

Surgical Treatment of CBD Stones

Chakrapan Euanorasetr M.D.

Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University Bangkok 10400 Thailand.

Abstract:

With the current advances in laparoscopic and endoscopic surgery, common bile duct stones may be removed by endoscopic technique. But this technique is not available in most hospital in Thailand, so most Thai surgeons still have to confront with this problem frequently in their surgical practice.

There are several procedures to be considered after common bile duct exploration for common bile duct stones. Primary closure of the common bile duct, T-Tube drainage, Transduodenal sphincteroplasty, Supraduodenal choledochoduodenostomy and Roux-en-Y choledochojejunostomy are among the popular and useful procedures to deal with problems related to common bile duct exploration.

These procedures should not be considered as simple alternative or additional procedures because the indication for each is different, although with an area of overlap. The surgeons should select each procedure individually to best serve individual need of the patient and not to provide all patients with only one procedure for all circumstances.

Surgical management of CBD stones continues to challenge the surgeons. The importance of clearing the ductal system of all stones cannot be underestimated, because when this is not done, complications of the residual stones often arise (Table 1). One of the controversy in biliary surgery is how to complete the operation when the CBD has been explored through a choledochotomy. This question is not easily answered because hard data are not available from prospective randomized trials to provide definite guidance. Most often this decision is a judgement call based on number of factors pertaining to the individual patient. The decision to add a biliary-enteric drainage to CBD exploration must take into account the increased risks of operative mortality and morbidity associated with the procedures compared with the risk of recurrent stones or other future biliary problems if the procedure is not done.

After common bile duct exploration for choledo-

cholithiasis, it can be dealt with in one of the following methods :

- Primary closure of the CBD,
- T-Tube drainage,
- Transduodenal sphincterotomy or sphincteroplasty,
- Supraduodenal choledochoduodenostomy,
- Choledochojejunostomy.

PRIMARY CLOSURE OF THE CBD VERSUS T-TUBE DRAINAGE

Biliary drainage following CBD exploration has been a subject of controversy since JK Thornton reported the first successful CBD exploration in 1891 (Lancet)⁶.

After CBD exploration for stones, it is a common practice for surgeons to place a rubber T-tube into the CBD. Most surgeons consider the procedure to be

Table 1 Results of conventional CBD exploration and intraoperative flexible choledochoscopy.

References	Year	Stone+ve Exploration	Number of retained stones	Percentage of retained stones
Conventional CBD Exploration				
LeQuesne et al ¹	1980	78	1	1.3
Stubbs&Blumgart ²	1984	23	3	13.0
Jakimowicz et al ³	1986	40	3	7.5
Neoptolemos et al ⁴	1987	59	5	8.5
Sheridan et al ⁵	1987	191	37	19.4
Total		391	49	12.5
Intraoperative Flexible Choledocoscopy				
Jakimowicz et al ⁵	1986	238	5	2.1

both safe and useful. Problems with T-tube drainage can and do occasionally occur. In a recent large review of surgical bile duct stone, a 2.2 per cent complication rate was directly attributed to T-tube drainage⁴.

Historically, Richter and Buchbinder reported good result in 11 patients with primary closure of the CBD in 1919 (JAMA)⁷. At that time, many authorities such as W. Halsted 1923, William Mayo 1939, Pablo Mirizzi 1942 presented their series of patients in whom successful primary CBD closure was accomplished⁸.

They stressed four strict requirements for primary CBD closure; 1) patency of the ampulla of Vater, 2) complete removal of all CBD stones, 3) presence of normal pancreas (no pancreatitis), 4) meticulous suturing of the duct closure.

The dissatisfaction with T-Tube drainage at that time was largely secondary to two factors. First, the T-tube became easily occluded with precipitated bile and hence were nonfunctioning. Second, retained CBD stones were considered a surgical problems, whether a T-tube was in place or not.

The successful removal of retained CBD stones by percutaneous extraction techniques through the T-tube tract by Burhenne 1973, may be responsible for the popularity of T-tube drainage⁸.

Recently, primary closure of the CBD was used only in selected cases⁷⁻¹¹. A cystic duct cholangiogram is repeated after the bile duct has been primarily closed. A closed suction drain is always positioned.¹¹

Proponents of primary closure of the CBD

1. Most CBD explorations are uneventful after intraoperative choledochoscopy to exclude retained

stones or an edematous obstructed ampulla.

2. The advances in endoscopic sphincterotomy for treating patients with retained CBD stones have made the removal of retained stones possible without surgery.

3. There remain possible complications of T-tube drainage.

4. Patients with primary closure of the CBD have a short hospital stay, allow shorter operative time, have overall lower cost of hospitalization in many studies but patients with T-tube drainage need more nursing attention and feel uncomfortable while the drain is in place.

The main reasons for the use of T-tube drainage

1. To prevent bile leakage into the peritoneal cavity by decompression of the biliary tree. (T-tube allows spasm or edema of the sphincter to settle following the trauma of the exploration. It allows safe egress of bile in the event of a residual undetected bile duct stone obstruction. Without T-tube drainage, the obstruction might result in a build up of pressure in the CBD and leakage at or disruption of the closure of the duct.

2. Making postoperative cholangiography possible for diagnosis of retained stones.

3. If stones have been left, making their removal easier via T-tube tract for percutaneous extraction of retained stones.

Complications of T-tube removal

T-tube removal occasionally might well be associated with some hazards.

1. Bile peritonitis.

Various reasons can be suggested as why there may be leakage of bile into the peritoneal cavity after T-tube removal

1.1 Non irritant material T-tube

About 30 years ago, Winston et al (1965)¹² reported four cases of bile leakage and peritonitis with the use of Polyvinyl chloride T-tube.

Horgan et al (1984)¹³ reported 15 cases with bile leakage following removal of T-tube. All cases used a new non-allergenic, non-irritant latex which was used to make Foley catheter.

