

A Rare Case of Larval Tick Infestation at the Conjunctiva

รายงานบัญญัติที่หายากจากตัวอ่อนของเห็บบนเยื่อตา

Winai Chaidaroon, MD¹วินัย ชัยดรุณ, พ.บ.¹Laddawan Methakittrakul, MD¹ลัดดาวัลย์ เมรากิจตระกูล, พ.บ.¹Phit Upaphong, MD¹พิชญ์ อุปพงศ์, พ.บ.¹

Abstract

This is a case report of a middle-aged man without underlying disease presented with acute pain in his left eye. Ocular examination showed an insect-like foreign body attached on his left lower palpebral conjunctiva. The foreign body was removed gently by non-toothed forceps and a cotton tip applicator. It was further identified as the larval form of *Amblyomma americanum* tick. A topical combination steroid-antibiotic medication was prescribed. It was further identified as the larval form of *Amblyomma americanum* tick. In summary, a thorough eye examination is necessary for the early recognition of this rare condition.

Keywords: *Amblyomma americanum*; conjunctiva; lone star; parasite; tick

บทคัดย่อ:

รายงานบัญญัติรายบุคคลคนไม่มีโรคประจำตัวมาด้วยอาการปวดตาซ้ายแบบเฉียบพลัน ตรวจตาพบสิ่งแปลกปลอมคล้ายแมลงติดอยู่ที่เยื่อตาส่วนหนังตาซ้ายล่าง ได้นำสิ่งแปลกปลอมนี้ออกจากการด้วยคีมคิบชนิดไม่มีเขี้ยวร่วมกับมีพันสำลี บัญญัติได้รับยาหยดตาชนิดยาปฏิชีวนะและยาสเตรียรอยด์ เมื่อนำไปตรวจพบว่าเป็นตัวอ่อนของเห็บชนิด *Amblyomma americanum* โดยสรุป การตรวจตาโดยละเอียดจำเป็นต่อการตรวจพบที่ร้าดเร็วในภาวะที่หายากนี้

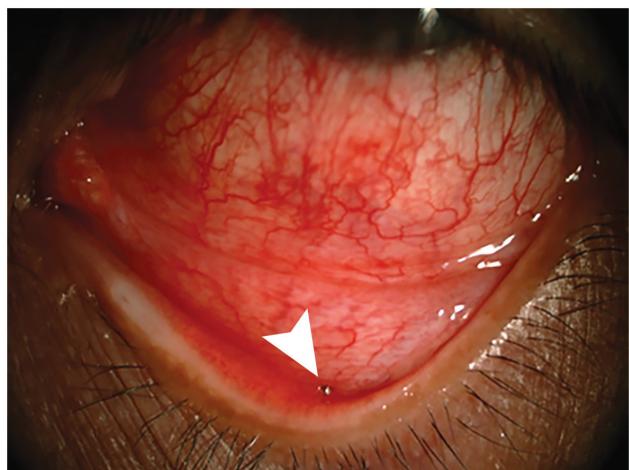
¹Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand

¹ภาควิชาจักษุวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ จ.เชียงใหม่ 50200

Background

Ticks commonly infest humans but rarely attach to the conjunctiva. Only nine cases have been reported in the literature.¹⁻⁸ Furthermore, most cases have been identified in Western countries.^{1,2,4,5,8} In this case, we discussed the clinical presentation and treatment of a patient with a tick affixed to the conjunctiva. Herein, we also summarize other cases published in the literature in comparison with our patient.

Patients and Methods


We report a case of conjunctival tick infestation (*Amblyomma americanum*) in A case report was conducted at the Ophthalmology Clinic, Chiang Mai University Hospital. The study protocol was conducted in accordance with the tenets of the Declaration of Helsinki and the protocol was approved by the Ethics committee of the Faculty of Medicine, Chiang Mai University. A waiver of consent was granted based on a retrospective study and anonymized data analysis.

Case Presentation

A middle-aged man presented to the outpatient unit of the Ophthalmology Department of Chiang Mai University Hospital complaining of left ocular pain for one day which worsened with blinking. He also had eye redness, tearing, and foreign body sensation, but the vision was normal. He refused any history of trauma to his eye. Before coming to the hospital, he rinsed his eye with tap water but did not mitigate the symptoms. Further history taking revealed that he has fostered several dogs at his house and had traveled to a dog kennel in Denver, the United States, recently. Otherwise, his past medical history was unremarkable.

His visual acuity was 20/20 in both eyes. On

slit-lamp examination, his left bulbar conjunctiva was markedly injected. A red-brown insect-like foreign body was found at the lower palpebral conjunctiva (Figure 1, arrowhead). Thorough examination revealed six movable legs and the buried head under the conjunctiva (Figure 2). The cornea, anterior chamber, and posterior segment exams were normal.

