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Abstract

We present arguments for a view of what a clinician-scientist might be like, in the setting of everyday

clinical practice. Clinical observations of good quality and completeness may, under suitable context or research
framework, be viewed as evidence for claims of causation. Historical examples of clinicopathological observa-
tions in which causal claims were made and later confirmed, are briefly mentioned. We present in some detail a
more recent causal inference framework in statistics, which is increasing accepted in practice, as well as a brief

introduction to causal diagrams. Finally, we briefly present a view of a possible use of causal inference in the near

future.
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INTRODUCTION

To many medical doctors, the question of whether
medicine is scientific has an obvious answer: of course,
it is! Is not medicine, at least in the common, or conven-
tional, form (“allopathic medicine”), based on anatomy,
physiology, pathology, biochemistry, molecular biology,
biostatistics, etc., all of which are well-known sciences?
So the question seems settled. But what if the question
is posed to clinicians, and specifically phrased as, “is
medical practice scientific?” — should the answer still
be yes?

Now the question seems a bit more difficult to an-
swer, as there may be several ways to look at it. Some
will say that, yes, medical practice is scientific as it uses
the “scientific method” in the diagnosis and treatment of
patients. It is difficult to define scientific method in a way
which satisfies most people, but even if such a method
can be satisfactorily defined, is it relevant to medical
practice? After all, the aim of medical practice is the

diagnosis and treatment of the patient, or prevention of
disease, not on obtaining generalizable knowledge. Also,
using a methodology similar to that of scientific research
does not guarantee valid clinical reasoning, and some
practitioners still claim that medical practice is more of
an Art. Therefore, I think this argument is erroneous and
perhaps misses the point.

Some will say that medical practice is scientific
because the basis of medicine is scientific, mirroring the
argument in the first paragraph. And general questions of
diagnosis, treatment and prevention (in terms of general-
izable knowledge, not focused on any particular patient)
are often resolved using scientific methods (i.e., through
scientific research). This seems valid as an argument
if one considers, for example, teaching, engineering,
and even coffee roasting as being scientific, since these
activities all have some scientific basis.

If we accept medical practice as being scientific,
then are medical doctors scientists?
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Some might say yes. Then they must say yes to
teachers, engineers and coffee roasters as being scien-
tists. Some might not go so far (my apologies to teachers,
engineers and coffee roasters who might be offended by
this). The point is, doctors are not scientists (as teach-
ers, engineers, and coffee roasters are not) if the main
aim of their profession is not to obtain novel, or new,
generalizable knowledge. The latter is what scientists do.
And — further apologies to some people I will now refer
to — “scientists” working in the industries as laboratory
technicians are not scientists, despite using scientific
instruments — they are of course technicians (and doc-
tors can be viewed as technicians in this sense, albeit
one requiring long training and certification).

Why the fuss about all this naming, you might
ask? Is it ever productive to argue about names? Well,
no. Unless the argument is actually about a new way of
looking at and doing things. Unless naming is just the
first step towards that goal. Indeed, I will now argue that
in most of what we do, in whatever profession, we can
be scientists. Doctors (teachers, engineers, and coffee
roasters) are scientists if they do certain things and look
at themselves in ways that I will now describe. And if
the medical profession and society accept certain agree-
ments, the profession can be truly scientific and doctors
will be scientists in the full sense of the word.!

How CaN DocToRrs BE SCIENTISTS?

Medical doctors can make and record accurate
clinical observations. With a supporting system of
disease registries or specialized data capture protocols,
data so generated can be used for rigorous observational
research. With prespecified questions and a wide-ranging
knowledge-based agenda, specific clinical observations
suitably analyzed can lead to new knowledge made
generalizable to other institutions or future patients.
Newer ideas can be added to the agenda as required, and
progress reports should be written on a regular basis,
and published when important findings arise. Office
staff should be available as research assistants. Thus,
all clinicians can be scientists in this sense. If clinicians
see themselves as being obligated to do all this, they are
scientists.

With new frameworks for viewing certain observa-
tional data as having causal value, observational data can
lead to reliable causal inferences (subject to reliable sta-
tistical analysis).” This causal framework, for example,
based on the relatively recent idea of Bayesian causal
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networks (see later, below), can be readily applied. If
it be agreed with the community in which the medical
institute is embedded that medical research is essential,
then, given the minimal risk (to patients) of observa-
tional research subject to applicable privacy laws, such
research can be done without routine ethics committee
oversight, not dissimilar to quality assurance surveys
and reviews. The community must acknowledge that
clinical observations made during clinical encounters
for diagnostic and treatment purposes are also possibly
subject to analysis with the aim of generating generaliz-
able knowledge. Thus, informed consent specifically for
research is not always required.

