Effect of Different Shampoos and Contact Time on *Microsporum canis*Infected Hair: *In vitro* Model Study

Sumanas Bunyaratavej MD,
Rungsima Kiratiwongwan MD,
Panittra Suphatsathienkul MD,
Kanyalak Munprom MD,
Lalita Matthapan MD,
Salisa Supcharoenkul MD,
Kamonpan Lertrujiwanit MD,
Waranyoo Prasong MD,
Charussri Leeyaphan MD.

ABSTRACT

BUNYARATAVEJ S, KIRATIWONGWAN R, SUPHATSATHIENKUL P, MUNPROM K, MATTHAPAN L, SUPCHAROENKUL S, LERTRUJIWANIT K, PRASONG W, LEEYAPHAN C. EFFECT OF DIFFERENT SHAMPOOS AND CONTACT TIME ON *MICROSPORUM CANIS* INFECTED HAIR: *IN VITRO* MODEL STUDY. THAI J DERMATOL 2020;36:149-156.

DEPARTMENT OF DERMATOLOGY, FACULTY OF MEDICINE SIRIRAJ HOSPITAL, MAHIDOL UNIVERSITY, THAILAND.

From: Department of Dermatology, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok, Thailand Corresponding author: Charussri Leeyaphan MD., email: charussrilee@gmail.com

Background: Tinea capitis is commonly caused by *Microsporum canis*. The standard treatment is systemic antifungal medications with adjunctive use of an antifungal shampoo. The current information about the effect of shampoos is limited.

Objectives: To compare the effects of different shampoos and contact times on *M. canis* infected hair.

Methods: This *in vitro* study was conducted at the Mycology Laboratory in a tertiary hospital, Thailand, in 2020. Hair taken from a child was disinfected and incubated with an *M. canis* colony for 15 days before divided into ten groups. Each of these samples was then mixed with distilled water, a commercial shampoo, a ketoconazole shampoo, a selenium sulfide shampoo, or a zinc pyrithione shampoo for either 2 or 5 minutes. Those samples and control-group samples were cultured for 7 days before fungal growth areas were collected and analyzed.

Results: At Day 3, the fungal colony growth areas on the samples mixed with commercial shampoo, ketoconazole shampoo, selenium sulfide shampoo, and zinc pyrithione shampoo were significantly smaller than that of the control. Moreover, the samples mixed with ketoconazole shampoo, selenium sulfide shampoo, and zinc pyrithione shampoo demonstrated a statistically different fungal-growth area from the control at Day 7. However, the duration of mixing resulted in similar areas of fungal growth for all samples.

Conclusions: Shampoos containing zinc pyrithione and commercial shampoos are alternative adjunctive treatments for tinea capitis arising from *M. canis*. In addition, contact with the shampoos for at least 5 minutes appears to be optimal

Key words: Tinea capitis, Microsporum canis, zinc pyrithione shampoo, selenium sulfide

Background

Tinea capitis, commonly caused by *Microsporum canis*¹⁻³, is frequently detected in children^{3,4}. Its standard treatment is systemic antifungal medications^{1,2,5} using a ketoconazole or selenium sulfide shampoo as an adjunctive therapy⁵. An *in vitro* study established that azole shampoos could disinfect *M. canis* infected hair⁶. However, research on the effects of shampoos containing zinc pyrithione on *M. canis* infected hair,

and investigations into the optimal contact time for the use of adjunctive shampoos for tinea capitis, is limited. Hence, we compared the effects of different shampoos and contact times on *M. canis* infected human hair.

