

วารสาร

สมาคมศัลยแพทย์ทั่วไปแห่งประเทศไทย ในพระบรมราชูปถัมภ์

Journal of the Association of General Surgeons of Thailand under the Royal Patronage of HM the King

ฉบับที่ 1

ปีพ.ศ. 2568

USS นาบริการ

ศาสตราจารย์นายแพทย์ รุ๊งษัย อัครวิพุ
ศาสตราจารย์นายแพทย์พรพสกน. เมืองแม่น

รายนามคณะกรรมการวารสารสมาคมศัลยแพทย์ทั่วไปแห่งประเทศไทย

ที่ปรึกษา

ศาสตราจารย์เกียรติคุณนายแพทย์อรุณ เผ่าสวัสดิ์
ศาสตราจารย์เกียรติคุณนายแพทย์จอมจักร จันทร์สกุล
ผลสำราญแพทย์ชุมศักดิ์ พฤกษาพงษ์
ผลโภศาสตราจารย์นายแพทย์นพดล วรอุไร
ศาสตราจารย์คลินิกนายแพทย์วัชรพงศ์ พุทธิสวัสดิ์
ศาสตราจารย์คลินิกนายแพทย์ดรินทร์ โล่ห์สิริวัฒน์
ศาสตราจารย์นายแพทย์ธนพล ไหหมแหง
ศาสตราจารย์นายแพทย์สุกิจ พันธุ์พิมานมาศ¹
รองศาสตราจารย์ผลเอกนายแพทย์ปริญญา ทวีชัยการ

นายแพทย์ชาญเวช ศรีทราพุทธ
ผลสำราญแพทย์ทรงชัย สิมะโรจน์
ผู้ช่วยศาสตราจารย์นายแพทย์เพศิษฐ์ ศิริวิทยากร
นายแพทย์เสถียร ธรรมทวีอุกุล
ผลตระนัยแพทย์สุทธิจิต ลีนานนท์
ผลโภนานัยแพทย์วิชัย วานนสิริ
ศาสตราจารย์นายแพทย์ประมุข มุทิรังกูร
ศาสตราจารย์คลินิกนายแพทย์ปรีชา ศิริทองถาวร
ศาสตราจารย์นายแพทย์วุฒิชัย ธนาพงศ์ธาร

หัวหน้ากองบรรณาธิการ (Editor-in-Chief)

ศาสตราจารย์นายแพทย์พรพรหม เมืองแม่น

ติดต่อสอบถาม และลงบทความวารสาร

website: agst.in หรือ <https://he02.tci-thaijo.org/index.php/agstjournal/about/contact>

facebook: “วารสารสมาคมศัลยแพทย์ทั่วไป แห่งประเทศไทยในพระบรมราชูปถัมภ์ - AGST Journal”

<https://www.facebook.com/agstjournal>

Principle contact

นายแพทย์สุนทร์พัฒน์ ออรพินท์
089-182-0013
agstjournal@gmail.com

Support contact

นส.วีรินทร์ภัทร เสนีรัตน์
087-4942228, 02-7166450
ammymay@hotmail.com

ส่งบทความเพิ่ม
submission

กองบรรณาธิการ (Editorial board)

รองศาสตราจารย์นายแพทย์พุทธิศักดิ์ พุทธิวิบูลย์
รองศาสตราจารย์นายแพทย์รัชพลี ภาครอรณ
รองศาสตราจารย์นายแพทย์สีบวงศ์ จุฑาภิสิทธิ์
ศาสตราจารย์นายแพทย์กวีศักดิ์ จิตตัตวัฒนรัตน์
นายแพทย์พงษ์สันต์ ทองเนียม
รองศาสตราจารย์นายแพทย์คำมิน ชินศักดิ์ชัย
นavaอาภาสເອການຍ່າພະຍົບປະຕົມ ຍົມເຈົ້າຍູ
ศาสตราจารย์นายแพทย์วຽรุตົມ ໂລົ້ວສີວິດັນ
ผู้ช่วยศาสตราจารย์นายแพทย์ภิເຍກ ບຸນູຮຽມ
ພ.ລ.ຮ.ຕ.ນາຍພະຍົບຕັນ ດົງເປັນສຸຂ
ນາຍພະຍົບຊີພຣ ສຸວິ່ຈາກຸລ
รองศาสตราจารย์นายแพทย์ໝຸພລ ວ່ວງວານິຈ
ນາຍພະຍົບວຣ ເກີຍຣຕິມິງຄລ
รองศาสตราจารย์นายแพทย์ຍິງຍຸທ ສີວິດັນອັກຊຣ