Experimental clinical research, specifically ran-
domized controlled trials (RCTs), can be institutionalized
as well. Again, certain agreements and understanding
with the embedding community is mandatory. Informed
consent, with appropriate and full documentation, and
ethics committee oversight are required only for re-
search on new and unproven interventions. For research
questions requiring randomization while not making
a difference to clinical management and treatment ef-
ficacy as currently known, e.g., comparing established
“equivalent” therapies, randomization can be done
(without a bloated informed consent process as is pres-
ently required) through routine randomization software,
although a protocol should be publicized or publicly
approved beforehand. Once so institutionalized, RCTs
should be easier to implement during routine clinical
practice, taking no more time than the usual inform-
ing of risks & benefits of various established treatment
options. But the doctor must mention to the patient
that an RCT is going to be implemented. As an accept-
able, or ethical, motivation, at least in the initial stages
implementing publicly acknowledged institutionalized
research, each treatment option can be made available
at no cost (perhaps supported by the institute or state).
If a patient prefers otherwise, he or she is excluded, and
treatment is chosen based on patient preference. The only
documentation needed may be as a note in the electronic
registry. If further restrictions must be made during fol-
low up, or if certain interventions must later be withheld
or instituted, not based on standard clinical practice but
on research mandate, then again full informed consent
must be obtained, under ethics committee supervision,
and any extraneous research-related interventions must
be provided free of charge. All doctors can easily par-
ticipate.
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These are a part of the main ideas. There are diffi-
culties with these proposals, but major obstacles include
the feasibility of an institute and community-based
long-term clinical research agreement, a trust in clinician
responsibility, a good or ethical management of conflicts
of interests, and public interest and acceptance.?

HistoriCAL ExaMPLES OF CLINICIAN-SCIENTISTS

There are many important historical examples
where clinicians are scientists (in the modern sense) in
their own right, making valid causal inferences based
on accurate observations. In fact, these observations
had so much influence that later clinicians who fancied
themselves as being scientists (perhaps not in the modern
sense) modeled their scientific approach on these famous
observational studies, without adequately understanding
the associated biases and specific contextual features,
and, equally important, not having the tools at hand
for controlling these biases even if so recognized. As a
consequence, clinical science did not advance as far as
it should until relatively recently.

Some selected examples can be provided. The first
two are well-known.* Hippocrates of Cos (~ 460 — 370
BC), to whom is attributed a collection of writings
known as the Hippocratic corpus, showed in a seemingly
haphazard series of cases or case vignettes that illnesses
have repeatable and recognizable patterns, and that fairly
accurate prognostication (or clinical prediction) can be
made. There was no need to invoke supernatural, and
thus unknowable or unobservable, explanations. Fevers
are regularly observed to have ternary (every 3 day)
and quaternary (every 4™ day) spiking patterns. Certain
observable clinical manifestations can predict almost
certain death (e.g., the Hippocratic Facies). Some dis-
eases occur more frequently in one season, others in
another. Galen of Pergamum (AD 129 —200+) observed
that section of the recurrent laryngeal nerve reliably
produced abnormal phonation in animals, and bilateral
section caused asphyxia. Galen, of course, also seem-
ingly observed or inferred what later proved to be a
great many errors due to mistaken assumptions, which
were passed down for over a millennium before being
corrected by later investigators.

One clinician-scientist I will focus on in a bit more
detail is Giovanni Battista Morgagni (AD 1682 — 1771;
Figure 1). Imagine spending, altogether, over 50 years
observing and recording in detail almost 700 patients
who later died, and correlating clinical observations
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with postmortem examination results. That, in essence,
was what Morgagni did. This effort was probably the
first major systematic clinicopathological investigation
in the world. There had been several earlier reports, of
smaller series of patients who were dissected after death,
often observed inaccurately or reported for their extreme
deviation from the normal, and had been collected
together in an unsystematic way into a book (e.g., the
Sepulchretum sive anatomica practica) which strongly
influenced Morgagni. But Morgagni’s work went far
beyond anything existing before, and was truly monu-
mental. His observations were accurate, meticulously
analyzed given the time period, presented in a form of
induction — deduction arguments in a series of letters,
and published when the author was 80 years old, 10 years
before his death.>¢

