

Exercise and Cognitive Functions in People with Mild to Moderate Alzheimer's Disease: A Systematic Review

Thanyaporn Wongwatcharanon, B.Sc.*

Kornanong Yuenyongchaiwat, Ph.D.*

Patcharee Koonkumchoo, Ph.D.*

¹ Department of Physical Therapy, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand

* Corresponding author, e-mail address: thanyaporn.w@allied.tu.ac.th

Vajira Med J. 2018; 62(2): 69-84

<http://dx.doi.org/10.14456/vmj.2018.12>

Abstract

Background: Alzheimer's disease is a neurodegenerative disease, a progressive brain disorder that slowly declines cognitive functions. Furthermore, a higher incidence rate and prevalence have been reported in older adults. Several studies have been reported that exercise might be an intervention to delay cognitive decline in older people.

Objective: To determine a type of exercise that appropriate on cognition in people with mild to moderate severity of Alzheimer's disease

Methods: The literature searches focused on PubMed, Cochrane Library, PEDro, and ScienceDirect from 1978 to December 2017. The inclusion criteria were randomized control trials studies, non-randomized control trials studies that examined the effect of exercise on cognitive function in people with mild to moderate severity of Alzheimer's disease (AD), and all journal articles were published in English languages. In addition, the reviewers independently screened the trials for eligibility criteria. Data extraction from each of the studies was completed in detail by one reviewer and accuracy was checked by another reviewer.

Results: Of the 6344 studies, only six studies were included in the review. The level of quality was poor to good level with an average PEDro scale was 5.4. It has been found that different types of exercise such as balance exercise, endurance or aerobic exercise, resistance or strengthening exercise, affected on cognition in people with AD. However, a number of clinical studies reported that combined exercise had high effectiveness in delaying cognitive impairment in people with AD. However, two studies reported that there was no significant difference between groups and between before and after training whereas four studies showed significant difference in cognition between before and after training.

Conclusions: Combined exercise may be appropriate to delay the cognitive function in people with Alzheimer's disease.

Keywords: Alzheimer, exercise, combined exercise, cognitive function, systematic review

ກາຮອກກຳລັງກາຍແລກກາຮົດໃນຜູ້ປ່ວຍອັລໃຊ້ເມອຣທີ່ມີຄວາມຮຸນແຮງ ຮະດັບເລີກນ້ອຍຄື່ງປານກລາງ: ກາຮທບກວນວຣນກຣນອຍ່າງມີຮະບບ

ຮັນຍພຣ ວົງຄົວໜານນົ້າ ວທ.ບ. (ກາຍພາບບຳບັດ)*

ກຣອນກົໍ່ ຍືນຍັງຊີວັດນີ້ ປຣ.ດ.*

ພັ້ງສົມຄັ້ງ ປຣ.ດ.*

* ກາຄວິຊາກາຍພາບບຳບັດ ຄະນະສາວເວົາສາດົກ ມາຫວິທາລ້ຽນຮົມສາດົກ ປະມຸນານີ້ ປະເທດໄທ

* ຜູ້ຕິດຕ່ອງ, ອື່ນເລ: thanyaporn.w@allied.tu.ac.th

Vajira Med J. 2018; 62(2): 69-84

<http://dx.doi.org/10.14456/vmj.2018.12>

ບທຄັດຢ່ອ

ຄວາມສຳຄັນຂອງປັນຫາ: ໂຮຄອລໃຊ້ເມອຣເປັນໂຮຄທີ່ມີຄວາມເສື່ອມຄອຍຂອງສມອງລອງຍ່າງໜ້າ ၅ ໃນເຮືອງຂອງຄວາມສາມາຮັດ
ດ້ານກາຮົດ ປັຈຈຸບັນມີຄວາມຊຸກຂອງໂຮຄທີ່ເພີ່ມມາກັ້ນໃນກລຸ່ມຜູ້ສູງອາຍຸ ກາຮທີ່ມີການຮ່າຍຈາຍໄດ້ມີການຮ່າຍຈາຍ
ຄື່ງພລຂອງກາຮອກກຳລັງກາຍສາມາຮັດຈະລອດຄວາມເສື່ອມຂອງກາຮົດໃນຜູ້ສູງອາຍຸປົກຕິໄດ້