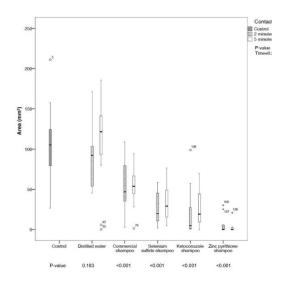
Material and Methods

This *in vitro* study was conducted at the Mycology Laboratory in a tertiary hospital, Thailand, in 2020 after its approval by the

institution's review board. Locks of normal hair taken from a child were cut into 1-cm pieces before being disinfected and incubated with an *M. canis* colony for 15 days. This method was adapted from the standard hair perforation test⁷. The pieces were then divided into one control and ten experimental groups, all with equal amounts of hair. The hair samples for the control group were directly cultured in Sabouraud's dextrose agar with cycloheximide for seven days, without any liquid. As to the ten experimental groups, they were subdivided into five sets of pairs. Next, the following five liquids were added to the hair samples, with only one substance used for each pair:

- 1) distilled water;
- 2) a commercial shampoo (Siriraj Mild Shampoo a non-antifungal, medicated-formulation shampoo; Siriraj Hospital, Bangkok, Thailand);
- 3) a 2% ketoconazole shampoo (Johnson and Johnson (Thailand) Ltd., Bangkok, Thailand);
- 4) a 2.5% selenium sulfide shampoo (Selson; Mentholatum Co. Inc., New York, USA); or
- 5) a zinc pyrithione shampoo (Head & Shoulders; Procter and Gamble (Singapore) Pte. Ltd., Singapore).

The liquid and hair samples were thoroughly combined using a vortex mixer. For each pair of liquid and hairpieces, one of the two sets was mixed for 2 minutes, while the other set was


mixed for 5 minutes. After that, each of the ten experimental samples was cultured Sabouraud's dextrose agar with cycloheximide. On Days 3 and 7, the colonies' areas were recorded using the software, ImageJ (version 1.8; National Institutes of Health, Bethesda, Maryland, USA). Specimens with contamination from other fungi were excluded from the study. Linear regression was employed to compare the effects of the different shampoos and contact times on the size of fungal colony growth areas. All statistical analyses were performed using SPSS Statistics for Windows, version 18.0 (SPSS Inc., Chicago, IL, USA).

Results

At Day 3, the areas of fungal colony growth on the hair samples mixed with commercial shampoo, ketoconazole shampoo, selenium sulfide shampoo, and zinc pyrithione shampoo were significantly smaller than that of the control sample (p < 0.001; Figure 1 and Table 1). Compared with the control-group sample, only the hair samples mixed with ketoconazole shampoo, selenium sulfide shampoo, and zinc pyrithione shampoo showed a statistically significant difference area of fungal growth at Day 7 (p < 0.05; Figure 2 and Table 1). On the other hand, the duration of mixing the shampoos and the hair samples (2 and 5 minutes) resulted in similar fungal growth; however, median area of

fungal growth of 2-minute mixing were smaller than 5 minute-mixing (Figure 1-2 and Table 1). A

visual comparison of the fungal colony growth areas using ImageJ is presented in Figure 3.

800
600
Control Distilled water Commercial Sulled shampoo shampoo Shampoo P-value 0.631 0.528 0.013 < 0.001 < 0.001

Figure 1 Median area of fungal growth on Day 3

Figure 2 Median area of fungal growth on Day 7

Table 1 Median area of fungal growth for each group

	Contact time (minutes)	Median area of colony (IQR)/(mm²)	
		Day 3	Day 7
Control	N/A	105.1 (78.6–126.9)	579.7 (427.2–640.7)
Distilled water	2	92.2 (52.6–104.7)	487.9 (461.7–628.3)
	5	121.5 (85.4–141.9)	621.0 (521.5–643.6)
Commercial shampoo	2	46.7 (35.1–85.6)	537.7 (502.4–642.1)
	5	53.7 (37.6–71.8)	543.8 (526.1–569.9)
Selenium sulfide shampoo	2	19.8 (9.0–46.9)	542.9 (386.3–524.5)
	5	30.0 (15.3–56.9)	423.2 (366.6–554.4)
Ketokonazole shampoo	2	5.0 (0.3–36.3)	307.5 (166.9–429.8)
	5	19.1 (7.8–44.5)	396.4 (349.0–463.4)
Zinc pyrithione shampoo	2	0 (0–5.5)	134.7 (0-354.9)
	5	0 (0-2.2)	17.0 (0-302.7)