Figure 1 A low magnification image shows an insect-like foreign body found at the injected lower palpebral conjunctiva (arrow head).

Figure 2 A 100X magnification image shows a rounded body, six-legged insect-like organism with its head burrowed under the lower palpebral conjunctiva.

Treatment

Topical 0.5% tetracaine anesthetic eye drops were applied before the gentle removal of entire parts of the foreign body by non-toothed forceps and cotton tip applicator. The patient was prescribed 0.1% dexamethasone phosphate in combination with 0.5% neomycin eye drops four times daily for three days, then tapered off. No other systemic medications were used.

Outcome and follow-up

After three days, his left eye returned to normal and no signs of systemic infection such as fever and rash. His serologic tests for the vigilance of associated systemic diseases including complete blood count, liver function test, and erythrocyte sedimentation rate were within normal limits. The specimen was further identified by a parasitologist, affirming a complete removal of the larval stage of the tick. The presence of six legs and morphological structures including a single body region with short, broad, and rounded basis capitulum, short palpi with long hair, and a unique hypostome morphology corresponded to the characteristics of *Amblyomma americanum* larva. Unfortunately, we could not demonstrate the larval picture due to malfunction of hard disc.

Discussion

Amblyomma americanum or a lone star tick is a parasitic arachnid, not an insect, which is a known or presumed vector for several diseases affecting humans.^{9,10-12} Its endemic area is in the southeastern and eastern United States (Table 1). The common habitats are meadows, woodlands, and hardwood forests.^{10,13} It is one of the most troublesome and economically

threatening ticks because of the aggressive and wide host range, any mammals.⁹ In Thailand, *Amblyomma* spp. is rarely found in domestic and wild animals. Moreover, *A. americanum* has not been reported.^{14,15}

Each female tick produces thousands of eggs deposited under leaves and plant litter.¹⁰ After hatching, it develops through three life stages which are the six-legged larva, eight-legged nymph, and adult. Although, ticks cause irritation and inflammation at the attachment site, they are often overlooked due to their small size and the color that might mimic a conjunctival pigmented lesion.⁸ Adult female lone star ticks are reddish-brown and have a distinctive white spot or “star” on the back, making them easily distinguished from other types of tick; however, this is not evident in the larval stage.¹⁰

Adult ticks are commonly found in humans⁹, but the conjunctival infestation of the larval stage of ticks is rare. There have been infrequent reports published in several areas, mostly in the United States.¹⁻⁸ The most identified species are *A. americanum* (Table 1). Nymphs and adults are the primary vectors of various diseases such as human monocytotropic ehrlichiosis and human granulocytic ehrlichiosis.^{9,13} Hosts bitten by lone star ticks may be infected by various bacteria which could cause a southern tick-associated rash illness; but lone star ticks typically do not transmit *Borrelia burgdorferi* which is the cause of Lyme disease.^{10,11,12}

The larval form, in contrast, typically does not transmit diseases because of its inexperience in feeding on any other hosts, having no chance of exposure to bacterial pathogens. Surprisingly, the species identified in our patient was the same as previously reported in the United States.^{1,2,4,5,8} It is possible that the patient

Table 1 The summary of case reports of tick infestation of the conjunctiva

Authors, year of publication	Tick		Patient					Removal method
	Species	Stage	Age (year)	Gender	Laterality	Geographic area		
Jensen et al., 1982 ¹	<i>Otobius megnini</i>	larva	2	M	OS	Arizona, USA	mechanical removal with blunt forceps and cotton tip applicator	
Bode et al., 1987 ²	<i>Amblyomma americanum</i>	larva	28	M	OD	Texas, USA	conjunctival excision	
Meades and Lam, 1991 ³	Unknown	larva	27	F	NI	NI	conjunctival excision	
Love et al., 2001 ⁴	<i>A. americanum</i>	NI	5	F	OD	Arkansas, USA	conjunctival excision	
	<i>A. americanum</i>	NI	2	F	OS	Arkansas, USA	conjunctival excision	
Willen et al., 2011 ⁵	<i>A. americanum</i>	larva	39	M	OD	Alabama, USA	conjunctival excision	
Celik et al., 2014 ⁶	<i>Ixodes</i> spp.	NI	36	M	OD	Turkey	mechanical removal with blunt forceps	
Teong et al., 2015 ⁷	<i>I. holocyclus</i>	larva	10	M	OD	Sydney, Australia	conjunctival excision	
Kuriakose et al., 2016 ⁸	<i>I. scapularis</i>	larva	Late 60s	F	OD	New York, USA	mechanical removal with 30-gauge needle	
Current case	<i>A. americanum</i>	larva	56	M	OS	Denver, USA/ Chiang Mai, Thailand	mechanical removal with blunt forceps and cotton tip applicator	

newly contracted the tick in Chiang Mai or imported an *A. americanum* larva from Denver. The larval tick could have tolerated the similar climate of these two places for several days before infestation.