ວັດທະນາ: ເພື່ອສຶກຫາຮູບແບບຂອງກາຮອກກຳລັງກາຍທີ່ເໝາະສົມຕ່ອກກາຮົດໃນກລຸ່ມຜູ້ປ່ວຍອັລໃຊ້ເມອຣທີ່ມີຄວາມຮຸນແຮງ
ຮະດັບເລີກນ້ອຍຄື່ງປານກລາງ

ວິທີດຳເນີນກາຮົດ: ທຳການສືບຄັນຈາກວິຊາຈາກ 4 ສູານຂໍ້ມູນ ຜົ່ງປະກອບໄປດ້ວຍ PubMed, Cochrane Library,
PEDro ແລະ ScienceDirect ໂດຍສືບຄັນຈາກຮູບພາບຂໍ້ມູນຕັ້ງແຕ່ ພ.ສ.2521 ຈນຖື່ງເດືອນ ຢັນວາຄມ ພ.ສ.2560
ເກັນທີ່ໃນກາຮົດເຂົ້າປະກອບດ້ວຍ ຈະຕ້ອງເປັນກາຮົດແບບກາຮທດລອງ ໂດຍທຸກກາຮົດຈະຕ້ອງຕີພິມພ
ດ້ວຍພາຫະອັກຖະ ສຶກຫາໃນກລຸ່ມຜູ້ປ່ວຍອັລໃຊ້ເມອຣທີ່ມີຄວາມຮຸນແຮງຮະດັບເລີກນ້ອຍຄື່ງປານກລາງແລະທຳກາຮົດ
ເກື່ອງກັບພລຂອງກາຮອກກຳລັງກາຍຕ່ອກກາຮົດ ຜົ່ງກາຮົດເລືອກກາຮົດໃນຄຽດນີ້ ຈະມີຜູ້ຕັດເລືອກ 2 ຮາຍ
ທຳການປະເມີນແລກຕົວເລືອກຍ່າງອີສະຕາມເກັນທີ່ກາຮົດເຂົ້າທີ່ໄດ້ມີການກຳຫົນໄວ້

ຜລກາຮົດ: ຈາກກາຮົດເລືອກທັງໝົດ 6,344 ເຮືອງ ມີເພີ່ມ 6 ເຮືອງທີ່ຜ່ານກາຮົດເລືອກເຂົ້າກາຮົດ ໃນຄຽດນີ້
ສຳຫຼັບຄຸນພາບຂອງກາຮົດທີ່ມີຄວາມຮຸນແຮງໃນຮະດັບແຍ່ງຄື່ງຮະດັບດີ ໂດຍຄ່າເຄີຍລືບຂອງຄະແນນ PEDro ອູ່ທີ່ 5.4
ແລະຈາກກາຮົດພາບວ່າກາຮອກກຳລັງກາຍທີ່ສັງພລດີຕ່ອກກາຮົດແບບດ້ານກາຮົດໃນຜູ້ປ່ວຍອັລໃຊ້ເມອຣ
ມີໜາລຍຮູບແບບທີ່ແຕກຕ່າງກັນ ໃນປັຈຈຸບັນພບວ່າມີກາຮົດຈຳນວນນັກທີ່ທຳກາຮົດພລຂອງກາຮອກກຳລັງກາຍ
ແບບພສມພສານ ແລະຜລກາຮົດພາບວ່າສາມາຮັດຈ່າຍຈະລອດຄວາມເສື່ອມຂອງກາຮົດໃນຜູ້ປ່ວຍອັລໃຊ້ເມອຣໄດ້
ແຕ່ຍ່າງໃກ້ຕາມຈາກກາຮົດທັງໝົດ 6 ເຮືອງ ພບວ່າກາຮົດ 2 ເຮືອງໄມ້ມີການປະເມີນແປລ່ງຍ່າງມື້ນຍື່ນສຳຄັນ
ທາງສົດທິເມື່ອມີການປະເມີນແປລ່ງທາງສົດທິເມື່ອມີການປະເມີນແປລ່ງທາງສົດທິເມື່ອມີການປະເມີນແປລ່ງ
ຍ່າງມື້ນຍື່ນສຳຄັນທາງສົດທິເມື່ອມີການປະເມີນແປລ່ງທາງສົດທິເມື່ອມີການປະເມີນແປລ່ງ

ສຽງ: ກາຮອກກຳລັງກາຍໃນຮູບແບບ ພສມພສາເປັນຮູບແບບທີ່ເໝາະສົມຕ່ອກກາຮົດຈະລອດຄວາມເສື່ອມຂອງກາຮົດໃນຜູ້ປ່ວຍ
ອັລໃຊ້ເມອຣ