This work was “The seats and causes of disease
investigated by anatomy” (De sedibus et causis morbo-
rum per anatomen indagatis), published in 17617 (Figure
2), written while Morgagni was a Professor of Medicine
and later of Anatomy at the University of Padua, Italy. It
is the true founding document of pathological anatomy,
or gross pathology. It was over 1,300 pages in length,
published in 5 volumes arranged by organ-systems. It
emphasized, in a convincing fashion, that diseases are
mainly localized in certain organs, correlating strongly
with clinical symptoms and signs. It ushered in the age
of organ-based disease pathology and practically ended
the ancient humoral theory of diseases (as well as the
idea of astrological influences on health!). Some sample
observations from the books are in order.

In patients with cardiac and pulmonary symptoms,
details of clinical findings were closely correlated with
autopsy findings, in most cases describing without doubt
conditions and diseases modern-day doctors would
recognize.’ Valvular heart diseases were described in
great detail, some recognizable today as valvular endo-
carditis along with its symptoms and signs. Symptoms
recognizable as angina pectoris was correlated with
blocked coronary artery. The first description of cor
pulmonale showed an understanding of the effect of
the heart disease on the lungs. Patients who died of dif-
ficulty of breathing had autopsy findings described so
accurately, in a first ever reported extensive pneumonia
with hepatization, that those passages could be used in
a modern-day textbook. Morgagni described cases of
aortic arch aneurysm, one eroding through the sternum
from which the patient bled to death.
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Figure 1 Giovanni Battista Morgagni on the frontispiece of
his book, De sedibus et causis morborum per ana-
tomen indagatis, 1761

He pointedly ascribed the lesion to syphilis and
described a possible pathological process. Neurological
cases were also well presented and described.® Cases of
cerebral aneurysm and rupture were directly linked to
neck pain or stiffness, and subdural hematomas were
described in which Morgagni speculated that trepana-
tion might have been beneficial. Vascular dissection in
the cerebellum was linked to respiratory problems and
incontinence, in brain trauma the coup and contre-coup
lesions were described, and head trauma was linked to
epilepsy. All of these and much, much more; although it
must be said that Morgagni also did some simple experi-
ments to test his ideas.

Morgagni’s circumstance is exceptional in that
extreme contextual features, in this case patients so ill
they died soon after consulting their doctors, are ripe for
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Figure 2 The title page of the book, De sedibus et causis
morborum per anatomen indagatis, 1761

observation-based causal arguments which are more or
less valid. By this I mean that the illnesses are so severe
that postmortem examination will reveal clear-cut organ
pathology. (In causal inference terminology, these rela-
tively few observations provided highly probable neces-
sary and sufficient information for causation). The causal
relation between the diseased organ and illness can be
reliably inferred, based on observations alone. Thus, a
theory of diseases can be constructed, and tested with
future observations. There should be no confounders
strong enough to explain away the observed, inferred,
causal relations. But in most real-world clinical situa-
tions of interest, clear cut causal inference cannot be
obtained in such a straightforward manner. What should
then be the appropriate theoretical framework or basis
for causal inference?
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A THEORETICAL BASIS OF CAUSAL INFERENCE

The intuitive idea of causal inference can be il-
lustrated with the following example. The statement,
“P would have lived had the car not hit him” gives the
idea behind “the car is the cause of P’s death”. That
is, if there is an alternative version of events, where
the car did not hit P, he would now be alive. Thus, it is
the imagined possibility of alternative events, i.e., a
counterfactual, involving the same person or object at
the same point in time, that is the basis of causal infer-
ence.®® We call this the “counterfactual” basis of causal
inference. This type of causal reasoning happens, at least
subconsciously, to everyone all the time. It is essentially
the basis of experimentation: actively change one factor
at a time, keeping everything else constant, and observe
the outcome difference, assuming time-invariance.

