

Argyria from Overindulgence of a Breath Freshener

Pattareewan Rojanapanthu MD,

Nattaporn Sampattavanich MD,

Kobkul Aunhachoke MD.

ABSTRACT:

ROJANAPANTH P. ARGYRIA FROM OVERINDULGENCE OF A BREATH FRESHENER.

THAI J DERMATOL 2018; 34: 217-224.

DIVISION OF DERMATOLOGY, PHRAMONGKUTKLAO HOSPITAL, BANGKOK, THAILAND.

We report a 53-year-old woman who presented with a blue-gray discoloration on her face and bluish discoloration of lunulae of all her nails. She admitted a 10-year-history of taking too many pellets of a breath freshener, Jintan™ silver pellet pills. Skin biopsy revealed round, black-colored, fine granules deposition at basement membrane of sweat glands and connective tissue. Scanning electron microscopy and energy dispersive x-ray spectroscopy (SEM/EDS) of the skin biopsy demonstrated the presence of silver and selenium. These findings were diagnostic of generalized cutaneous argyria. She was treated with Q-switched 1064-nm Nd:YAG laser with excellent improvement.

Key words: argyria, silver, Q-switched Nd:YAG laser

บทคัดย่อ :

กัทรีวัลย์ โรจนพันธุ์ ณัฐพร สัมปัตตะวนิช กอบกุล อุณหโชค ภาวะเกิดพิษจากเกลือเงินจากการรับประทานลูกอมดับกลิ่นปากเกินขนาด วารสารโรคผิวหนัง 2561; 34: 217-224.

ແນນກົວໜັງ ກອງອາຍຸຮກຮມ ໂຮງພຍາບາລພຣມກຸງເກລົ້ວ

รายงานຜູ້ປ່າຍທຸງອາຍຸ 53 ປຶມາດ້ວຍຜົວບຣີເວນໃບໜ້າແລະຮອຍໂດັກທີ່ວັງເລີບທຸກເລີບເປົ້າຢືນເປັນສີ່ພໍາເຫາ ຜູ້ປ່າຍມີປະວັດຮັບປະກາດລຸກອມດັບກິລື່ນປາກຍີ່ທີ່ອີນຕົນຈຳນວນນຳການນານ 10 ປີ ພັດພຍາຮິວຫຍາຈາກຜົວໜັງນີ້ສາມາດສຳທຽບກົມສະສນທີ່ບຣີເວນຮູ້ານຂອງຕ່ອມເໜື່ອແລະເນື້ອເຢືອເກື່ອງພັນ ພັດພຍາຮິວຫຍາຈົບປັດທີ່ວັງເລີບທຸກເລີບເປົ້າຢືນເປັນສີ່ພໍາເຫາ ສະເປັດຕົວພົມພວມແຮ່ເຈີນແລະແຮ່ໜີ້ລື່ມເນີມ ຈຶ່ງໃຫ້ຜົວການວິນິຈັດຍັງເປັນຜົວໜັງອາຈັຍເຮີຍແບບເປັນທ່ວ່າ ຜູ້ປ່າຍໄດ້ຮັບການຮັກໝາດ້ວຍເລເຊ່ອ໌ ຄົວສົວີຈີເວັ້ນດີແຍ້ກ ຕອບສູນອັດຕ່ອກຮັກໝາເປັນຍ່າງດີ

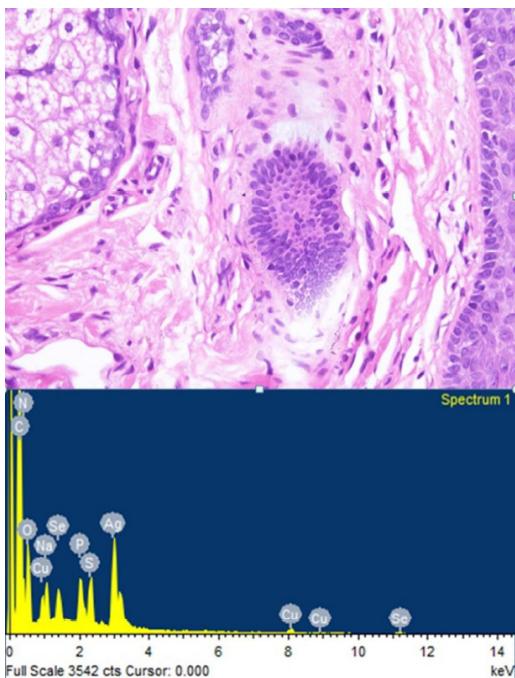
คำສຳຄັນ : ຜົນອາຈັຍເຮີຍ, ແຮ່ເຈີນ, ເລເຊ່ອ໌ ຄົວສົວີຈີ