Ophthalmology consultation is advised in cases with ticks affixed to the ocular regions. Surrounded conjunctival excision, the most effective method of removal, is usually required.^{2-5,7} Although our patient was infested by the larval stage which usually does not transmit diseases, total removal of the tick was recommended to relieve symptoms and to minimize the inflammatory reaction.⁸ In our case, despite the mouthpart being burrowed under the conjunctiva, we

were able to completely remove it with non-toothed forceps and a cotton tip applicator which had been proposed by Jensen et al,¹ Celik et al,⁶ and Kuriakose et al.⁸ Neither complications nor adverse sequelae occurred after treatment.

References

1. Jensen LA, Snow RL, Clifford CM. Spinose ear tick, *Otobius megnini*, attached to the conjunctiva of a child's eye. J Parasitol. 1982;68(4):528.
2. Bodé D, Speicher P, Harlan H. A seed tick infestation of the conjunctiva: *Amblyomma americanum* larva. Ann Ophthalmol. 1987;19(2):63-64.
3. Meades KV, Lam G. Larva tick bite of the conjunctiva. Aust NZ J Ophthalmol. 1991;19(4):365-6. doi:10.1111/j.

1442-9071.1991.tb00687.x

4. Love MC, Platt L, Westfall CT. Lone-star tick bite of the conjunctiva. *Arch Ophthalmol.* 2001;119(12):1854-1855.
5. Willen C, Mullen GR, Yee J, et al. Conjunctival attachment of a tick: clinicopathologic report of a case. *J Emerg Med.* 2011;40(3):e41-e44. doi:10.1016/j.jemermed.2007.11.
6. Celik E, Türkoğlu EB, Boz AA, et al. Conjunctival attachment of a tick: case report. *Semin Ophthalmol.* 2014;29(4):186-8. doi:10.3109/08820538.2013.807847
7. Teong JM, Adler PA, Doggett SL, et al. Conjunctival Attachment of a Live Paralysis Tick, *Ixodes holocyclus*, in a Child: A Case Report. *Case Rep Ophthalmol.* 2015;6(1):120-6. Published 2015 Apr 1. doi:10.1159/000381743
8. Kuriakose RK, Grant LW, Chin EK, et al. Deer tick masquerading as pigmented conjunctival lesion. *Am J Ophthalmol Case Rep.* 2016;5:97-8. Published 2016 Dec 30. doi:10.1016/j.ajoc.2016.12.018
9. Childs JE, Paddock CD. The ascendancy of *Amblyomma americanum* as a vector of pathogens affecting humans in the United States. *Annu Rev Entomol.* 2003;48:307-37. doi:10.1146/annurev.ento.48.091801.112728
10. Stafford III KC. *Tick Management Handbook.* Connecticut; EPS Printing II; 2007:1-34.
11. Wormser GP, Masters E, Liveris D, et al. Microbiologic evaluation of patients from Missouri with erythema migrans. *Clin Infect Dis.* 2005;40(3):423-8. doi:10.1086/427289
12. Wormser GP, Masters E, Nowakowski J, et al. Prospective clinical evaluation of patients from Missouri and New York with erythema migrans-like skin lesions. *Clin Infect Dis.* 2005;41(7):958-65. doi:10.1086/432935
13. Parola P, Davoust B, Raoult D. Tick- and flea-borne rickettsial emerging zoonoses. *Vet Res.* 2005;36(3):469-92. doi:10.1051/vetres:2005004
14. Eamudomkarn C. Tick-borne pathogens and their zoonotic potential for human infection in Thailand. *Chiang Mai V J.* 2017;127-36.
15. Sumrandee C, Baimai V, Trinachartvanit W, Ahantarig A. Molecular detection of *Rickettsia*, *Anaplasma*, *Coxiella* and *Francisella* bacteria in ticks collected from *Artiodactyla* in Thailand. *Ticks Tick Borne Dis.* 2016;7(5):678-89. doi:10.1016/j.ttbdis.2016.02.015

Footnotes and Financial Disclosures

Originally receive: 29/12/2021

Final revision: 14/2/2022

Accepted: 21/2/2022

Address for correspondence: Winai Chaidaroon, M.D.

Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand

Tel: 053-935512, Fax: 053-936121

Email: hanumanthai777@gmail.com

Financial Disclosure(s):

All authors had no financial interest to disclose in this work.