The counterfactual idea is present in the random-
ized controlled trial (RCT), but only approximately.
Because a person or biological subject cannot be used
twice (in most situations) in a trial due to significant
irreversible changes between interventions, or because
the same initial conditions cannot be replicated for any
subject at different time points, and, of course, all in-
terventions cannot (usually) be performed at the same
time on one subject (even two limbs are not identical),
one practical solution is to observe groups of subjects
randomly allocated to different interventions. This
way, all groups, each sufficiently large in number, are
approximately or on average the same to begin with.
Then, on average, the subsequent observed differences
among groups occurring within the same time frame
can be attributed to (i.e., “caused by”) the differences in
the intervention. Thus, a group-level estimate of causal
effects is used in place of the individual-based estimate.
This is the essence of the RCT.

But the counterfactual idea does not necessar-
ily have to be (approximately) realized in randomized
controlled trials, i.e., within an experimental context.
Indeed, frequently it cannot or is difficult to be done
in practice. Instead, readily available observational
data or information obtained during routine clinical
work can be used for causal inference; but a suitable
theoretical framework within which valid inferences
can be made must be found. The first thing is to realize
that in observational studies causally inferred connec-
tion between any two events are often invalidated by
the presence of confounding. Without confounding, or
with appropriate management of confounding under a

Are Medical Doctors Scientists? Causal Inference Based on Observational Data 7

suitable model, valid causal inferences can be achieved
in observational studies. After all, humans must have
been making observational causal inferences since the
stone age, long before the invention of science and seem
to have survived quite well.

Second, confounding effects as well as causal
effects can be modeled within a graphical framework.
Any model of a process where causal inferences are to
be made can be written or drawn as a Bayesian causal
network. Any conceivable event or “risk factor” or “con-
founding factor” related to an outcome event can be so
modelled and the type of connection to one another will
determine how the various interrelated events are to be
“adjusted” to infer causality between events of interest.
This graphical approach can augment standard statistical
models to obtain valid causal inference.

COUNTERFACTUALS AND CAUSAL INFERENCE IN
STATISTICS

Suppose we are looking at the effects of a binary
treatment variable X on a binary outcome Y, for example,
on the recurrence of cancer (recur, coded as 1; not recur,
coded as 0). These treatments (values of X) are a new
intervention, coded as 1 and a control, coded as 0. The
objective of the study is to compare the effect of the new
intervention with that of the control, in terms of cancer
recurrence. In a counterfactual view of causality, for a
given patient u, the causal effect of the new intervention,
relative to that of the control, can be measured by the
difference®”’

Pr(Y.(u) = 1) - Pr(Y.o(u) =1)

where Pr(Y,_;(«) = 1) is the probability of recurrence
(Y, =1),in patient u, given new intervention X = 1, and
Pr(Y,o(u) = 1) is the probability of recurrence (Y,_o(u)
= 1), in the same patient u, given control X = 0. More
commonly, the causal effect can also be measured as an
Odds Ratio (OR)

Pr(Y,=1)/(1-Pr(Y,=1))
Pr(Y,=1)/(1-Pr(Y,=1))

taking values between 0 and infinity, with an OR value
of 1 interpreted as no effect, and values less than 1 as
a beneficial effect (i.e., recurrence is less likely) of the
new intervention X = 1. In this view, a Bayesian statisti-
cal approach is more appropriate since the probability is
interpreted as a personal probability and not a relative
frequency.
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It can be seen at once that some of these prob-
abilities are never observed in reality, and hence these
individual causal effects can never be observed. This is
because for a given patient u, if he or she is given the
new treatment X = 1, then only Y,_,(u) is observed, not
Y._o(u). Conversely, if he or she is given the control treat-
ment X =0, then only Y,_o(1) is observed, not Y,_,(«). As
an illustration, in table 1 we show observed outcomes
and treatments in a hypothetical group of 10 patients,
5 in each actual-assigned treatment group, along with
possible counterfactual, or potential, outcomes. For
example, for patient 4 who is actually assigned to X =1,
the outcome in column 1, which is the actual observed
outcome, is (Y,_;(4)lobserved X = 1) = 0 ; and for the
same patient, in column 2, is (Y,(4)lobserved X = 1)
= 1, and this latter outcome is counterfactual. In table
2, only actual observations are shown. Also shown is a
confounding variable, stage of cancer Z (1 = lower, 2 =
higher, stage) prior to treatment.