Safe removal of T-tube depends on the irritant properties of the T-tube stimulating a reactive granulation tract around the tube. Thereby ensuring a temporary biliary cutaneous fistula which will normally close within a few days after T-tube removal. The introduction of latex rubber based material for T-tube manufacture resolved this problem, and such material remains the most common composition for T-tube in use today. Polyvinyl chloride T-tube is non or less irritant than latex rubber so that no tract is well formed. Furthermore, polyvinyl chloride hardened on contact with bile so that withdrawal of the tube is more likely to damage the CBD¹⁴.

1.2 Early removal of the T-tube

Corbett et al (1986)¹⁴ presented three patients with bile peritonitis after removal of T-tube despite the use of a latex T-tube. The T-tubes were removed between 10-12 days after surgery. The authors believed that the early removal was contributory to peritonitis.

Gillete et al (1985)¹⁵ also reported three cases that early removal before a wall-off tract formed was clearly the cause of bile peritonitis. Such cases are rarely recorded in the literature.

To prevent this complication, the T-tube should be in placed for at least 14 days, allowing the tract to mature before the T-tube is removed⁹.

1.3 Others possible causes

1.3.1 Two cases were reported to have bile peritonitis after T-tube removal associated with the use of steroids and one patient with Ehler-Danlos syndrome¹⁴. Steroid might diminish the inflammatory reaction around the T-tube and results in failure to form a wall-off tract around the T-tube. Another cause is ascites.

1.3.2 Residual stones or a stricture in the

distal CBD might raise intrabiliary pressure and increase the risk of leakage when the t-tube is removed.

Incidence of bile peritonitis after T-tube removal

Winston et al (1965)¹² cited reference to 2,000 CBD explorations using latex rubber T-tube without any bile leakage. But a survey by Corbett et al (1986)¹⁴ calculated the risk of bile leakage and peritonitis each time a T-tube is removed to be 0.84% or one in every 119 CBD exploration. One quarter of the patients were managed conservatively but the majority (75%) required operation¹⁴.

Although bile peritonitis after removal of T-tube is uncommon, many surgeons will experience this complication at least once during their professional careers. It has almost certainly been under reported in the literature. In my own experience, I have seen three cases (one from early removal, one patient with ascites, one patient receiving steroids).

2. Adverse reaction

Eight patients from a total number of 105 patients who underwent T-tube removal had severe adverse reaction developed secondary to bacteremia from the presence of infected bile and possibly to minor trauma secondary to T-tube removal¹⁶. Within an average of 1-3 hours after T-tube removal, all of them were seen with severe RUQ pain associated with local tenderness and fever. All responded well to vigorous antibiotic treatment and none required surgical treatment.

It is noteworthy that all of these had positive bile culture but there was no sign of bile leakage.

There are two points of interest. First, pathologic changes on the biliary tree histology, biliary tract obstruction and CBD dilatation are key factors in provoking the development of adverse reaction, being associated with a high incidence of bile infection. Second, the aforementioned reaction were not associated with bile leak after T-tube removal but trauma of the CBD created after T-tube removal might initiate bacterial translocation and bacteremia in the presence of bile infection. Lygidakis¹⁶ believed that in dealing with patients having advanced pathologic changes on the biliary tree (dilatation) and biliary infection, internal drainage should be recommended.

Risk factors for surgical exploration of the CBD (Tables 2, 3)

1. *Advanced age*¹⁷⁻²⁰ The higher rate of concomitant diseases in this group of patients is the principal

Table 2 Mortality of biliary surgery for calculous disease.

	Year	Total cases	Cholecystectomy alone	cholecystectomy & CBD exploration
Mc Sherry et al ²¹	1980	10,775	0.6	4.1
Doyle et al ²²	1982	4,000	1.8	6.6
Girard et al ²³	1988	7,436	0.36	1.3

Table 3 Age related mortality in CBD exploration.²³

Age (years)	Number of pts	Death (%)
< 50	356	0.3
50-70	333	2.1
> 70	130	2.3
Total	819	1.3

reason.

2. *Obstructive jaundice*.¹⁷

3. *Biliary sepsis*.¹⁹⁻²⁰ Patients with infected bile had higher mortality and morbidity rates than those with the sterile bile.

4. *Positive exploration for CBD stones*.¹⁸ The negative exploration are usually accompanied by very low incidence of morbidity and mortality.

5. *Reoperation*.²¹ Secondary CBD exploration was reported to carry a mortality rate twice that of primary CBD exploration.

SPHINCTEROPLASTY

Mc.Burney in 1898 cited transduodenal removal of the CBD stones via sphincterotomy²⁴. Jones SA²⁴ introduced sphincteroplasty in 1952. The anatomic and physiologic difference between sphincterotomy and sphincteroplasty have been emphasized.

Sphincterotomy : Division of the distal part of musculature surrounding the lower intraduodenal portion of the CBD. The sole purpose of this procedure is to remove an impacted stone and provide exploration of the duct from below.

Post operative T-tube cholangiography is indistinguishable from normal²⁵⁻²⁶.

Sphincteroplasty : Division of the entire length of the musculature surrounding the lower end of the CBD and this procedure extends outside the duodenal wall. This procedure not only allows thorough explo-

ration of the duct from below, but also give free drainage of bile through a wide opening (like an internal choledochoduodenostomy)²⁶.

This technique has not, however, been believed to be more efficient by some authors and entails a greater risk of serious complications, especially pancreatitis²⁷.

Indications²⁵⁻²⁷

1. Patients with impacted distal CBD stones in a non-dilated duct (most common).
2. Patients with multiple CBD stones and surgeon had doubt about duct clearance without duct dilatation or minimal dilatation (8-12 mm. in diameter).
3. Patients with papillary stenosis (with or without impacted stone).

Papillary stenosis was diagnosed when intra-operative cholangiography showed limited passage of contrast into the duodenum ("mouse-tail") or when during operative exploration of the duct using Blake's dilators, a Fogarty catheter or choledochoscopy, the diameter of the papilla was noted to be less than 3 mm²⁷.