Background

Recently, several studies have reported that numbers of older people are increasing. It has been estimated that the total number of older people will be more than tripled from the year 2000 to 2050¹. Older adults are more prone to be at risk of many problems from degeneration. One of the problems is deterioration of brain; in other words, dementia is the top of disease in older adults. It is a common degenerative neurological disorder in old age. Symptoms of degenerative neurological disorders are cognitive impairment, physical decline, and behavioral changes². Alzheimer's disease (AD) is the most subtype of dementia, accounting for up to 60%-80% of all dementia cases. AD is a progressive brain disorder that slowly declines cognitive abilities. Several evidences indicated that there was correlation among genetic, environmental risk factors and AD. The prevalence of AD was 26.6 million in 2006 and it is estimated that it will increase four times by 2050³. AD has been categorized into 3 stages: early, middle, and late stage. The most important symptoms of AD are declines in performance on cognitive tasks; for example, attention deficits, working memory, problem solving, and executive function^{4, 5}. Cognitive decline is the primary problem in Alzheimer's patients. In addition, AD may affect communication skills, movement skills, balance, muscle strength, and personality⁴. To date, the method to treat patients with AD consists of pharmacological and non-pharmacological treatments⁶. Pharmacological treatment has been found to exert a lot of benefits, such as improvement and maintenance of cognitive functions, decrease disturbed behaviors, and maintain functional ability⁷. However, there are some limitations regarding their side effects such as vomiting, anorexia, and nausea. In addition, pharmacological treatment is expensive⁸. In contrast to the pharmacological treatment, non-pharmacological treatments such as cognitive behavioral therapy, music therapy, and exercise appear to be useful to treat AD. Previous

studies have shown that exercise effectively delayed cognitive decline^{9, 10}. It could increase cerebral blood flow, oxygen supply, other essential supplies within brain, improved synthesis of neurotransmitters¹¹ and reduced brain tissue loss with ageing¹². Currently, a growing evidence has shown the relationship between exercise and cognition. There are many types of exercise that could be able to delay the cognitive decline. Previous studies suggested that aerobic exercises can delay cognitive decline¹³. The mechanism that aerobic exercise delays cognitive decline, is to increase hippocampus volume translation to improve cognitive function¹⁴. Aerobic exercise not only improves cognition, but also improves mobility; walking speed and number of steps¹⁵, improves mental health and decreases negative emotions¹⁶. There are many different types of aerobic exercise to delay the cognitive decline, for example cycling, walking, treadmill training, home-based exercise, music based. It has been reported that programs of physical activity can improve cognitive function in older adults with cognitive impairment¹⁷. However, it is unclear regarding the characteristics of exercise intervention program to improve cognitive function in people with mild to moderate stages of AD. Therefore, this review focused on effect of exercise interventions on cognition in patients with mild to moderate AD. The aim of this systematic review was to determine exercise program and cognitive functions in people with mild or moderate stages of AD.

Methods

Type of studies

All selected studies that reported the effect of exercise on cognitive function in different study designs e.g., control trial study; randomized controlled trials (RCTs) and non-randomized controlled were included. Type of outcome measurement was cognition. Cognition or mental activities are how people acquire, store, retrieve, and use knowledge. In this study, the performance

of cognition is defined as eight domains of mental processes: perception, language, memory, imagery, concept formation, problem solving, decision making, and reasoning¹⁸.

Inclusion and exclusion criteria

The inclusion criteria of participants were as follows: all participants were diagnosed with AD with mild to moderate AD by using the criteria for the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's disease and Related Disorders Association. The age of participants was 60 years or older with both males and females. All studies had to be published in English language. The exclusion criteria were as follows: pharmacological studies in patients with AD, animal studies, and studies in the other types of dementia, such as vascular dementia, mixed dementia, and frontotemporal dementia.

Search strategy

The literature review focused on PubMed, Cochrane Library, PEDro, and Science direct. The following search terms were used: exercise, physical, training, Alzheimer's, dementia, cognitive, and cognition. A systematic review was searched from the year 1978 to December 2017. The key words used to search in computerized databases include of cognition, cognitive function, memory, executive function, executive control, executive controls, exercise, physical, physical exercise, Alzheimer, dementia, Alzheimer Sclerosis, Alzheimer Dementia. These key words were combined. The reviewer also contacted authors study if there were insufficient information.