If individual causal effects (e.g., table 1) cannot all
be observed (e.g., Table 2), then how is the causal effect
estimated? The answer is to use the group-level estimates
of the causal effect (sum over u). Instead of looking at
individual, or within-row, differences in outcomes (pos-
sible only in Table 1), we look at the group, or between-
column, differences (possible in both tables). In table 2,
the observed group-level probability of recurrence can
be estimated for columns 2 and 3 as, respectively,

Pr(vy =1lX=1) = é = 0.4 (i.e., under the new treatment X = 1); and

Pr(Y=1X=0) = i = 0.2 (i.e., under the control treatment X = 0).
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where we drop u and subscripts from the probabilities,
and the hat symbol denotes estimation. The estimated
odds ratio of new treatment vs. control is

0.4

OR = 159+ = 2,67 ;

=
S

H
e
[N

which seems to say that the new treatment is worse
(recurrence is more likely) than the control (although
not statistically significant because of the small sample).

The problem with these estimates, which should
be familiar to most readers, is that unless the data were
obtained from well-conducted RCTs, there are likely to
be effects of confounding factors lurking in the back-
ground, resulting in biased estimates. Can the reader see
that tables 1 (assuming counterfactual values to be real)
and 2 are likely to be the result of an observational study
with stage of disease (Z) being a confounder?

A BRIEF ExPoSITION RIEF ON CAUSAL INFERENCE
IN OBSERVATIONAL STUDIES

In RCTs, the observed treatment is by random as-
signment, meaning that the treatment is given irrespec-
tive of the state or characteristics of the patient prior to
that assignment. This also means that, for example, at
both the individual and group level,

Pr(Y_, = 11X) = Pr (Y., = 1)

Typically, in an RCT, the assignment probability is the
same for all options; thus, with 2 treatment options, the
probability is 0.5 to be assigned to either treatment.

Table 1 Observed (actual) and possible (counterfactual, potential) outcomes*

. Recurrence (Y) Recurrence (Y) Observed
Patient (u) Under X=1 Under X=0 Treatment (X) Stage (2)

1 0 1 1 2
2 1 1 1 2
3 0 0 0 1
4 0 1 1 1
5 1 0 0 1
6 0 1 0 1
7 1 1 1 2
8 0 0 0 2
9 0 0 0 1
10 0 1 1 2

*Counterfactual outcomes are shown in bold — these are plausible outcomes, not observable in anyway
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Table 2 Observed (actual) outcomes, from table 1.
. Recurrence (Y) Recurrence (Y) Observed

Patient (u) Under X=1 Under X=0 Treatment (X) Stage (2)

1 0 1 2

2 1 1 2

3 0 0 1

4 0 1 1

5 0 0 1

6 1 0 1

7 1 1 2

8 0 0 2

9 0 0 1

10 0 1 2

In other words, in an RCT, the probability of recur-
rence, if the patient were given the new treatment (X
= 1), does not depend on how he or she was assigned
(regardless of whatever value of X the patient was going
to get, since the assignment was random). This is not
true for observational studies in general where

PI’(Y=1= 1|X) # Pr(szl = 1)

because the assignment mechanism in observational
studies in general depends on characteristics of patients
which predict or are related to the outcome. In our ex-
ample, if the treatment depends on cancer stage, then
this assignment mechanism is directly related to or is
strongly influenced by stage. Hence, the probability
of recurrence if the new treatment is given, will also
depend on stage, that is, on the assignment mechanism.
Knowing that the patient was selected for new treatment
X =1, in our example, would mean that the probability
of recurrence on new treatment, Y,_, = 1,i.e., Pr(Y,_,
= 11X =1) could be different (i.e., worse) than that if the
patient were selected for control treatment X = 0, but
given the new treatment instead, i.e., Pr(Y,., = 11X =0.
That is, for observational studies in general®,

Pr(Y_, = 11X =1)= Pr(Y., = 11X =0)

But if, in our observational study, cancer stage
was the only important factor in treatment assignment,
then given the same cancer stage,e.g.,Z=1 (or Z=2),
the probability of recurrence if the new treatment were
given, should be the same irrespective of whether X =
1 or X =0 was ultimately selected, i.e.,

Pr(Y_ =11X=1,Z)=Pr(Y_, = 11IX=0, 2)

That is,
Pr(Y_, =1X,Z2)=Pr (Y, =112)

