาวะซื้อกินที่นี้เพื่อนำไปใช้เป็นแนวปฏิบัติในการเฝ้าระวังและการประเมินผู้ป่วยกลุ่มนี้อย่างมีคุณภาพ

Pacific Rim Int J Nurs Res 2020; 24(4) 436-447

คำสำคัญ: คะแนนความรุนแรงของการบาดเจ็บ ดัชนีแสดงภาวะซื้อกินบับปรับปรุง อัตราการเจ็บป่วย และอัตราการเสียชีวิต ผู้บาดเจ็บจากการจราจรทางบก ภาวะซื้อกิน

เพชรัตน์ เอี่ยมละออ นักศึกษาหลักสูตรรัชทายาดุษฎีกุล สาขาวิชาพยาบาลศาสตร์ มหาวิทยาลัยมหิดล
หลักสูตรนานาชาติและหลักสูตรร่วมกับมหาวิทยาลัยที่นิ่งแห่งประเทศไทย โครงการร่วมคณภาพมาตรฐานสากลที่ร่วมกับมหาวิทยาลัยที่ดี และคณภาพนานาชาติ มหาวิทยาลัยมหิดล
E-mail: petcharat@apiu.edu

ผู้ช่วยศาสตราจารย์ อรพรรณ โถลิงห์* รองศาสตราจารย์ คณภาพนานาชาติ
มหาวิทยาลัยมหิดล E-mail: orapan.tho@mahidol.ac.th

ลุพร ดันยดุษฎีกุล รองศาสตราจารย์ คณภาพนานาชาติ มหาวิทยาลัยมหิดล
E-mail: suporn.dan@mahidol.ac.th

ชุเกียรติ วิวัฒน์วงศ์เกษม รองศาสตราจารย์ คณภาพนานาชาติ มหาวิทยาลัยมหิดล
E-mail: chukiat.viw@mahidol.ac.th

Kathy Hegadoren, RN, PhD, Professor Emeritus, University of Alberta, Faculty of Nursing, Canada. E-mail: kathy.hegadoren@ualberta.ca