Advantages²⁸⁻³⁰

1. Provides dependent drainage of the CBD.
2. Direct visualization of the ampulla of Vater.
3. Avoids sump syndrome.
4. Facilitates removal of an impacted ampullary stone.

Complications of sphincteroplasty (procedure - related)^{27,31}

Bleeding	0.8 - 5 %
Pancreatitis	1.6 - 4.2 %

Mortality

The mortality rates were influenced by³⁴⁻³⁵

1. Age of the patients. (most important factors)

Age	< 30 yrs	- mortality 0 %
	> 70 yrs	- mortality 6 %

2. General risk factors (DM, renal failure, jaundice)

Only 40 per cent of all operative deaths were attributable to sphincteroplasty specific complication. The operation itself caused a mortality rate of 0.9%³⁴.

A comparison of this mortality rates with that occurring after endoscopic sphincterotomy, (mortality rates of 1%)³⁶ demonstrates that the mortality rate itself is almost equal for both procedures (Table 4). The difference is that the surgical sphincterotomy is a combination of cholecystectomy, choledochotomy and sphincterotomy.

Almost all patients with post operative cholangitis had papillary stenosis²⁷.

The results of many series^{27,33} are similar in that more than 70-80 % of patients are asymptomatic at least 5 years after surgery (Table 5).

Treatment of cholangitis after sphincteroplasty²⁷

1. Endoscopic sphincterotomy (successful 50%)
2. Choledochoduodenostomy

Table 4 Mortality following sphincteroplasty.

Reference	Year	Patients	Mortality (%)
Jones SA ³⁰	1978	312	1
Lygidakis NJ ³²	1982	40	5
Nardi et al ³¹	1983	95	4.2
Baker et al ³³	1987	56	5.3
Sellner et al ³⁴	1988	1,200	3.7
Ramirez et al ²⁷	1994	135	1.5

Table 5 Long term results following sphincteroplasty.

Reference	Year	Patients	F.U. (yrs)	Cholangitis (%)
Baker et al ³³	1987	41	7	3.3
Ramirez et al ²⁷	1994	101	5.6	5.9

Importance for the Surgeons

- To make the decision as soon as possible in the course of the operation, rather than after prolonged fruitless attempts to remove an impacted stones. There is an evidence that prolonged instrumentation of the duct prior to performing sphincteroplasty would add complications to the procedure.

- To decide between choledochoduodenostomy and sphincteroplasty before performing a duodenotomy, because the incision must be placed differently for the two procedures.

- Gentle handing of the tissue and clear identification of the pancreatic duct.

TRANSDUODENAL CBD EXPLORATION AFTER SPHINCTEROPLASTY WITHOUT CHOLEDODCHOTOMY (TCDE/S)

This technique has been popularized in Great Britain over the past two decades by Peel et al 1974³⁷ as a safe and potentially more effective alternative to supraduodenal CBD exploration (Table 6).

Standard supraduodenal CBD exploration can be technically difficult in small duct exploration and is associated with a significant risk of ductal injury or late stricture. Instrumentation of the middle part of the small CBD introduce additional risk of longitudinal ductal tear and posterior wall perforation and ductal transection³⁸⁻³⁹. Extensive dissection of small duct may also devascularized the duct and result in stricture formation³⁸.

Technique: After cholecystectomy, duodenum was mobilized by a standard kocherization. A biliary Fogaty catheter was inserted through the cystic duct into the duodenum, inflated the balloon and withdraw snugly against the ampulla. Duodenotomy (localizing the ampulla by palpating the balloon) and sphincteroplasty could be performed with subsequent stone removal (using biliary Fogaty, scoops, Randall stone forceps, irrigation with red rubber catheter, cholangioscope).

Table 6 TCDE/S without choledochotomy.

Reference	Year	Patients	Mortality	Pancreatitis	Duodenal fistula
Strom & Stone ²⁴	1982	123	2.4%	0%	1.6%
Ratych RE ³⁸	1991	28	0%	10%	0%

Advantage

1. Avoid blind instrumentation of the distal CBD.
2. No choledochotomy, obviate the use of T-tube.
3. Alternative for CBD exploration in small CBD.

CHOLEDOCHODUODENOSTOMY

Choledochoduodenostomy was first described more than 100 years ago by Reidel in 1888^{25,40}. His patient died 9 hours postoperatively. Sprengel in 1890, published the first successful side-to-side Choledochoduodenostomy in a patient with CBD stone in Germany and gave the procedure its name^{25,40-42}.

This procedure was first popularized in continental Europe and South America. However, American and British surgeons particularly remained rather reluctant initially. The main reason against this procedure was the overemphasis of the sump syndrome and ascending cholangitis.

Over the past 20-30 years, however, publications about choledochoduodenostomy have appeared with increasing frequency in the British and American Journals. Capper (1961)⁴³ in the UK and Madden (1970)⁴⁴ in the USA had produced excellent results of choledochoduodenostomy. From the results obtained in most of reported series, at present time, choledochoduodenostomy is a well accepted operation.

Indications

1. Multiple CBD stones or sludge in a dilated duct.^{26,31}
2. When complete clearance of duct cannot be ensured, particularly in the presence of acute cholangitis⁴⁵
3. Primary common bile ductstones.^{26,46} Whether as a primary or secondary operation (for recurrent stone).
4. Retained or residual stones.^{26,46} In reoperation for residual stones, one or more stones may be left behind in 2.9-33 per cent of the explored duct and reoperations on the biliary system carry high mortality and morbidity.^{25,46-47}
5. Impacted distal CBD stones.^{26,48} No postoperative pancreatitis has been reported following choledochoduodenostomy. Vigorous attempts at manual removal of this stone in a dilated duct are hazardous. This blind maneuver would have a higher risk of

producing a "false passage" perforation of the wall of the intrapancreatic portion of the CBD or of traumatizing the pancreas which can lead to severe acute pancreatitis.