Introduction

Argyria (from the Greek word argyros, which means silver) is a rare disease characterized by blue to slate-grey discoloration of the skin and/or mucous membranes following the exposure to silver compounds.^{1,2} The most common risk factor of argyria is occupational exposure such as mining, welding, silversmithing, antique restoration, jewelry manufacturing and photographic development. However, the condition has been reported after acupuncture, colloidal silver ingestion in alternative health practices and topical use of silver-containing products.

Cutaneous argyria can be manifested as localized and generalized form. Localized form is due to the impregnation of silver into the site of direct contact. Generalized form is caused by

the systemic absorption of silver leading to wide deposition in the skin, nails, eyes, and mucosa.


Even though these blue-grey skin lesions are often biopsied and sent for histopathological examination, the diagnosis is often missed since low-power microscopic examination is usually unremarkable and the fine silver particles are often overlooked in higher power examination. Thus the diagnosis of argyria is challenging, especially when clinical information is inadequate. Not only argyria is a challenge in the diagnosis but also the treatment is problematic since argyria does not usually respond to chelating agents and topical medication.

Diffuse blue-gray patches on the face and blue lunulae of all fingernails

After treatment with Q-switched 1064-nm Nd:YAG laser showed good result in only one session

Histopathological findings showed silver accumulation in the basement membrane of eccrine sweat glands and SEM/EDS showed silver component in the tissue

Our case

A 53-year-old woman with no significant medical history presented with a blue-grey discoloration on the face for 10 years. The patient was a clerk who had the history of using breath freshener, "Jintan™ silver pellet pills", around 10 packs per day for 10 years prior to her skin problem and discontinued for 5 years. Physical examination revealed diffuse blue-grey patches on the face and blue lunulae of all fingernails and toenails. The rest of the body, sclera and oral mucosa were normal. A 4-mm punch biopsy was taken from a cheek and revealed fine small, round, black-colored, granules deposition in the basement membrane of sweat glands and connective tissue sheaths around hair follicles. The definite diagnosis was

ໄມ່ຂ່ານາ 4 ສີ

finalized after scanning electron microscopy and energy dispersive x-ray spectroscopy (SEM/EDS) analysis of the skin biopsy which demonstrated the presence of silver and selenium in the skin lesion.

Discussion

Argyria has a high incidence in the 19th and 20th centuries due to the use of silver compounds.^{3,4} The most common cause is occupational exposure, involved in silver mining, jewelry, and photographic processing. It has also been reported following surgical and dental procedures, topical treatment, body jewelry, acupuncture and alternative medicine.⁵ Because of the increasing use of alternative medicine that often contains the silver compounds, the incidence of argyria is increasing. Silver solution is regarded to have anti-bacterial, anti-viral, anti-cancerous, and health-promoting properties.¹ The amount of silver reported to cause generalized argyria ranges from 4 to 5 g.⁶ In Japan, generalized argyria due to breath freshener "Jintan™ silver pellet pills", as in our patient, has been reported.⁷

The pathogenesis of cutaneous argyria is not fully known.⁴ Generalized argyria is the result of systemic absorption of silver, mostly in the small intestine, but the respiratory mucosa or broken skin can also be the routes. Silver is transported by blood and deposited in all body tissues with

the highest concentration in the skin, liver, spleen and adrenal glands.^{2,8,9}

In the skin, silver particles deposit around eccrine glands. They combine with elemental sulfur to form black silver sulfide particles using sunlight which acts as a catalyst in the same way as photography processing. Thus, the discoloration usually develops in sun-exposed areas such as the face and hands.^{1,8,10,11,12} In addition, silver can stimulate melanocyte tyrosinase activity, which would contribute to hyperpigmentation.¹³