รองศาสตราจารย์นายแพทย์ສຸເທພ ອຸດມແສງທຮພຍ
ศาสตราจารย์นายแพทย์ຮວ່າງໜ້ຍ ອັກຮົວພົກ
รองศาสตราจารຍ์ພະຍໍ້ໜູງເຍວນຸ່ງ ຄົງດ່ານ
ນາຍພະຍົບຊຸການຕົ້ນ ເຕະພົງສຮຮ
ພັນເອການຍ່າພະຍົບສຸ້ໄຊຍ ສາທາພຣ
ນາຍພະຍົບສຸທັກນີ້ ໂໂຕນະພັນຮ
ຜູ້ຊ່ວຍຄາສຕາຈາරຍ່າພະຍົບໜູງກຸສຸມາ ທີ່ນອຮຸນໜ້ຍ
ຜູ້ຊ່ວຍຄາສຕາຈາරຍ່າວາອາກາສຕິນາຍ່າພະຍົບພຸ່ພົມງົດ ກິມຮັດນ
ຜູ້ຊ່ວຍຄາສຕາຈາරຍ່າພະຍົບໜູງຮີຮຸນ້ຳ ບຸນູພີພົມນາພງ
รองศาสตราจารຍ່າພັນເອການຍ່າພະຍົບຮັບໝູງ ອົງຄະກຸລ
ຜູ້ຊ່ວຍຄາສຕາຈາරຍ່ານາຍພະຍົບປະຕິ ສັນຖິ່ງປະຕິ່ງ
ນາຍພະຍົບສຸ່ພົມນີ້ ອອຮັບນິ່
รองศาสตราจารຍ່ານາຍພະຍົບເທິດຄູນີ ເບີນູກາຣ

ติดต่อสอบถาม และลงทะเบียนความวารสาร

website: agst.in หรือ <https://he02.tci-thaijo.org/index.php/agstjournal/about/contact>

facebook: “วารสารสมาคมศัลยแพทย์ทั่วไป แห่งประเทศไทยในพระบรมราชูปถัมภ์ - AGST Journal”

<https://www.facebook.com/agstjournal>

Principle contact

นายแพทย์ສຸ່ພົມນີ້ ອອຮັບນິ່
089-182-0013
agstjournal@gmail.com

Support contact

นส.ວິຣິນທົງກັທ່ງ ເສັ້ນຮັດນ
087-4942228, 02-7166450
ammymay@hotmail.com

ສ່ານຄວາມເຄີມພ
submission

สารบัญ CONTENT

สารจากนายกฯ

v คำนำ วารสารฉบับที่ 1 ปี 2568

ศ.นพ.ธวัชชัย อัครวิพุธ

vi สารจากหัวหน้ากองบรรณาธิการ

ศ.นพ.พรพรหม เมืองแม่น

Original Articles

1 Factor Associated with Prolong Drain Insertion Time in Breast Cancer Patients Undergone Surgery at Lamphun Hospital

Sasiwimol Tepjuk, M.D.

Wuttipat Kiratipaisarl, M.D.

13 Comparison of Postoperative Intravenous Painkiller Usage and Hospital Length Between Early and Delayed Open Appendectomy

Potchara Saechua, M.D.