Choledochoduodenostomy should be reserved for an impacted distal CBD stone in a non dilated duct or when acute pancreatitis is present at surgery.

Contraindications

1. Non dilated CBD.
2. Difficulty in mobilization of duodenum.
3. Significant duodenal edema or inflammation.

The presence of duodenal edema, whether due to acute cholecystitis with secondary duodenal inflammation or due to active duodenal ulcer, should be considered contraindication. The edematous, inflamed duodenum holds suture poorly and may be a risk for anastomotic disruption. An inflamed CBD does not present a problem^{26,48} and previous Billroth II gastrectomy is not a contraindication.

Advantages

1. Technically easier and faster to perform than sphincteroplasty or Roux-en-Y choledochojejunostomy. This was particularly important when dealing with elderly or debilitated patients.⁴⁹⁻⁵¹
2. It appears to be more physiologically appropriate in that bile is entering the duodenum rather than jejunum.^{46,52}
3. It permits easy access to further endoscopic evaluation or treatment if necessary.^{46,49}

Disadvantages

1. The necessity for making a duodenal anastomosis, with all the attendant risk of leak and serious side duodenal fistula.
2. Sump syndrome.
3. Recurrent cholangitis.
4. Duodenogastric reflux.

Two basic technical criteria

1. A dilated CBD.
2. A wide stoma.

Kraus (1980)⁵³ reported the first study attempted to determine the correlation between the size of the CBD and subsequent cholangitis. He suggested that other procedure than choledochoduodenostomy should be considered when CBD is less than 1.6 cm.

The results of several studies have shown that size of the CBD and of the stoma are of critical importance in obtaining good long term results (Table 7). The optimal size of the CBD and stoma varied in many series.

The CBD should be at least 12 mm^{27,44,51,54-56}, 14 mm²⁶, 16 mm^{27,41,53,57-58} or 25 mm⁵² in diameter to allow the construction of a choledochoduodenostomy stoma at least 14 mm^{17,25,41,53,58}, 20 mm²⁹, 25 mm^{26,40,42,46,51,54}

Mortality and Morbidity

The significant drawbacks to choledochoduodenostomy are the risks of cholangitis, sump syndrome and alkaline reflux cholangitis (Tables 7,8).

CHOLANGITIS

In the past it was believed that reflux of duodenal contents into the biliary tract was the presumed cause

Table 7 Long term results of choledochoduodenostomy.

Reference	Year	No. of Pts.	F.U. yrs.	Cholangitis	Sump Syndrome
Madden et al ⁴⁴	1970	100	NA	NA	0
Degenshein et al ⁴²	1974	117	9	11	0
Kraus MA ⁵³	1980	68	NA	2.8	NA
Lygidakis NJ ⁶²	1981	342	9	0	0
Cubillos et al ⁴¹	1985	125	NA	1.6	0
Huguier et al ⁴⁹	1985	75	6.7	2.7	0
Baker et al ³³	1987	125	7	3.3	2.8
Schein & Gliedman ⁵¹	1987	200	5	NA	0
Escudero-Fabre et al ⁵⁸	1991	40	12.1	0	0
Deutsch et al ⁴⁸	1991	126	NA	1.5	2.4
Rat et al ⁶¹	1993	43	4	8	0
Panis et al ⁵⁷	1993	58	2.4	10.3	5.2
Ramirez et al ²⁷	1994	225	5.6	4.7	0
Mihmanli et al ⁶³	1996	24	5	0	0
		1,678	2.4-9	0-11	0-5.2

Table 8 Mortality and morbidity of choledochoduodenostomy.

Reference	Year	No. of Pts.	Mortality (%)	Morbidity (%)
Madden et al ⁴⁴	1970	1,255	2.7	NA
(Collective series)	1929-1969			
Berlatzky ⁴⁶	1981	709	2.5	NA
(Collective series)	1970-79			
Mosegaard et al ⁵⁹	1982	49	4	NA
Gaskill et al ⁶⁰	1982	71	2.8	30
Lygidakis NJ ⁴⁵	1982	342	0	NA
AI media et al ⁴⁰	1984	70	1.4	7.1
Huguier et al ⁴⁹	1985	77	2.6	NA
Cubillos et al ⁴¹	1985	125	3.2	42.4
Baker et al ³³	1987	190	5.3	11.6
Escudero-Fabre et al ⁵⁸	1991	64	6	28
Deutsch et al ⁴⁸	1991	126	4	17
Rat et al ⁶¹	1993	43	6	15
Ramirez et al ²⁷	1994	225	1.8	21.3
		3,346	0-6	7-42

of ascending cholangitis.⁶⁰

Madden (1970)⁴⁴ showed experimentally that even biliary-colonic anastomosis failed to produce ascending cholangitis in dogs if the anastomosis is wide enough.

The important consideration is not that the duodenal contents get up into the biliary tree but that they should be passed freely back into the GI tract. Most surgeons stressed the need for a large anastomosis and agreed that "the more barium the better" from barium study. The terms "ascending" and "reflux" cholangitis are misnomer. Cholangitis is caused by obstruction from narrowing stoma, therefore, it should be referred to as "obstructed" or "descending" cholangitis.⁵² A corollary of this would be "no obstruction, no cholangitis".⁴¹

Reflux from the duodenum into the biliary tree may lead to some derangement of hepatic function tests but this is not clinically significant.³³

Matthews et al 1993⁶⁴ suggested five etiologic factors contributing to recurrent cholangitis.

1. Anastomotic stenosis (usually < 5 mm).
2. Intrahepatic stricture.
3. Intrahepatic stones.
4. Improper constructed or oriented enteric conduit.
5. Conditions predisposing to either abnormal intestinal flora or bacterial overgrowth in the biliary tree such as silk suture exposed in the bile duct lumen, duodenal diverticulum.