The typical clinical presentation of generalized cutaneous argyria is permanent blue-gray macules or patches in the sun-exposed area.³ Due to the Tyndall effect, the brown silver particles in the dermis appear blue-gray through the skin.¹ Diagnosis is often challenging because it looks like melanocytic lesions and dermoscopy shows a nonspecific blue homogeneous pattern.^{5,14}

Histopathologic examination shows normal epidermis with silver accumulation in the basement membrane of sweat gland and dermis. It is characterized by dark small granules distributed around eccrine sweat glands and elastic fibers. Silver deposits on collagen fibers may be swollen and ochre-coloured called pseudo-ochronosis pattern.^{3,5,15} Immunohistochemistry does not help in the

diagnosis but immunostaining can be used to rule out a melanocytic lesion.³

Microanalytical techniques such as scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) can be used to identify chemical elements in a biopsy and give the definitive diagnosis. SEM exposes a tissue sample to electrons altering the elements at the atomic level and resulting in an emission of x-rays, which are measured by EDS. Since each element has characteristic emission patterns, the type of element can be identified. In our case, SEM/EDS analysis of the skin biopsy presented both silver and selenium. Selenium is an essential micronutrient which plays a role in the metabolism and detoxification of silver and results in the deposition of silver-selenide complexes.³

The clinical differential diagnosis of generalized argyria includes cyanosis, Addison's disease, haemochromatosis, Wilson's disease, ochronosis, methaemoglobinaemia and metastatic melanoma. The ingestion of gold, bismuth, chlorpromazine, amiodarone, or antimarial agents may produce a similar skin lesion.^{1,16}

Although generalized argyria is a benign condition and hardly associated with health risk, it can cause a cosmetic problem and psychosocial stress.¹⁷ Silver particles may deposit in the liver, kidneys, gastrointestinal tract and

can rarely produce thrombocytopenia and neurological symptoms.^{1,4}

There have been various modalities to treat argyria without any good response. Silver selenide complexes are inert and cannot be chelated by British anti-Lewisite (BAL) or intralesional injection of sodium thiosulfate or potassium ferrocyanide that can be used in some metal intoxication. Topical depigmenting agents e.g. hydroquinone and dermabrasion have shown poor results.^{12,17,18} Sun protection and sunscreen can lighten the lesions but have limited effect.¹⁷

The most promising treatment is the use of Q-switched 1064-nm laser. Q-switched Nd:YAG is weakly absorbed by natural chromophores such as melanin, hemoglobin, and water, so it can penetrate into the deep dermal exogenous chromophores and absorbed by the silver granules. The mechanisms of argyria treatment by Q-switched lasers may be the same as tattoo removal. The laser is absorbed by silver particles and photoacoustically explodes the pigment particles. Macrophages engulf the fragments and particles are removed via the lymphatic system. Other mechanisms may include the suppressive effects of laser toning on activated melanocytes.^{1,12,17,19}

Our case was treated with a Q-switched 1064-nm Nd:YAG laser (Spectra VRM; Lutronic, Ilsan, Gyeonggi, South Korea). Anesthetic

cream (EMLA, Astra-Zeneca, Lund, Sweden) was used to provide cutaneous anesthesia. Initially, a 2-cm-diameter area at the left temporal region was treated as a trial area. The laser was applied at a fluence of 1 J/cm^2 with a pulse duration of 5 ns and using an 8-mm spot size with only a single pass. This low-fluence parameter produced mild erythema and edema without petechiae and tissue splatter. The blue-grey discoloration also gradually fainted just a few minutes after the treatment. No special wound care was needed and no adverse effect was found except a rather severe pain during the procedure which could be relieved by oral analgesic agents. She was also advised to apply sunscreen and avoid sun exposure as much as possible.

In summary, our case highlights the diagnostic challenge in generalized cutaneous argyria associated with breath freshener “Jintan™ silver pellet pills” and demonstrates the role of SEM/EDS analysis which characterized the dermal deposit and identified the elements in the tissue. Q-switched 1064-nm Nd:YAG laser was used and showed the satisfactory result after only one session.