Data extraction

Data extraction form of each study was completed in detail by one reviewer and checked for accuracy by another reviewer. Check lists used by two reviewers contained a number of inclusion criteria of studies, data synthesis and documentation of conflict of interest. However, disagreements regarding were resolved by discussion. Cohen's kappa coefficient was used to measure inter-rater agreement for qualitative (categorical) items from two reviewers and accounts the possibility of the agreement occurring by chance. The table of data extraction consisted of PEDro scale, number of participants, intervention, setting, schedule, and cognitive measures. (Table 1)

Quality assessment of clinical trial evidence

The PEDro scales were used to assess the quality of clinical trials. It consists of 10 items: random allocation, concealed allocation, similarity at baseline, subject blinding, therapist blinding, assessor blinding, > 85% follow up for at least one key outcome, intention-to treat analysis, between-group statistical comparison for at least one key outcome, and point and variability measurement for at least one key outcome¹⁹. Level of PEDro scores are 4 levels; the scoring 9-10 on the PEDro scale is considered to be of "excellent" methodologically quality, scoring 6-8 is defined as good quality, scoring 4-5 is fair quality, and below 4 is a poor quality²⁰.

Data synthesis

Data synthesis was displayed in table 1. The table provided PEDro score, number of participants in each group, mean age, exercise program, intensity, outcomes and summary of results.

Table 1:

Present about Characteristics of studies type of exercise on cognition in people with mild to moderate severity Alzheimer's disease.

Title	Pedro scale	Sample			Age (Mean)	Setting	Exercise		Intensity	Outcome	Results
		Control	Exercise	Other			Exercise group	Control group			
1. Hoffmann K. et al., 2015	7/10	100	100	-	70.5	Memory clinic	Two phases	usual care	60 min/time, 3 times/ week, 4 months	Primary outcome: - The Symbol Digit Modalities Test (SDMT)	No significant different on cognitive test between exercise and control group, and between before and after exercise

Table 1:

Present about Characteristics of studies type of exercise on cognition in people with mild to moderate severity Alzheimer's disease. (Con.)

Title	Pedro scale	Sample			Age (Mean)	Setting	Exercise		Outcome	Results	
		Control	Exercise	Other			Exercise group	Control group			
2. Yang S. et al., 2015	5/10	25	25	-	71.5	Rehab-clinic	Two phases First week Aerobic exercise (40 min) - Warm-up 5 min - Cycling training with moderate, 70% of maximum heart rate (MHR) (the exercise load was 0. 5kg.M-1 kg.M) 30 min - Reorganization movement 5 min	health education 3 days/ week, 3 months	40 min/day, - Alzheimer's Disease Assessment Scale – Cognitive Subscale (ADAS-Cog) - Mini mental state. Assessment examination (MMSE)	- Alzheimer's Disease Assessment Scale-cognition score was significantly decreased in aerobic group before and after 3 months	- Minimum Mental State Examination score was significantly increased - The Alzheimer's Disease Assessment Scale-cognition score was significantly decreased in aerobic group before and after 3 months

*The training progress
was supervised by
therapist.

Table 1:

Present about Characteristics of studies type of exercise on cognition in people with mild to moderate severity Alzheimer's disease. (Con.)

Title	Pedro scale	Sample			Age (Mean)	Setting	Exercise		Intensity	Outcome	Results
		Control	Exercise	Other			Exercise group	Control group			
3. Vreugdenhil A. et al., 2012	6/10	20	20	-	74.1	Individual home	Aerobic exercise : walking	usual care	60 min/day, 5 days/ week,	- Alzheimer's Disease Assessment Subscale (ADAS-Cog)	Exercise group was significant increased MMSE

Table 1:

Present about Characteristics of studies type of exercise on cognition in people with mild to moderate severity Alzheimer's disease. (Con.)

Title	Pedro scale	Sample			Age (Mean)	Setting	Exercise		Intensity	Outcome	Results
		Control	Exercise	Other			Exercise group	Control group			
4. FGM Coelho et al., 2013	4/10	78	13	14	Rehab center	Multimodal exercise : Strength/resistance training	Daily routine	60 min/ time, 3 times/week, Battery, 4 months	- Frontal Assessment - The Clock Drawing Test - The Symbol Search Subtest	- Intervention group significantly increased the scores in frontal cognitive variables, Frontal assessment Battery and Symbol Search Subtest after training	- The control group decreased the scores in the Clock Drawing Test after training

Table 1:

Present about Characteristics of studies type of exercise on cognition in people with mild to moderate severity Alzheimer's disease. (Con.)