Treatment of cholangitis after choledochoduodenostomy

- Non operative treatment

1. Endoscopic sphincterotomy is the treatment of choice
2. Endoscopic enlargement of the choledochoduodenostomy stoma.

Blair III in 1985⁶⁵ first described endoscopic enlargement of choledochoduodenostomy stoma. He presented good results in 4 cases treated by diathermy enlargement of the stoma to about 1 cm with a standard sphincterotome.

Angioplasty-type balloon catheters are being used via the percutaneous transhepatic route to dilate biliary anastomosis.⁶⁶ Similar balloons are now available for endoscopic use⁶⁷, which should simplify treatment of recurrent stenosis in patients who are poor surgical risk.

- Reoperation

1. To make a wider choledochoduodenostomy stoma.
2. Roux-en-Y choledochojejunostomy.

Prevention of cholangitis

A stoma of adequate size and a good opposition of mucosa of the CBD to that of the duodenum are the best prophylaxis for stenosis and cholangitis.^{41,49,51,53}

SUMP SYNDROME (BLIND SAC SYNDROME)⁴⁰

The sump syndrome has been recognized as a long term sequela reported with side-to-side choledochoduodenostomy or choledochojejunostomy. Biliary sump syndrome is a rare but embarrassing problem.

A sump (a pit or well) develops in the distal non functioning limb of the CBD. This distal CBD segment acts as a blind end diverticulum or as a siphon where lithogenic bile, GI contents and debris accumulate.

The mechanism proposed is that undigestible food materials enter the biliary system via the anastomosis and become impacted in the distal blind pouch of the CBD. As the material build up it gradually forms a nidus for bacterial growth and sometime recurrent stones. When this material reaches a mass large enough to block or partially block the anastomosis, cholangitis supervenes. Occasionally impaction of the distal sump also has caused pancreatitis.⁶⁸ Other rare problem due to bacterial proliferation in the sump leading to deconjugation of bile salts and presenting as steatorrhea and malabsorption.^{40,43}

The presence of food debris in the blind segment seems frequent, without any symptoms, provided that a large choledochoduodenostomy has been performed. Akiyama (1980)⁶⁹ noted food debris distally in 4 of 15 patients with choledochoduodenostomy who underwent endoscopy annually. There were no symptoms of cholangitis in any of these patients. It is important to note that all of these patients had a large stoma size.

There is a general lack of agreement as to the criteria for the diagnosis of sump syndrome. The complex symptoms compose of cholangitis or pancreatitis with food debris in the distal CBD segment and stoma narrowing. Few cases have been clearly documented.

Treatment

- Non operative Treatment

1. Endoscopic sphincterotomy is the treatment of choice. This technique has been reported to provide distal bile duct drainage of the sump but cannot be used in patients with long strictures of the distal CBD. Debris or stones were extracted by basket entrapment or an occlusion balloon through the ampulla of Vater after endoscopic sphincterotomy.^{68,70-74}

2. The material can be extracted directly through the stoma, if patent, by endoscopic cannulation of the anastomosis.⁷⁰

3. Endoscopic lavage through the ERCP catheter into the ampulla of Vater.⁷² The stones or debris were irrigated from the distal CBD and emerged from the choledochoduodenostomy stoma.

- Reoperation

Mathews et al (1993)⁶⁴ preferred to perform a Roux-en-Y choledochojjunostomy to permanently eliminate the sump. They⁶⁴ did not believe that endoscopic treatment can completely remove the thick, infected debris that is often densely adhere to the wall of the inflamed distal CBD.

DUODENOGASTRIC REFLUX

An unregulated bile flow into the duodenum, as might be expected after any procedure abolishing the sphincter action⁷⁵, could be reasonable explanation for this abnormal reflux which was found endoscopically in 12-60 per cent^{40,63,69}.

Is choledochoduodenostomy a significant cause of duodenogastric reflux? Paper from Spain in 1994⁷⁶ evaluated duodenogastric reflux in 4 groups of patients. Group I-healthy or control, Group II-patients who had symptomatic cholecystectomy, Group III-patients who had symptomatic choledochoduodenostomy and Group IV-patients who had symptomatic choledochoduodenostomy (dyspeptic symptoms). Duodenogastric reflux was quantified using continuous intravenous infusion of 99mTc-HIDA and subsequently determining its concentration in gastric juice. The results showed that all of the patients who underwent operation, whatever the technique used, had high reflux rates than those in control group. But group IV had highest reflux rates. This results suggested that duodenogastric reflux must be involved in the genesis

of these dyspeptic symptoms.

Post operative evaluations for choledochoduodenostomy patients.

1. All patients should have air in the biliary tree from plain abdominal x-ray.

2. An UGI series should show prompt filling of the biliary tree, and complete emptying should occur by 12 hours and no later than 24 hours.^{26,51}

3. HIDA scan. With a proper functioning stoma, the biliary tree will empty in 45 minutes.²⁶

4. ERCP assessment of the patency of the choledochoduodenostomy and biliary tree.

Because of the concern about long term results in patients with choledochoduodenostomy, particularly with reference to the occurrence of cholangitis, sump syndrome and duodenogastric reflux. The prevalent thinking among surgeons has been that choledochoduodenostomy should be performed only in the elderly patient and high risk patient and should be avoided in younger patients, who have a life-expectancy of 10 years or more.⁴⁵

Later, it has also been recommended for use in the younger patients since a more aggressive therapy may be indicated in their often more aggressive lithogenic diathesis, and good long term results of many studies have been documented.^{40,57-58}

Important factors

1. The decision to do this operation must be made before the duodenum is opened.⁴²

2. Choledochotomy should be performed as low as possible.^{29,46}

- Avoid long blind pouch of the distal CBD.

- No tension.

3. Extensive mobilization of the duodenum.^{29,46}
- No tension.

4. Meticulous one layer anastomosis and good mucosal opposition.^{49,55,57,61}

5. Slip a finger into the duodenotomy to palpate the ampulla.⁴²

- No overlooked ampullary tumor.