Thus, in our example, given Z, the probability of
recurrence (on new treatment) should be same regardless
of the actual treatment assignment. This last condition,
i.e., the independence of outcome from actual assign-
ment mechanism given some predictive characteristics,
if assumed to be true for all observational studies, is
called the “ignorability” assumption®. The ignorability
assumption is a means of treating observational studies
as if they were RCTs, that is, to ignore the treatment
assignment mechanism. If two people were to have
identical Z values, then the observed assignment of one
to X = 1 and the other to X = 0 can be considered es-
sentially random. Then, the unconditional causal effect
mentioned at the beginning, e.g., the comparison (at the
group level)

Pr(Yoy = 1) -Pr(Y.ug=1)

can be estimated even for observational studies, via the
conditional effects

Pr(Y,o; = 112) - Pr(Y.oo = 112)

but at a price of having to identify and condition on an
appropriate set of variables Z, which are commonly
confounders.

Note that there is still a counterfactual element in
the above comparison. To eliminate this element, and to
use actual observational data for the estimates of interest,
some consistency assumptions must be made. That is,
there is consistency between counterfactuals and actual
observations: for a patient or a group of patients with
the same Z, the probability of potential outcome when
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given a counterfactual assignment X = 1 should be the
same as that of the outcome when actually assigned X
=1; that is

Pr(Y_ =11Z)=Pr(Y=1X=1,2)

where the left-hand expression refers to counterfactuals
while the right refers to actual probabilities based on
observational data. Subscripts are dropped whenever
real observed data are referred to.

To estimate the unconditional causal effect, we
use a basic theorem in probability theory along with the
consistency assumption (here, 2, f(Z) denotes summa-
tion of f over all discrete values of Z):

Pr(Yye; = 1) — Pr(Yyeo = 1) = Z{Pr(Y =1X=1,2) — Pr(Y = 1|X = 0,2)} Pr (2)
zZ
Pr(¥=1X=0,2)
Pr (X = 0|2)

_Zpr(}': LX=17)
L Pr(Xx =112)

Since the joint probabilities Pr(Y =1, X, Z) can be
approximated directly from the data, this is a weighted
sum of observed differences, inversely weighted by
Pr (XIZ) (which cannot be O or 1); the weights are also
known as the propensity scores. The propensity score
could be obtained from some statistical model based on
the data. This last expression is the well-known (inverse)
propensity score-weighted causal estimates.®

Some readers might observe that this causal
approach is not so different from any multivariable
regression approach commonly seen in “non-causal”
statistics. This is partially true but misses the point. The
characteristics Z are related directly to assignment, not
necessarily to the outcome. The relations between Y, X,
and Z are the important features here, which are often not
addressed appropriately in regression analysis, and so the
latter may lead to inappropriate or misleading statistical
models. The special relations are causal in nature, which
must be postulated from some background biological
knowledge.” These relations are not statistical, and are
best described through the use of causal diagrams.

CAusAL Diagrams AND CAusaL INFERENCE? !

For simplicity, consider three variables, Y, X, Z
as in our earlier example. Some important insights
into the use of causal ideas can be gleaned even from
such simple cases. A typical relationship where Z is a
“conventional” confounder is shown in Figure 3. This
diagram is an example of an acyclical, directed graph
with 3 nodes and 3 edges. It is directed because there
are definite directions of causal effect (arrows), and is
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acylical because the arrows do not all point in the same
clockwise or counterclockwise direction in a closed
cycle. There are obviously 3 nodes, one for each vari-
able, and 3 directed edges connecting them. In causal
language, treatment X is a cause of recurrence Y, while
cancer stage Z is a cause of both.

z

X >@ Y

Figure 3 Causal diagram with Z confounding the effect of X
onY

Suppose that X and Z are independent causes of Y.
Then the causal diagram would be as in Figure 4. This
is a straightforward case where the causal effect of X on
Y does not depend on Z and no conditional probabilities
or adjustments for Z are required for unbiased estima-
tion. The argument for the truth of Figure 3 as opposed
to Figure 4 depends more on background knowledge of
cancer biology than on observed statistical relations. But
if Figure 4 is true, then adjusting for Z in a multivariable
analysis should be unnecessary (and misleading) if the
main aim is to estimate the causal effect of X on Y.