Title	Pedro scale	Sample			Age (Mean)	Setting	Exercise		Intensity	Outcome	Results
		Control	Exercise	Other			Exercise group	Control group			
5. Larissa P. et al., 2013	5/10	70	16	14	Rehab center	- Aerobic exercises - Muscle strengthening - Flexibility exercises - Balance exercises	usual care	60 min/time, 3 times/week, 4 months	- Montreal Cognitive Assessment - The Clock Drawing Test - The Frontal Assessment Battery - The Symbol Search Subtest	- Intervention group participants showed a significant increase in frontal cognitive function after training	Intervention

Table 1:

Present about Characteristics of studies type of exercise on cognition in people with mild to moderate severity Alzheimer's disease. (Con.)

Title	Pedro scale	Sample			Age (Mean)	Setting	Exercise		Intensity	Outcome	Results
		Control	Exercise	Other			Exercise group	Control group			
6. Carla M. et al., 2012	5/10	78.3	12	15	Rehab center	Five parts	usual care	60 min/time, 3 times/week, (MMSE) 6 months	The Mini-Mental State Examination showed functional, neuropsychiatric deterioration in the comparisons between pre- and post-intervention times and between groups	The control group	

Table 1:

Present about Characteristics of studies type of exercise on cognition in people with mild to moderate severity Alzheimer's disease. (Con.)

Title	Pedro scale	Sample			Age (Mean)	Setting	Exercise	Intensity	Outcome	Results
		Control	Exercise	Other						

- **Motor coordination**
(i.e. rhythmic activities, sequences to be completed)
- **Balance exercise**
(i.e. games and recreational motor activities with emphasis on changes in center of gravity and direction, single-leg stance, and unexpected disturbances)
- **Aerobic exercise**

FGM Coelho et al., 2013 Concomitantly cognitive activities, for example, participants were instructed to carry out a motor task (bouncing ball, walking, exercise with weights) and, at the same time, carry out a cognitive task, such as generating words according to semantic criteria (such as animal names, names of fruits, personal names, names of flowers and figures) or reacting to sensory stimuli (whistle song) and verbal commands

Results

Six-thousand and three hundred forty-four articles were initially identified from four databases; PubMed, Cochrane Library, PEDro, and Sciencedirect. The articles that were not relevant title, duplicate publication, not control trial, animal, not exercise, and not English language were excluded. Therefore, 68 articles were remained. Forty-six articles were excluded because there were not-control trial; study protocol articles, systematic review, review, not relevant studies, and no full text available. Furthermore, study protocol articles (n=11) were

excluded because these articles were study protocols, non-cognitive measurement such as daily living activity performance, balance and mobility, functional ability, depression, and brain intensity. Hence, only six studies were included in this review. Cohen's kappa coefficient was used to measure agreement of the studies. The kappa score of 0.75 is defined as a good agreement (Figure 1). The average PEDro scale was 5.4. These studies were fair quality. The study selection process was presented in Figure 2.

Reviewer 1 Reviewer 2	Factors affecting	Exclude	Total
Include	6	1	7
Exclude	1	9	10
Total	7	10	17