Abbreviation: IQR, interquartile range

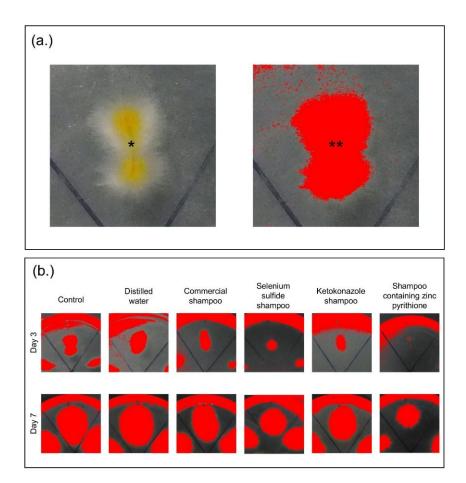


Figure 3 (a.) Fungal colony growth on fungal culture plate (*) and measurement of fungal colony growth using ImageJ (**) (b.) Areas of fungal colony growth using ImageJ

Discussion

This study shows that mixing *M. canis* infected hair with commercial shampoo, ketoconazole shampoo, selenium sulfide shampoo, and zinc pyrithione shampoo partially inhibited fungal growth. Therefore, the research findings support many national guidelines which recommend that the washing of infected hair with a shampoo

should only be considered adjunctive therapy^{1,2,8}. Instead, a systemic antifungal should be the mainstay of treatment^{1,2}.

Commercial shampoos can reduce fungal colonies' size on Day 3 as shampoo pH is alkaline, which is not suitable for fungal growth⁹. The *in vitro* growth of *Trichophyton rubrum* and other pathogens depends on having an initial optimum

pH for the cell culture medium of 4.0–5.09. Furthermore, the surfactants in commercial shampoos (such as cocamidopropyl betaine and sodium laureth sulfate) enhance their cleansing properties and may affect the degree of fungal growth¹⁰. A limited study was conducted to demonstrate the efficacy of using general shampoos to inhibit fungal growth (a more accessible approach for patients than obtaining relatively expensive, specialized shampoos). This study showed that commercial shampoo could reduce fungal growth. However, as the growth rebounded on Day 7, washing with a general shampoo to inhibit fungal growth should be repeated every three days.

Our investigation found that zinc pyrithione shampoo demonstrated promising results in inhibiting *M. canis* growth on Days 3 and 7. An earlier *in vitro* study showed that zinc pyrithione inhibited fungal growth by increasing the cellular levels of copper and damaged iron-sulfur clusters of proteins essential for fungal metabolism¹¹. Ketoconazole shampoo and selenium sulfide shampoo, widely recognized as adjunctive treatments for tinea capitis^{1,2,5,8}, also resulted in a small fungal growth on Days 3 and 7. Moreover, several *in vivo* studies in children revealed the benefits of ketoconazole shampoo and selenium sulfide shampoo for treating tinea capitis^{8,12,13}. These shampoos could be used to decrease

fungal growth in patients with an *M. canis* hair infection.

Mixing the M. canis infected hair with distilled water or the 5 studied shampoos for 2 minutes versus 5 minutes produced the reductions in the fungal colonies' areas in our study. Two-minute mixing could reduce the growth of fungus more than 5-minute mixing; however, we could not conclude that 2 minutes were enough for applying shampoo at infected hairs since the study sample size were too small. The recommended guideline for tinea capitis has suggested at least 5 minutes to apply at hairs 14. Thus, our study supported that minutes' timing could be optimal for washing hair at least 5 minutes with the studied shampoos as an adjunctive treatment for tinea capitis arising from M. canis.