Zz

X @ >@ Y

Figure 4 Causal diagram with independent causes X, Zon Y

Can Figure 3 become figure 4, such that the causal
effect of X on Y can be estimated in a direct and unbiased
way? Yes —one way is through doing an RCT. RCTs are
designed so that causal effects of confounders Z on X
are eliminated, and the causal effect of X on Y can be
estimated directly without bias (on average). But appro-
priate adjusted analysis in observational studies can do
the same. If the analysis is done separately, in Figure 3,
for each value of Z, then the confounding effect of Z is
eliminated. By fixing the value of a particular confound-
ing variable, Figure 3 becomes Figure 4.
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This is called a stratified analysis: stratified by the
levels of Z. The estimated causal effect of X on Y'is then
the weighted average of the direct causal effect of Xon Y
at each Z level. We can say that the stratified analysis as
described is a prototype of “simulating” RCTs estimates
through using observational data.

YA

X >@ Y

Figure 5 A cause X with direct and indirect (through Z) ef-
fectson'Y

What if the causal relations are as in Figure 5,
where now Z is post-treatment cancer stage? Treatment
is a cause of both post-treatment cancer stage and recur-
rence, and post-treatment stage causes recurrence. If we
assume no causal effects of pre-treatment cancer stage on
treatment, and on post-treatment cancer stage, then the
causal effect of X on Y'is not confounded by Z. However,
according to some current epidemiological definitions
of confounding, Z should be a confounder in this case,
since it is still related to both X and Y. This shows how
causal thinking can clarify confusions regarding what
a confounder is. Z is not a confounder simply because
it does not cause X, in contrast to Z of Figure 3. Hence,
the causal effect of X on Y can be estimated without bias
while ignoring Z. This is called the total causal effect,
because some of X’s causal effect on Y is indirectly
through Z. If we did an adjusted analysis by adjusting for
Z, we would get only a partial, but direct, causal effect
of XonY.

X Y

Figure 6 Collider bias: both X and Y independently cause Z
but adjusting for Zinduces correlation between X
and Y
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The diagram in Figure 6 is biologically impossible
but has interesting implications. It says that treatment is
not a cause of recurrence, but both are causes of cancer
stage. Without adjustment, statistical analysis should
not show any significant relation between X and Y. If
this were true, adjustment for Z would create an illusion
of causation between treatment and recurrence. Why is
this? If X and Y both cause Z, for example, if both the
new treatment and recurrence cause higher cancer stage,
then if Z were fixed at some value, for example at the
higher stage (Z = 2), statistical analysis would show that
the new treatment is related to lower recurrence risk, or
the control to higher recurrence risk. This would be a
misleading result. It is the worst outcome of inappropri-
ate statistical adjustment.

In Figure 6, suppose X is ovarian cancer (yes = 1;
no =0), Yis breast cancer (yes = 1; no =0) and Zis hos-
pitalization (hospitalized = 1; not hospitalized = 0). Now
it is plausible that both X and Y cause Z. Both cancers,
if sufficiently advanced, will require hospitalization, at
least for surgical treatment. In this case, if Z were fixed
at hospitalization (Z = 1), then for hospitalized patients
there will seem to be an inverse relation between breast
cancer and ovarian cancer, even though both are inde-
pendent events. That is, if the hospitalized patient has
breast cancer, she is less likely to have ovarian cancer
and vice versa. This spurious (negative in this case)
association between different cancers in hospitalized
patients is a common finding in observational research.
The next time the reader sees research on hospitalized
patients, be wary that any claimed association between
diseases might just be an illusion.

X >@ Y

Figure 7 Only X causes Y, and Zis not a confounder: ad-
justing for Z results in collider bias
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In the final diagram, in Figure 7, there is a causal
effect between X and Y, but both X and Y cause Z. In
many epidemiology textbooks, because it is related to
both X and Y, Z would be considered a confounder. But
it is not. Z neither causes X nor Y, and is therefore ir-
relevant for estimating the causal effect of X on Y. There
is no need to adjust for Z. If one adjusts for Z, collider
bias would appear, as described previously in Figure 6,
and might distort or eliminate the real causal effect of
interest.

Causal diagrams of real-life clinical phenomena can
be created for purposes of causal inference in observa-
tional studies. These real-life diagrams will incorporate
some or all of the “elementary” 3-way diagrams in
Figures 3 to 7, as well as others not shown here?, and will
inform the researcher or statistician as to what clinical
variables to include or not include in the analysis, and
which variables should be considered confounders or
otherwise. The selection of variables in some multivari-
able analysis will thus be knowledge-based, i.e., based
mainly on known biological and causal principles, and
relying less on ad hoc statistical procedures such as the
various stepwise selection or penalty-based criterion
including the Akaike information criterion (AIC) and
its variants.!! Misleading or even wrong analysis by the
researcher, for example adjusting for collider variables
(Figures 6 and 7) when he or she should not, could be
avoided. Analysis of interventions and their effects on
outcomes can be done and estimated via observational
studies with similar results as for RCTs, given appro-
priate causal diagrams and data. Further, under suitable
models, reasonably precise quantitative predictions may
be possible.