Reference

1. Butzmann CM, Technau-Hafsi K, Bross F. “Silver man” argyria of the skin after ingestion of a colloidal silver solution. *J Dtsch Dermatol Ges.* 2015; 13: 1030–2.
2. Griffith R, Simmons B, Bray F, Falto-Aizpuru L, Abyaneh M-AY, Nouri K. 1064 nm Q-switched Nd:YAG laser for the treatment of Argyria: a systematic review. *J Eur Acad Dermatol Venereol.* 2015;29:2100–3.
3. Mcclain CM, Kantrow SM, Abraham JL, Price J, Parker ER, Robbins JB. Localized cutaneous argyria: two case reports and clinicopathologic review. *Am J Dermatopathol.* 2013;35: 115-8.
4. Beutler BD, Lee RA, Cohen PR. Localized cutaneous argyria: Report of two patients and literature review. *Dermatol Online J.* 2016;22: pii: 13030/qt4wm1j7pt
5. García-Martínez P, Aventín DL, Segura S, Gómez-Martín I, Lloreta J, Ibáñez J, et al. In vivo reflectance confocal microscopy characterization of silver deposits in localized cutaneous argyria. *Br J Dermatol.* 2016 ;175:1052-1055.
6. Massi D, Santucci M. Human generalized argyria: a submicroscopic and x-ray spectroscopic study. *Ultrastruct Pathol.*1998; 22: 47-53.
7. Shimamoto Y, Shimamoto H. Systemic argyria secondary to breath freshener “JINTAN silver pills”. *Hiroshima J Med Sci.* 1987; 36: 245-7.
8. Gürseren D, Arzberger E, Cerroni L, Hofmann-Wellenhof R, Richtig E. Reflectance confocal microscopy and dermatopathologic findings of cutaneous argyria after colloidal silver ingestion. *J Eur Acad Dermatol Venereol.* 2017; 31:178-9.
9. Prescott RJ, Wells S. Systemic argyria. *J Clin Pathol.* 1994; 47: 556-7.

10. Gottesman SP, Goldberg GN. Immediate Successful Treatment of Argyria with a Single Pass of Multiple Q-Switched Laser Wavelengths. *JAMA Dermatol.* 2013; 149: 623-4.
11. Shelley WB, Shelley ED, Burmeister V. Argyria: The intradermal “photograph,” a manifestation of passive photosensitivity. *J Am Acad Dermatol.* 1987; 16: 211-7.
12. Han TY, Chang HS, Lee HK, Son S-J. Successful treatment of argyria using a low-fluence Q-switched 1064-nm Nd:YAG laser. *Int J Dermatol.* 2011; 50: 751-3.
13. Buckley WR, Terhaar CJ: The skin as an excretory organ in argyria. *Trans St Johns Hosp Dermatol Soc.* 1973; 59:39-44.
14. Hristov AC, High WA, Golitz LE. Localized cutaneous argyria. *J Am Acad Dermatol.* 2011; 65:660-1.
15. Robinson-Bostom L, Pomerantz D, Wilkel C, Mader R, Lerner L, Dufresne R, et al. Localized argyria with pseudo-ochronosis. *J Am Acad Dermatol.* 2002; 46:222-7.
16. Chhabra L, Sareen P, Trivedi N. The silver man: a rare cosmetic complication of alternative medicine. *BMJ Case Rep.* 2013; doi: 10.1136/bcr-2013-009728.
17. Rhee D-Y, Chang S-E, Lee M-W, Choi J-H, Moon K-C, Koh J-K. Treatment of Argyria after Colloidal Silver Ingestion Using Q-Switched 1,064-nm Nd:YAG Laser. *Dermatol Surg.* 2008; 34:1427-30.
18. Brandt D, Park B, Hoang M, Jacobe HT. Argyria secondary to ingestion of homemade silver solution. *J Am Acad Dermatol.* 2005; 53: 105-7.
19. Park S-W, Kim J-H, Shin H-T, Lee K-T, Lee J-H, Lee D-Y, et al. An Effective Modality for Argyria Treatment: Q-Switched 1,064-nm Nd:YAG Laser. *Ann Dermatol.* 2013; 25:511-2.