Figure 1: Reliability/Reproducibility process by use Kappa

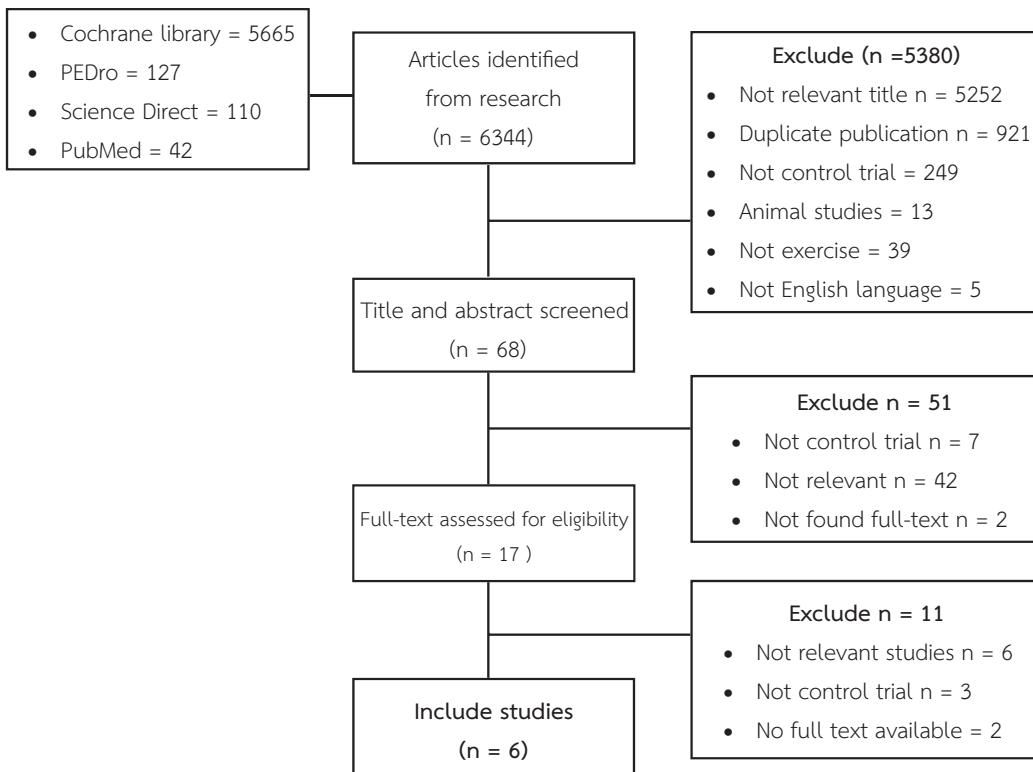


Figure 2: Trial identification and inclusion

It has been found that the effectiveness of exercise on cognition in patient with AD were different types of exercise, for example strengthening exercise, endurance or aerobic exercise, balance exercise, and cognition training. Of six studies, two studies reported that there was no significant difference in cognition between groups and between before and after training^{21, 22} whereas the other four studies showed significant difference in cognition between before and after training. Similar protocols were used in four studies including of multimodal exercise program; strength or resistance training, aerobic training, balance training, and flexibility training. Three of four studies showed significant difference in cognition before and after exercise training whereas the other one study did not show any significant difference in cognition. Studies by FGM Coelho et al. (2013) and Larissa P. et al. (2013) used the same program for cognitive training, for example, concomitantly cognitive activities requiring attention, planned organization of the answers, abstraction, motor sequencing, judgment, self-control behavior and mental flexibility. By these interventions, there was a significantly increased in the scores of frontal cognition. On the other hand, the study of Carla M. et al. (2012) which did not show cognitive training program²³ expressed a positive result on the effect of exercise intervention on cognition but the result was not significantly different. Vreugdenhil A. et al. (2012) studied the effect of aerobic exercise combined with balance and strengthening exercise. The program included of walking exercise with home support exercise program. The home support exercise program consisted of 10 exercises (e.g., marching on the spot to walking from room to room; wall push-ups; lifting up on toes; toe tapping; seat walk; getting up from a chair; leg lifts to the front, back, and sides; reaching up and to the front and sides; calf stretching; and hamstring stretching). This study examined the effect of combination exercise program on Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog). This assesses several domains of

cognition (i.e., verbal memory, executive function, orientation, constructional praxis). During four-month follow-up, there was significantly increased in MMSE and decreased in ADAS-Cog. They suggested that the combined exercise can improve cognition. In addition, the other two studies in our review, one study showed significantly different in cognition whereas no significant difference was shown in the other study. Hoffmann K. et al. (2015) examined the effect of moderate to high intensity of aerobic exercise program on cognitive functions. The program composed of two phases; adaptation phase, and moderate to high intensity training phase. Adaptation phase consisted of building up strength of lower extremities, balance training, and aerobic training for one month. In the next three months, moderate to high intensity training phase (70-80% of maximal heart rate (MHR) by bicycle ergometer and treadmill training were performed. They reported that there was no significant difference in cognitive functions between groups and between before and after trainings²¹. Similarly, Yang et al. (2015) reported that the effect of aerobic exercise; cycling training with moderate intensity with 70% of MHR in mild to moderate AD. The result showed that there was significantly different on ADAS-cog test between before and after trainings for three months in exercise group²⁴.

It can be concluded that a combination of exercise or multimodal exercise program was an appropriate exercise for mild to moderate AD. However, the frequency, intensity, and duration (FIT) of combined exercise in each study were different. The minimum frequency of exercise was three days per week^{25, 26}. The range of exercise intensity was from 65% to 75% of MHR²⁵. In addition, time and duration of exercise were sixty minutes per session for four months.

