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Predicting Mortality of Orthopedic Trauma in Road Traffic Injury

s

N\

Abstract

The accident that occur on the road as a problem to severe
and increase in every years. Of the studies about road accident
have found that mostly are caused by humans. So that to operate
on a diverse group of patients, and many of these patients have
concomitant medical problems. This research was conducted to
categorize the mortality of orthopedic trauma by machine learning.
To help in decision-making and reducing the errors due to dis-
crimination skill in the treatment of orthopedic trauma of medical
personnel to cope and manage to road traffic injured. The data
source was used to learn from Suratthani hospital, Ministry of Public
Health (MOPH. The interested results are divided into four model
by risk of fatality, logistic regression, Decision tree or Recursive
Partitioning, Random Forest, and Neural network. The R program
shows results of the tests and the accuracy of the model with the

set of data yield a high accuracy performance.
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1.1-171 5,834 2413 129 2.21
2.18-29 6,409 26.51 136 212
3.30-44 6,023 25.04 149 2.47
4. 45-99 5,907 24.44 245 418
LW
1. 918l 16,185 66.95 459 2.84
2. YEN 7,988 33.05 200 2.50
lszauatinivg
1. 2551 2,765 11.44 89 3.22
2. 2552 2,819 11.66 83 2.94
3. 2553 3,198 13.23 100 3.13
4. 2554 3,228 13.35 92 2.85
5. 2555 3,309 13.69 73 2.21
6. 2556 3,187 13.18 69 217
7.2557 2,865 11.85 70 2.44
8. 2558 2,802 11.59 83 2.96
nalnN19UNALAL mechanism
of injury
1. blunt, 23,698 98.04 646 2.73
2. penetrating 144 0.6 0 0
3. blunt + penetrating 331 1.37 13 3.93
wmuxﬁﬂimuqﬁﬁmq
1. Bicycle 577 2.39 (N 1.91
2. Motorcycle 19,775 81.81 496 2.51
3. car 88 0.36 1 1.14
4. pickup 626 2.59 29 4.63
5. truck 2472 10.23 93 3.76
6. bus 342 1.41 10 2.92
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2. S20-S29 thorax 3,087 12.77 115 3.73
3. S30-S39 abdomen, pelvis 1,834 7.59 12 6.11
4. S40-S69 shoulder and 1,478 6.11 6 0.41
upper arm elbow and
forearm
5. S70-S89 hip thigh and 1,964 8.12 15 0.76
knee and lower leg
6. TOO-T14 involving multiple 22 0.09 1 4.55
body regions, limb
7. T15-T98 consequences 123 0.51 7 5.70
of external causes
aé’mzmméwnm?‘ﬂé’f%’ummgu
1. Head/neck 7,880 32.60 1,102 13.98
2. Face 1,749 7.24 10 0.57
3. Thorax 1,329 5.50 76 5.72
4. Abdomen and pelvic 1,666 6.89 203 12.18
content
5. Extremities and pelvic 12,361 51.14 44 0.36
griddle
6. External and body surface 2,561 10.60 7 0.27
9. other 110 0.46 12 10.91
dszinnuasgldsaldouu
1. ﬂu‘ﬁ/‘iﬁl 18,007 74.49 459 2.55
2. pulnaans 6,166 25.51 200 3.24
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ImeREnnrnaneaaaaasn (Logistic Regression)

Risk of Death (%) Logistic Regression Result: 24173 samples of traffic accident victims
100 p-vale 0.02 p-value 0.0128 0.0019 | pvalue <0.0001 r}vabe 0.0097-value U.USF 00182
a Bike Year h Male a Not Stated a Not Stated | | aNo
b Motor a 2008 b Female b Blunt b Pedestrian | | bYes
8 jecar b 2009 ¢ Penelrating  Driver
dPickup c 2010 & Blunt+Pen. b Passenger
& Truck d 2011 b Other
60 f Bus e 2012
f 2013 a7
q 2014 b 18-29
h 2015 3044
40 d 4598
20 ‘ 1
. I ——— l . r—— . . 1 .
ot { 4 1 - o N } t -
abcde fgh abcdefgh ab abcd abc ab ab
veh Year Sex Age Group Cause Person  Alcohol
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2. msﬁﬂuimmmﬁ;fm ﬁ@mﬁmmzﬁawLﬁmmﬂﬂmm uungliuuwazANANTLsIasiays
mngmﬁm&@ﬁﬁmmmimyu%mﬁ\ﬁmﬂa 1AgTINALANENANENTENTA1NA (Information Science) &0/ (Sta-
tistic) Wazsruuguieya (Database System) warin9dnLlsz@nsnan 2 35
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n5190% 4 boxplot TayAIINUATINANANNLHBELAZANUTLENIINROC (AUC) LanIANAIKNLNLEN
waansvinunelalagldusEng andeya

Logistic Regression Model

Mortality Risk 24173 Samples
o Total
YesT 497 162 169
Accuracy 8542 %
Nok 20487 3027 + | 23514
o] om0 O o]
0.00 0.05 0.10 0.15
Estimated Risk
Recursive Partitioning (cp=0.001)
Died 24173 Samples
T
¢ ¢ | Total
Yesr 444 215 1659
Accuracy: 74.86 %
Nok 17852 5664 + | 23514
$ o
0.00 0.01 0.02 0.03 0.04
Estimated Risk
Random Forest
Died 24173 Samples
@DO [sXele] [s] [s] [s] [s] Totall
Yes[ ohe 13 1699
Accuracy: 96.17 %
Nol 28234 280 + | 23514
(#mmmomm o 0O O @ [ o0 O
0.00 0.05 0.10 015 0.20
Estimated Risk
Neural Network with 5 hidden nodes
Died 24173 Samples
%-m»mo o@ o oD 0 oo @ o | Total
Yesr 4sp - 204 16%9
Accuracy: 86.21 %
Nok 20835 2879 + | 23514
ﬂmmmo oo (=]

0.0 0.1 02 0.3 04 0.5 0.6
Estimated Risk
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nsIN% 5 boxplot fayan3EEw3 (Training data) uazgadayan1smaaey (Testing data) WAZWIAIAINN
uruguazA N EingMROC (AUC) wanaAnausiugnaesnsinungflaeldussnd andioys

Logistic Regression Model Recursive Partitioning (cp=5e-04)
Died Training Sample: 12086 Died Training Sample: 12086
%&mmo Total < [N [ o | Total
Yesr 210 - 99 1309 Yesr 211 - 98 1309
Accuracy: 83.53 % Accuracy: 85.97 %
Not 9997 1780+ | 44777 Nol 0292 1485+ | 14777
o&—wooo [+] ﬁ [+] SO0 [+] 0 [+]
000 005 010 015 020 000 010 020 030
Died Test Sample: 12087 Died Test Sample: 12087
oE-moco < Total ﬁ < =3 =R < | Total
Yest 269 - 81 1350 Yesr 211 - 79 1350
Accuracy: 82.68 % Accuracy: 84.83 %
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