This work has several limitations. Firstly, as many dermatophytes can cause tinea capitis^{1,2,4}, the study only used *M. canis* as a representative agent for the experiment. Research on other dermatophytes that can cause tinea capitis is required. Besides, the number of samples in our investigation was small; nevertheless, the results may guide further *in vivo* research. An *in vivo* study on humans utilizing a large cohort of participants with tinea capitis would more fully elucidate the relative efficacies of commercial shampoos and zinc pyrithione shampoo for tinea capitis.

Conclusion

Zinc pyrithione shampoo and commercial shampoos might be considered alternatives for the adjunctive treatment of tinea capitis stemming from *M. canis*. Zinc pyrithione shampoo had comparable effects with ketoconazole shampoo and selenium sulfide shampoo. Shampooing the hair for at least 5 minutes could be the optimal contact time for the adjunctive treatment of tinea capitis from *M. canis*.

Conflict of interes

None declared.

Finding Statement

This study was supported by the Dermatological Society of Thailand.

Acknowledgements

The authors thank the Dermatological Society of Thailand for funding the research, and Ms.Orawan Supapueng for her invaluable support with the statistical analyses.

References

 Fuller LC, Barton RC, Mohd Mustapa MF, Proudfoot LE, Punjabi SP, Higgins EM. British Association of Dermatologists' guidelines for the management of tinea capitis 2014. Br J Dermatol 2014;171:454-63.

- Mayser P, Nenoff P, Reinel D, et al. S1 guidelines: Tinea capitis. J Dtsch Dermatol Ges 2020;18:161-79.
- 3. Ungpakorn R. Mycoses in Thailand: current concerns. Nihon Ishinkin Gakkai Zasshi 2005;46:81-
- Bunyaratavej S, Leeyaphan C, Rujitharanawong C, Muanprasat C, Matthapan L. Clinical and Laboratory Characteristics of a Tinea Capitis Outbreak Among Novice Buddhist Monks. Pediatr Dermatol 2017;34:371-3.
- Chan YC, Friedlander SF. Therapeutic options in the treatment of tinea capitis. Expert Opin Pharmacother 2004;5:219-27.
- Moriello KA. In vitro efficacy of shampoos containing miconazole, ketoconazole, climbazole or accelerated hydrogen peroxide against Microsporum canis and Trichophyton species. J Feline Med Surg 2017;19:370-4.
- Salkin IF, Hollick GE, Hurd NJ, Kemna ME. Evaluation of human hair sources for the in vitro hair perforation test. J Clin Microbiol 1985;22:1048-9.
- Gupta AK, Mays RR, Versteeg SG, et al. Tinea capitis in children: a systematic review of management. J Eur Acad Dermatol Venereol 2018;32:2264-74.
- Martinez-Rossi NM, Peres NT, Rossi A. Pathogenesis of Dermatophytosis: Sensing the Host Tissue. Mycopathologia 2017;182:215-27.
- Trüeb RM. Shampoos: ingredients, efficacy and adverse effects. J Dtsch Dermatol Ges 2007;5:356-65.
- 11. Reeder NL, Xu J, Youngquist RS, Schwartz JR, Rust RC, Saunders CW. The antifungal mechanism of

- action of zinc pyrithione. Br J Dermatol 2011;165:9-12.
- 12. Chen C, Koch LH, Dice JE, et al. A randomized, double-blind study comparing the efficacy of selenium sulfide shampoo 1% and ciclopirox shampoo 1% as adjunctive treatments for tinea capitis in children. Pediatr Dermatol 2010;27:459-62.
- 13. Greer DL. Successful treatment of tinea capitis with 2% ketoconazole shampoo. Int J Dermatol 2000;39:302-4.
- 14. Committee on Infectious Diseases, American
 Academy of Pediatrics. Red Book [Electronic
 Resource]: 2015 Report of the Committee on
 Infectious Diseases/Committee on Infectious
 Diseases, American Academy of Pediatrics, 13th
 edn. American Academy of Pediatrics, Elk Grove
 Village, Illinois, 2015.