Discussion

A main purpose of this systematic review was to report the effect of exercise on cognition of mild or moderate AD. Two studies examined effect of moderate to high intensity of aerobic

exercise on cognition²¹. Only study by Yang et al²⁴ reported that there was significant difference on cognition²⁴ whereas the another study was without difference²¹. The difference of experimental results might be due to differences in exercise intensity and exercise program. In addition, four from six studies had similar protocols of exercise program which composed of multimodal exercise program. The results of multimodal exercise program that composed of cognitive training program were positive effect on cognition. Although previous study suggested that aerobic exercise could improve cognition²⁴, previous studies favored to use combined exercises more than one type of exercise. Increased age is associated with degenerative systems. Older people with AD involves cognitive decline and also changes in muscle strength, flexibility, balance, and cardiovascular endurance. These changes supported the findings that combination exercise can improve health-related physical fitness and cognitive function. Previous studies presented effects of combined exercise on frontal cognitive function in patients with AD^{21, 23}. The frontal cognitive functions significantly improved abstraction, organization, motor sequencing, behavior self-control and attention²⁵. The combination exercise is the multi-task activities and one of the multiple-task is cognitive activities. The cognitive activities are associated with several frontal areas, so it can improve several domains of cognition. The possible mechanisms of multi-task activities that affect the frontal cognitive functions may occur from the combination of the tasks which demand attention and abstraction. The possible mechanisms that physical exercise improve cognitive performance might be due to an improvement of neurotransmitters synthesis and cerebral blood flow^{27, 28}. Increased brain-derived neurotrophic factors was positive effect on brain neuroplasticity²⁹. Previous study found that exercises induced brain-derived neurotrophic factors in the frontal cortex, hippocampus, and cerebellum³⁰. Therefore, combination of exercise types tended to be more effective than any single exercise in patients with AD. However, FIT principle of combination

exercise was still unclear. This review concluded that the appropriate FIT principle of combination exercise program was three days per week, 65% to 75% of MHR, 60 minutes per session and four months of duration. The American College of Sports Medicine (ACSM) in 9th edition recommends that the intensity of exercise should be 40% to 85% of heart rate reserve (HRR) or maximal oxygen uptake reserve (VO₂R), and 3-5 times per week for 20-60 minutes a day with large muscle groups³¹. According to the FIT principle for older people, older adults should engage in cardiovascular exercise. Intensity of exercise should be prescribed by assessing overall health status of the individual and should be started with low intensity exercise.

Conflicts of interest:

The authors declare no conflict of interest.

Acknowledgements:

This study was supported by my adviser and co-adviser for assistance with article revisions.

Reference

1. UN Publications. World Population Ageing, 2015 Highlights: UN; 2015.
2. Vreugdenhil A, Cannell J, Davies A, Razay G. A community-based exercise programme to improve functional ability in people with Alzheimer's disease: a randomized controlled trial. *Scand J Caring Sci.* 2012;26(1):12-9
3. Nephrology Society of Thailand. (Clinical Practice Recommendation for the Evaluation and Management of Chronic Kidney Disease in Adults 2015). Bangkok: Nephrology Society of Thailand; 2015.
4. Frank EM. Effect of Alzheimer's disease on communication function. *J S C Med Assoc.* 1994; 90(9):417-23.
5. Vellas B, Carrie I, Gillette-Guyonnet S, Touchon J, Dantoine T, Dartigues JF, et al. MAPT STUDY: A multidomain approach for preventing Alzheimer's disease: design and baseline data. *J Prev Alzheimers Dis.* 2014 Jun;1(1):13-22.