21 Clinicopathological Finding and Prognosis in Bilateral Breast Cancer: Nakhonphanom Hospital

Natawan Hunpayon, M.D.

Sutthichai Nakphook, M.D. Ph.D.

สารจากนายกฯ

สารจากนายกฯ

เรียน ท่านสมาชิกสมาคมศัลยแพทย์ทั่วไปแห่งประเทศไทย ในพระบรมราชูปถัมภ์

วารสารสมาคมศัลยแพทย์ทั่วไปฉบับที่ 1/2568 นี้
นำเสนอ เพย์เพร์ผลงานทางวิชาการ 3 งานวิจัย และ 1
บทความปริทัศน์ ทางศัลยกรรม ซึ่งเป็นการดำเนินการ
ทางวิชาการเพื่อประโยชน์ของศัลยแพทย์และบุคลากรที่
ดูแลผู้ป่วยทางศัลยกรรม โดยวารสารฉบับนี้ ประกอบด้วย
บทความทั้งหมด 4 เรื่อง เกี่ยวกับการดูแลผู้ป่วยหลังผ่าตัด
ในผู้ป่วยมะเร็งเต้านม พยากรณ์โรคในผู้ป่วยโรคมะเร็งเต้านม
สองข้าง การใช้ยาระงับปวดทางหลอดเลือดดำและระยะ

เวลานอนโรงพยาบาลหลังผ่าตัดได้สัติงอักษร เป็นบทความ
ศัลยศาสตร์ปริทัศน์ที่น่าสนใจ

ทางสมาคมฯ หวังเป็นอย่างยิ่งว่าสมาคมฯ จะ
ให้ความสำคัญและให้การสนับสนุนวารสารสมาคมฯ ทาง
สมาคมยินดีให้การสนับสนุนกิจกรรมวิชาการ การประชุม
วิชาการ งานวิจัย และด้านอื่นๆ เพื่อประโยชน์ของสมาชิก
ทุกท่านอย่างสมมำเสมอ

ศาสตราจารย์ นายแพทย์ รัวชชัย อัครวิพุธ
นายกสมาคมศัลยแพทย์ทั่วไปแห่งประเทศไทย
ในพระบรมราชูปถัมภ์

Editor-in-Chief of JAGST

สารจากหัวหน้ากองบรรณาธิการ

เรียน หัวหน้าสมาคมศัลยแพทย์ทั่วไปแห่งประเทศไทย ในพระบรมราชูปถัมภ์

วารสารสมาคมศัลยแพทย์ทั่วไปแห่งประเทศไทยในพระบรมราชูปถัมภ์ จัดเป็นวารสารระดับชาติ (National Journal) ที่รับลงตีพิมพ์ทั้งบทความประเทงงานวิจัยทางคลินิก clinical trial, case report/case series และ article review ในรูปแบบภาษาไทย และภาษาอังกฤษ เพื่อเป็นการสนับสนุนการนำเสนอผลงานทางวิชาการของศัลยแพทย์ทั่วประเทศไทย ในทุกองค์กร ทั้งในหน่วยงานของภาครัฐและเอกชน โรงพยาบาล โรงเรียนแพทย์ และโรงพยาบาลต่าง ๆ ทุกระดับ ทั้งภายในประเทศไทยและต่างประเทศ

วารสารของสมาคมฯ ซึ่งเป็นวารสารวิชาการที่ได้รับการยอมรับในระดับชาติ มีผู้ทรงคุณวุฒิทั้งศัลยแพทย์ทั่วไป ศัลยแพทย์เฉพาะทาง 医师 และบุคลากรที่เกี่ยวข้อง