ROUX-EN-Y CHOLEDUCHOJEJUNOSTOMY

This procedure is less frequently reported in the literatures⁵⁷, but many surgeons have favored this diversion procedure of the biliary system.^{29,57,61}

Indications

1. Same as choledochoduodenostomy, even the size of the CBD is not large enough for choledochoduodenostomy.
2. The duodenum can not be utilized for choledochoduodenostomy (duodenal ulcer, scarred, obstructed, cannot be mobilized).
3. Prior choledochoduodenostomy.
4. Intrahepatic duct stones, which often require drainage that offer access to the biliary tract post-operatively.

Advantages

1. A defunctionalized, isoperistaltic intestinal segment to reduce reflux from the intestine.
2. A low tension anastomosis, which can be created at the hilum of the liver.
3. The possibility of doing side anastomosis in difficult situations where the bile duct cannot be mobilized with still reduce the chance of reflux.
4. No sump syndrome (end to side anastomosis)
5. No serious biliary fistula. If there is leakage of bile, the drain is left in place as long as necessary. Almost all such biliary fistulae close within 2-3 weeks.⁵²

Disadvantages

1. Require two anastomoses and take more time to perform.
2. Precludes endoscopic evaluation and treatment if necessary.
3. Less physiologic.⁷⁷ It does not provide normal mixing of the bile with the food that leave the stomach. Theoretic disadvantage of the bile being emptied into the proximal jejunum rather than the duodenum have frequently been raised, as have concerned regarding reabsorption of the bile salts within the Roux-en-Y limb. Kaiwara & Suzuki (1978)⁷⁸ showed in dogs that diversion of bile from the duodenum decreased pancreatic exocrine secretion with a Roux-en-Y reconstruction but not with choledochoduodenostomy.

4. Peptic ulcer.⁷⁹⁻⁸¹ The frequency of peptic ulcer disease after this procedure has varied among series. The proposed mechanism for ulcer production is two fold. First, there is diversion of the alkaline bile from the proximal duodenum into the jejunum, leaving the gastric acid unneutralized in the proximal duodenum. Second, there is experimental⁷⁹ and clinical⁸⁰⁻⁸¹ evi-

Table 9 Long term results of choledochoduodenostomy and Roux-en-Y choledochoenterostomy

	Choledocho- duodenostomy	Roux-en-Y Choledochojejunostomy
Patients	64	66
Mortality	6.2%	1.5%
Morbidity	18%	13%
Mean Hospitalization	20 days	22 days
Long term F.U.	no significant difference (Cholangitis)	

dence that this procedure results in increased gastric acid production.^{52,57}

While other series⁸²⁻⁸³ have failed to identify an increased frequency of peptic ulcer disease after this procedure.

Long term results

Cholangitis was noted in 7-10% of these patients^{29,57}, and was the results of rather the presence of residual intrahepatic duct stones than stenosis of the anastomosis.⁵²⁻⁵⁷

Panis et al 1993⁵⁷ presented the first randomized study comparing choledochoduodenostomy and Roux-en-Y choledochojejunostomy in the treatment for CBD stones. This study confirmed the good long terms results of both procedures (Table 9).

CONCLUSIONS

"Fit the operation to the needs of the patients and not the patients to one operation", Madden JL 1985.

There is no significant difference in the morbidity and mortality rate of the sphincteroplasty, Choledochoduodenostomy and Roux-en-Y choledochojejunostomy. All procedures give excellent long term results. These operations should not be considered simple alternative or additional procedures but that the indication for each are different, although with an area of overlap. Choledochoduodenostomy and sphincteroplasty are complimentary rather than competitive.

References

1. Le Quesne LP, Bolton JP. Choledocholithiasis; incidence, diagnosis and operative procedure. In: Maingot's Abdominal operations 7th ed; Vol I. Appleton-Century-Crafts, New York. 1980 P.1055-1102.