6. Laver K, Dyer S, Whitehead C, Clemson L, Crotty M. Interventions to delay functional decline in people with dementia: a systematic review of systematic reviews. *BMJ Open*. 2016 Apr 27; 6(4):e010767.
7. Massoud F, Gauthier S. Update on the Pharmacological Treatment of Alzheimer's Disease. *Current Neuropharmacology*. 2010;8(1):69-80.
8. Gauthier S. Pharmacological treatment of Alzheimer's disease. *Alzheimer's & Dementia*. 8(4):2.
9. Deslandes A, Moraes H, Ferreira C, Veiga H, Silveira H, Mouta R, et al. Exercise and mental health: many reasons to move. *Neuropsychobiology*. 2009;59(4):191-8.
10. Liu-Ambrose T, Donaldson MG. Exercise and cognition in older adults: is there a role for resistance training programmes? *Br J Sports Med*. 2009;43(1):25-7.
11. Kashihara K, Maruyama T, Murota M, Nakahara Y. Positive effects of acute and moderate physical exercise on cognitive function. *J Physiol Anthropol*. 2009;28(4):155-64.
12. Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, et al. Aerobic Fitness Reduces Brain Tissue Loss in Aging Humans. *J Gerontol*. 2003;58(2):M176-80.
13. Venturelli M, Scarsini R, Schena F. Six-month walking program changes cognitive and ADL performance in patients with Alzheimer. *Am J Alzheimers Dis Other Demen*. 2011;26(5):381-8.
14. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. *Proc Natl Acad Sci U S A*. 2011;108(7):3017-22.
15. Kemoun G, Thibaud M, Roumagne N, Carette P, Albinet C, Toussaint L, et al. Effects of a physical training programme on cognitive function and walking efficiency in elderly persons with dementia. *Dement Geriatr Cogn Disord*. 2010;29(2):109-14.
16. Williams CL, Tappen RM. Exercise training for depressed older adults with Alzheimer's disease. *Aging Mental Health*. 2008;12(1):72-80.
17. Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, Greenop KR, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. *JAMA*. 2008;300(9):1027-37.
18. Matlin MW, Farmer TA. *Cognition*, 9th Edition: Wiley; 2016.
19. de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. *Aust J Physiother*. 2009;55(2):129-33.
20. Teasell R, Bayona N, Marshall S, Cullen N, Bayley M, Chundamala J, et al. A systematic review of the rehabilitation of moderate to severe acquired brain injuries. *Brain Inj*. 2007 Feb; 21(2):107-12.
21. Hoffmann K, Sobol N, Frederiksen K, Beyer N, Vogel A, Vestergaard K, et al. Moderate-to-High Intensity Physical Exercise in Patients with Alzheimer's Disease: a Randomized Controlled Trial. *J Alzheimers Dis*. 2016;50(2):443-53
22. Nascimento CM, Teixeira CV, Gobbi LT, Gobbi S, Stella F. A controlled clinical trial on the effects of exercise on neuropsychiatric disorders and instrumental activities in women with Alzheimer's disease. *Rev Bras Fisioter*. 2012;16(3):197-204.
23. Nascimento C, Teixeira C, Gobbi L, Gobbi S, Stella F. A controlled clinical trial on the effects of exercise on neuropsychiatric disorders and instrumental activities in women with Alzheimer's disease. *Rev Bras Fisioter*. 2012;16(3):197-204.
24. Yang SY, Shan CL, Qing H, Wang W, Zhu Y, Yin MM, et al. The effects of aerobic exercise on cognitive function of Alzheimer's disease patients. *CNS Neurol Disord Drug Targets*. 2015;14(10):1292-7.
25. Coelho F, Andrade L, Pedroso R, Santos-Galduroz R, Gobbi S, Costa J, et al. Multimodal exercise intervention improves frontal cognitive functions and gait in Alzheimer's disease: a controlled trial. *Geriatr Gerontol Int*. 2013;13(1):198-203.

26. Andrade L, Gobbi L, Coelho F, Christofolletti G, Costa J, Stella F. Benefits of multimodal exercise intervention for postural control and frontal cognitive functions in individuals with Alzheimer's disease: a controlled trial. *J Am Geriatr Soc.* 2013;61(11):1919-26.
27. Lista I, Sorrentino G. Biological mechanisms of physical activity in preventing cognitive decline. *Cell Mol Neurobiol.* 2010;30(4):493-503.
28. Eggemont L, Swaab D, Luiten P, Scherder E. Exercise, cognition and Alzheimer's disease: more is not necessarily better. *Neurosci Biobehav Rev.* 2006;30(4):562-75.
29. Mackay CP, Kuys SS, Brauer SG. The Effect of Aerobic Exercise on Brain-Derived Neurotrophic Factor in People with Neurological Disorders: A Systematic Review and Meta-Analysis. *Neural Plast.* 2017;2017:4716197.
30. Kramer AF, Erickson KI. Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. *Trends Cogn Sci.* 2007 Aug; 11(8):342-8.
31. Ferguson B. ACSM's Guidelines for Exercise Testing and Prescription 9th Ed. 2014. *J Can Chiropr Assoc.* 2014;58(3):328-34.