CAUSAL INFERENCE IN PaYSICS AND THE FUTURE
Or CausaL INFERENCE IN MEDICINE

In physics, causal inference is the rule. All major
equations of physics are causal in nature. There are
explicit quantitative relations between variables and
not just relations in causal diagrams. Causal inference
in clinical medicine may someday be captured as a col-
lection of similar equations, all based on some set of
accepted biological principles. But currently it is mainly
in the physical sciences where we find causal relation-
ships encoded as precise equations.

Imagine asking about counterfactuals in thermo-
dynamics. Look at the equation of state of an ideal gas:
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PV = nRT

If we assume no measurement error or negligible
error and negligible chance variation, something that
distinguishes simple systems (e.g., gas) from complex
systems (e.g., humans), then any counterfactual value of
the gas pressure P, say, can be calculated if the volume
(V), temperature (7), and number of gas molecules in
moles (n) are known (R is the gas constant). Without
having measured or observing anything, we can imagine
any scenario to be observed, in the future or otherwise,
that the states of the gas can go through. We can hope
that, looking ahead, various specialties of medicine may
have similar “equations of state” for various diseases,
where we can modify certain state variables using other
state variables to achieve clinical cure. This can all be
planned through solving the equations of state. Similar
to the equations of state in physics, in biomedical causal
inference we have structural equations. These can be
used to make quantitative predictions (e.g., predicted
mean values) subjected to random error. We will not
consider them in this article, but the reader can easily find
relevant introductory books for further information.>!°

The incomplete knowledge of human biology and
pathology, the still unknown effects of various treat-
ments of diseases, and the complexity of living organism
are all working against any dream of a comprehensive
system of such medical “equations of state” existing
anytime in the foreseeable future. The simplistic view
that there should exist a small set of predictive equa-
tions in medicine is probably unrealistic. Quantitative
predictions in medicine in the near future is likely to
come from structural causal models created by artificial
intelligence (Al) systems under human guidance, with
real-time data input and flexible self-learning prediction
algorithms. Indeed, such learning algorithms with causal
reasoning abilities are currently being developed.' It is
exciting to see what the future may bring to the science
of clinical prediction and prognostication, or of pattern
recognition in general.

Wny EXPERIMENT?

While observational studies can provide evidence
for causal inference, such inference hinges on the validity
of the available causal model. What if there is no such
model? Then we must resort to creating some back-
ground knowledge, perhaps through experimentation,
to obtain sufficient data to build a causal model.
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Hypothetical causal models can also be constructed
based on incomplete knowledge, and tested using ob-
servational data. But in certain situations, there is no
replacement for experimental studies. Causal claims
based on observational data in many cases will require
experimental confirmation, especially if these claims are
weak.

CONCLUSION

Science, including that of medicine, is about
causal reasoning and finding causal relationships.
Quantitative approaches in medicine are dominated by
the conventional, statistical way of thinking, which is
empirically oriented and skeptical of observation-based
causal claims. This is not necessarily a bad thing, but it
must be realized that causal thinking and causal claims
can be made through appropriate observational frame-
work, not just through experimental studies. History
teaches us that some valid causal inferences were made
based on accurate clinicopathological observations. The
causal inference framework presented in this article
is a more recent attempt to build a systematic, valid
approach to making causal claims from observational
data, something that clinicians including surgeons can
readily participate in. If clinicians see it as a mandate
of the profession to participate in research, under public
acceptance, then they are clinician-scientists. We hope
that this article can stimulate some of our colleagues
to become clinician-scientists, to look at the value of
observational data from a higher perspective, to see that
making accurate, relevant clinical observations are good
enough for high quality research, and is particularly
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cost-effective when compared with RCTs. Statisticians
working in medicine are encouraged to empower them-
selves with another powerful set of tools still under active
development, with a potential to arrive at conclusions of
a causal nature with more confidence than ever before.
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