2. Stubbs RS, Blumgart L.H. Exploration of the common bile duct. *J R Coll Surg Edinburgh*. 1984; 29:76-9
3. Jakimowicz JJ, Cavol EJ, et al. An operative choledochoscopy using the flexible choledochoscope. *Surg Gynecol Obstet* 1986; 162:216-9
4. Neoptolemos JP. Study of common bile duct exploration and endoscopic sphincterotomy in a consecutive series of 438 patients. *Br J Surg* 1987; 74:916-20
5. Sheridan WG., Williams H.O.L., Lewis MH. Morbidity and mortality of common bile duct exploration. *Br J Surg* 1987; 74:1095-9
6. Tompkins RK. Surgical management of bile duct stones. *Surg Clin North Am*. 1990; 70:1329-39
7. De Rooves D., Vandervelees M., Gerard Y. Choledochotomy: Primary closure versus T-Tube. A prospective trial. *Acta Chir Belg* 1989; 89:320-4
8. Sorenson VJ, Buck JR, Chung SK, et al. Primary common bile duct closure following exploration. A effective alternative to routine biliary drainage. *Am Surgeon* 1990; 60:451-60
9. Chen SMS, Chou FF. Choledochotomy for biliary lithiasis: Is routine T-Tube Drainage necessary ? A prospective controlled trial. *Acta Chir Scan* 1989; 106:387-90
10. Payne RA, Woods WGA, Primary suture or T-Tube drainage after choledochotomy. *Ann R Coll of Surg Eng* 1986; 68:196-8
11. Seale AK, Ledet WP. Primary common bile duct closure. *Arch Surg* 1999; 134:22-4
12. Winston NE, Colby MGS, Lawson LJ., et al. Biliary peritonitis: a hazard of polyvinyl chloride T-Tubes. *Lancet* 1965; I:843-4
13. Horgan P.G, Campbell AC, Gray GR, et al. Biliary leakage and peritonitis following removal of T-Tubes after bile duct exploration. *Br J Surg* 1989; 76:1296-7
14. Corbett CRR, Fyle NCH, Nicholls RJ, et al. Bile peritonitis after removal of T-Tubes from the common bile duct. *Br J Surg* 1986; 73:641-3
15. Gillett DA, May RG, Kennedy R, et al. Complications of T-Tubes drainage of the common bile duct. *Ann R. Coll Surg Engl* 1985; 67:370 -1
16. Lygidakis NJ. Hazards following T-Tube removal after choledochotomy. *Surg Gynecol Obstet* 1986; 163:153-5
17. Hacker KA, Schultz CC., Helling TS. Choledochotomy for calculous disease in the elderly. *Am J Surg* 1990; 160:610-3
18. Pappas TN, Slimane TB, Brooks DC. 100 consecutive common bile duct explorations without mortality. *Ann Surg* 1990; 211:260-2
19. Lygidakis NJ. Operative risk factors of cholecystectomy - choledochotomy in the elderly. *Surg Gynecol Obstet* 1983; 157:15-9
20. Burdiles P., Scendes A, Diaz JC et al. Factors affecting mortality in patients over 70 years of age submitted to surgery for gallbladder or common bile duct stones. *Hepato - gastroenterol* 1989; 36:136-9
21. McSherry CK., Glenn F. The incidence and causes of death following surgery for non malignant biliary tract disease. *Ann Surg* 1980; 191:271-5
22. Doyle PJ., Ward-Mc. Quaid JN., McEwen-Smith A. The value of routine peroperative cholangiography: a report of 4000 cholecystectomies. *Br J Surg*, 1982; 69:617-19
23. Girard RM, Legros G. Surgery of the Liver and Biliary tract. VI, Blumgart LH 1988 Cherfchill Livingstone, New York, P 581
24. Strom PR, Stone H.H. A technique for transduodenal sphincteroplasty. *Surgery* 1982; 92:546-50
25. Baker AR., Neoptolemos JP., Leese T., et al. Choledochoduodenostomy, transduodenal sphincteroplasty and sphincterotomy for calculi of the common bile duct. *Surg Gynecol Obstet* 1987; 164:245-51
26. Gliedman ML., Gold MS. Maingot's Abdominal Operation 9th edi. Vol II 1990 P 1450-62
27. Ramirez P., Parrilla P., Bueno FS., et al. Choledochoduodenostomy and sphincterotomy in the treatment of choledocholithiasis. *Br J Surg* 1994; 81:121-3
28. Jones, SA. Sphincteroplasty (not sphincterotomy) in treatment of biliary tract disease. *Surg Clin North Am* 1973; 53:1123-37
29. Vogt DP, Herman RG. Choledochoduodenostomy, choledochojejunostomy or sphincteroplasty for biliary and pancreatic disease. *Ann Surg* 1981; 193:161-8
30. Jones SA. The prevention and treatment of recurrent bile duct stones by transduodenal sphincteroplasty. *World J Surg* 1978; 2:473-85
31. Nardi GL., Michelassi F., Zannini P. Transduodenal sphincteroplasty 5-25 year follow-up of 89 patients. *Ann Surg* 1983; 194:282-5
32. Lygidakis NJ. A prospective randomized study of recurrent choledocholithiasis. *Surg Gynecol Obstet* 1982; 155:679-84
33. Baker AR, Neoptolemos JP, Leese T, et al. Long term follow-up of patients with side to side choledochoduodenostomy and transduodenal sphincteroplasty. *Ann R Coll of Surg Eng* 1987; 68:253-7
34. Sellner FJ, Wimberger M, Jelinek R. Factors affecting mortality in transduodenal sphincteroplasty. *Surg Gynecol Obstet* 1988; 167: 23 -7
35. Speranza V., Legoche E., Minesvihi S., et al. Transduodenal papillotomy as a routine procedure in managing choledocholithiasis. *Arch Surg* 1982; 117:85-8
36. Reimann JF., Lux G., Goerster P., et al. Long term results after endoscopic sphincterotomy. *Endoscopy* 1983; 15:165-8
37. Peel A., Hermon-Taylor J., Ritchie H. Technique of Transduodenal exploration of the common bile duct. *Ann R Coll Surg Engl* 1974; 55:236-44
38. Ratych RE. Transduodenal exploration of the common bile duct in patients with nondilated ducts. *Surg Gynecol Obstet* 1991; 173:49-53
39. White TT., Hait HJ. Cholangiography and small duct injury. *Am J Surg* 1985; 149:640-3
40. Mendes de Almeida A., Ginestal Cruz A., Aldela FJ. Side-to-Side choledochoduodenostomy in the management of choledocholithiasis and associated disease:fact and fiction. *Am J Surg* 1984; 147:253-9
41. Cubillos L., Fiallo R., Rodriguez J. Is choledochoduodenostomy in the treatment of stones in the common bile duct an obsolete technique? *World J Surg* 1985; 9:484-92
42. Degenshein GA., Choledochoduodenostomy: An 18 year study of 175 consecutive cases. *Surgery* 1974; 76:319-24
43. Capper WM. External choledochoduodenostomy: An evaluation of 125 cases. *Br J Surg* 1961; 49:292
44. Madden JL., Chun JY., Kandalaft S., et al.

Choledochoduodenostomy: an unjustified maligned surgical procedure ? Am J Surg 1970; 119: 40 - 54

45. Lygidakis NJ. Acute septic cholangitis: results and experience following choledochoduodenostomy versus T- Tube drainage. Am J Surg 1982; 143:303-6

46. Berlitzki Y., Freund H. Choledochoduodenostomy in the treatment of benign biliary tract disease. Am J Surg 1980; 141: m90-3

47. Allen B., Shapiro H., Way W. Management of recurrent and residual common bile duct stones. Am J Surg 1981; 14:41-7

48. Deutsch AA., Nudelman I., Gutman H., et al. Choledochoduodenostomy an important surgical tool in the management of common bile duct stones. A review of 26 cases. Eur J Surg 1991; 157:531 -3

49. Huguier M., Lacaine F., Houry S., et al. Choledochoduodenostomy for calculous biliary tract disease. Arch Surg 1985; 147:253-9

