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Abstract

Research in health sciences mainly takes the form of observational studies. The major
problem encountered is the management of confounding variables and many covariate
variables. This affects the reliability of the data analysis on a number of variables in the model
at the same time. Currently, propensity score is a statistical method that is well-known
and used increasingly in the design of observational studies. Propensity score has been used to
summarize data of several variables as one covariate; the propensity score estimates the
probability of covariates based on each individual of received intervention. Furthermore,
the propensity score has been used with other analysis techniques such as matching,
stratification and regression analysis. The propensity score is not appropriate for poor
research or potentially confounding variables. On the other hand, the propensity score is a good tool

for good research management.

Key words: propensity score, confounding, observational study, bias
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The treatment is drug

0 = No
ACE/ARB 1=
ACE/ARB Freq. Percent Cum.
0 2,104 51.17 51.17
1 2,008 48.83 100.00
Total 4,112 100.00
a YR Yo .
VAN dndiuuainislasu Intervention

Estimation of the propensity score

Iteration O: log likelihood = -2613.7136
Iteration 1: log likelihood = -2435.1552
Iteration 2: log likelihood = -2434.2006
Iteration 3: log likelihood = -2434.1997
Probit regression Number of obs = 3771
LR chiZ2 (19) = 359.03
Prob > chiZ2 = 0.0000
Log likelihood = -2434.1997 Pseudo R2 = 0.0687
drug Coef. Std. Err. z P>z [95% Conf. Interval]
age .0062278 .0023228 2.68 0.007 .0016752 .0107804
sex .2310197 .0565934 4.08 0.000 .1200986 .3419407
duration .0033385 .0031465 1.06 0.289 -.0028285 .0095056
sbp_1 .0046467 .0012673 3.67 0.000 .0021629 .0071305
dbp_1 .0056724 .0024057 2.36 0.018 .0009572 .0103875
hbalc —-.0043455 .012622 -0.34 0.731 -.0290841 .020393
t_cholsI -.0315418 .0455672 -0.69 0.489 -.120852 .0577683
tgsI .0335489 .0248648 1.35 0.177 -.0151851 .0822829
hdlsI -.0637372 .0719647 -0.89 0.376 —.2047854 .0773109
1dlsz -.0215203 .0479103 -0.45 0.653 -.1154226 .0723821
crsI -.0008418 .0003362 -2.50 0.012 -.0015007 -.0001829
hx_ ihd .0722343 .0832139 0.87 0.385 -.090862 .2353305
smoke —-.0437218 .0660218 -0.66 0.508 —-.1731222 .0856786
alc .0401011 .0671458 0.60 0.550 —-.0915022 .1717044
insulin .0651712 .0590823 1.10 0.270 —-.050628 .1809705
drug_sugar .44713 .078312 5.71 0.000 -.2936413 .6006188
drug_HT .2599269 .0454763 5.72 0.000 .170795 .3490587
drug_lipid .1078443 .0444806 2.42 0.015 .020664 .1950246
nephro .4723407 .0465752 10.14 0.000 .3810549 .5636264
_cons -2.032317 .2753993 -7.38 0.000 -2.57209 —-1.492545
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. ttest propensity, by (neph)

Two-sample t test with equal variances
Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
0 2,303 .4171909 .0023264 .1116452 .4126287 .421753
1 1,468 .6168983 .0031625 .1211705 .6106947 .6231018
combined 3,771 .4949343 .0024594 .1510255 .4901125 .4997561
diff -.1997074 .0038557 -.2072667 -.192148
T T T T T T diff = mean(0) - mean(l) t = -51.7960
g 2 'lgmpensityScorf B T Ho: diff = 0 degrees of freedom = 3769
R e N e Ha: diff < 0 Ha: diff I= 0 Ha: diff > 0

Pr(T < t) = 0.0000

T| > |t]) = 0.0008 Pr(T > t) = 1.0000
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