50. Ramirez P., Parrilla P., Bueno F., et al. Long term results of surgical sphincterotomy in the treatment of choledocholithiasis. Surg Gynecol Obstet 1996; 1276:246-250

51. Scheim CJ., Gliedman ML. Choledochoduodenostomy as an adjunct to choledochotomy. Surg Gynecol Obstet 1981; 152:797-804

52. Thorbjarnarson B. Surgery of the biliary tracts. 2nd edi. WB. Saunder company. Philadelphia. 1982

53. Kraus MA., Wilson SD. Choledochoduodenostomy: Importance of common duct size and occurrence of cholangitis. Arch Surg 1980; 115:1212-3

54. Parilla P., Ramirez PS., Bueno F., et al. Long-term results of choledochoduodenostomy in the treatment of choledocholithiasis: assessment of 225 cases. Br J Surg 1991; 78:470-2

55. Birkenfeld S., Serour F., Levi S., et al. Choledochoduodenostomy for benign and malignant biliary tract disease. Surgery 1988; 103:408-10

56. Lygidakis NJ. Choledochoduodenostomy versus T-Tube drainage after choledochotomy. Am J Surg 1983; 145:636-9

57. Panis Y., Fagniez PL., Brisset D., et al. Long term results of choledochoduodenostomy versus choledochojejunostomy for choledocholithiasis. Surg Gynecol Obstet 1993; 177:33-7

58. Escudero-Fabre A., Escallor A., Saek J. et al. Choledochoduodenostomy. An analysis of 71 cases followed for 5 to 15 years. Ann Surg. 1991; 213:635-44

59. Mosegaard F., Nielson ML., Redensen et al. Prospective choledochoduodenostomy in multiple common duct stones in the aged. Surg Gynecol Obstet 1982; 155:232-4

60. Gaskill H.V., Levine BA., Sarinek KR., et al. Frequency and indication for choledochoduodenostomy in benign biliary tract disease. Reassessment of therapeutic application. Am J Surg 1982; 144:682-4

61. Rat P., Baert D., Arveux P., et al. Results of bilio-digestive derivative procedures for benign lesions. Hepato-Gastroenterol 1993; 40:123-5

62. Lygidakis NJ. Choledochoduodenostomy in calculous biliary tract disease. Br J Surg 1981; 68:762-5

63. Mihmanli M., Isgor A., Erzurumlu K., et al. Longterm results of choledochoduodenostomy and T-tube drainage. Hepato-Gastroenterology 1996;43:1480-3

64. Matthews JB., Baer H.u., Schweiger WP, et al. Recurrent cholangitis with and without anastomotic stricture after biliary-enteric bypass. Arch Surg 1993; 128:269 -72

65. Blair III AJ., Leung JWC., Cootton PB. Endoscopic treatment of stomal stenosis after choledochoduodenostomy: preliminary report. Surgery 1985;97:487-9

66. Teplick SK., Wolfert CC., Hayees MF., et al Balloon dilatation of benign post surgical biliary-enteric anastomotic strictures. Gastrointest Radiol 1982;7:307-10

67. Siegel JH., Gullrund M. Endoscopic cholangiopancreatoplasty: Hydrostatic balloon dilatation in the bile duct and pancreas. Gastrointest Endosc 1983;29:99-103

68. Siegel JH. Duodenoscopic sphincterotomy in the treatment of the ζ sump syndromeé. Dig Dis Sci 1981;26:922-8

69. Akiyama H., Ikegawa H., Kameya S., et al. Unexpected problem of external choledochoduodenostomy Am J Surg 1980;140:660-5

70. Baker Ar., Neoptolemos JP., Carr-Locke DL., et al. Sump syndrome following choledochoduodenostomy and its endoscopic treatment. Br J Surg 1985; 72:433-5

71. Marbet UA., Stalder GA., Faust H. et al. Endoscopic sphincterotomy and surgical approaches in the treatment of the sump syndrome. Gut 1987; 28:142-5

72. Barkin JS., Silvis S., Greenwald R., Endoscopic therapy for the ζ sump syndromeé. Dig Dis Sci 1980; 25:597-601

73. Tanaka M., Ikeda S., Yoshimoto H. Endoscopic sphincterotomy for the measurement of biliary sump syndrome. Surgery 1983; 93:264-267

74. Polydorou A., Dowsett JF., Vaira D., et al Endoscopic therapy of sump syndrome. Endoscopy 1989; 21:126-30

75. Lorusso D., Pezolla C., Giorgio P., et al Duodenogastric reflux and gastric histology after cholecystectomy with or without sphincteroplasty. Br J Surg 1990; 77:1305-1307

76. Lujan-Morpean JA., Torralba-Martinez JA., Parrilla-Paricio P., et al. Quantification of duodenogastric reflux in patients with choledochoduodenostomy. J Am Coll Surg 1994; 179:193-6

77. Bismuth H., Franco D., Corlette MB., et al. Long term results of Roux-en-Y hepaticojejunostomy. Surg Gynecol Obstet. 1978; 149:161-7

78. Kajiwara T., Suzuki T. Effect of biliary diversion on exocrine pancreas. Surg Gynecol Obstet. 1978; 147:343-9

79. Menguy R. Effect of biliary diversion from the small intestine on gastric secretory activity on dogs. Gastroenterology 191; 41:568-571

80. Pappalardo G., Correnti S., Mobarhan S., et al. Long term result of Roux-en-Y hepaticojejunostomy and hepaticojejunoduodenostomy. Ann Surg 1982; 196:149-52

81. Tompkins RK., Johnson J., Storn FK., et al. Operative endoscopy in the management of biliary tract neoplasm. Am J Surg 1976; 132:174-8

82. Stefanini P., Carboni M., Patrassi N., et al. Roux-en-Y hepaticojejunostomy:a reappraisal of its indications and results. Ann Surg 1975; 181:213-9

83. Bismuth H., Franco D., Corlette MB., et al. Long term results of Roux-en-Y hepaticojejunostomy. Surg Gynecol Obstet 1978; 146:161-7