ในเนื้อหาของบทความ ทั้งทางด้านเนื้อหาความรู้ และสติ๊ติ จากหลากหลายสถาบัน เป็นประเมินบทความอย่างน้อย 3 ท่านต่อบทความ ในรูปแบบ Double-Blind Peer Review โดยผู้ทรงคุณวุฒิที่พิจารณาจะไม่อยู่ในหน่วยงาน สังกัดเดียวกันกับผู้นิพนธ์ เพื่อคุณภาพในการพิจารณาກลั่นกรองและปรับปรุงคุณภาพของบทความ

ทีมบรรณาธิการวารสาร และสมาคมฯ ขอเชิญชวนศัลยแพทย์ ส่งบทความเกี่ยวกับการดูแลผู้ป่วย ทั้งภาษาไทย หรือภาษาอังกฤษ ที่เกี่ยวกับด้านศัลยศาสตร์ทั่วไป หรือ ศัลยศาสตร์เฉพาะทาง เพื่อเป็นการเผยแพร่ผลงานทางวิชาการที่น่าเชื่อถือ อันเป็นประโยชน์ทั้งต่อผู้นิพนธ์ และผู้อ่าน รวมถึงการดูแลรักษาผู้ป่วย

**ศาสตราจารย์ นายแพทย์พรพรหม เมืองแม่น
หัวหน้ากองบรรณาธิการวารสารสมาคมศัลยแพทย์ทั่วไป
แห่งประเทศไทยในพระบรมราชูปถัมภ์**

Factor Associated with Prolong Drain Insertion Time in Breast Cancer Patients Undergone Surgery at Lamphun Hospital

Sasiwimol Tepjuk, MD^{1,*}
Wuttipat Kiratipaisarl, MD²

¹Lamphun Hospital, Thailand

²Department of Community Medicine, Faculty of Medicine, Chiang Mai University,
Chiang Mai, Thailand

Submission 17 November 2024 | Revised 12 January 2025 | Accepted 15 February 2025 | Published online 28 February 2024

***Corresponding Authors:** Sasiwimol Tepjuk, 177 Department of surgery, Lamphun Hospital, Ton Thong, Mueang Lamphun, Lamphun, Thailand 51000, Thailand; Telephone 053-569100; Email : sasiwimol_tep@hotmail.com

สมาคมศัลยแพทย์ทั่วไปแห่งประเทศไทย ในพระบรมราชูปถัมภ์ อาคารเฉลิมพระบรมราชูปถัมภ์ 50 ปี
เลขที่ 2 ซอยศูนย์วิจัย ถนนเพชรบุรีตัดใหม่ กรุงเทพฯ 10310 โทรศัพท์ : 0-2716-6450, 0-2716-6451

ABSTRACT

Background: Breast cancer remains the most common malignancy in female patients, with surgical intervention being the primary treatment approach. One of the most common postoperative complications is the formation of seroma underneath the surgical incision. The standard management for seroma following modified radical mastectomy (MRM) or mastectomy typically involves the placement of subcutaneous closed-suction drainage. However, the optimal timing for drainage placement and the appropriate duration of drainage remains uncertain. We observed that some patients had their closed-suction drains removed earlier, leading to a shorter hospital stay compared to others. Therefore, this study aims to identify risk factors associated with prolonged indwelling of closed-suction drains after breast cancer surgery at Lamphun Hospital.

Method: This retrospective cohort study entailed a total of 301 female patients, aged 20 years or older, who had a medical record of receiving breast cancer surgery in Lamphun Hospital from January 2019 to December 2023. Patients were divided into two groups: the “standard drainage” group, where drainage catheters were removed within 6 days, and the “prolonged drainage” group, where catheters remained in place for more than 6 days. Binary logistic regression analysis was performed to elicit risk factors associated with prolonged drainage.

Results: Among 301 female breast cancer patients who underwent surgery at Lamphun Hospital, the mean age was 59.4 ± 10.4 years, and their average BMI was $24.1 \pm 4.4 \text{ kg/m}^2$. The most common comorbidities were hypertension, dyslipidemia, and diabetes mellitus, in the order of prevalence. Most patients had stage IIA breast cancer, and 98.6% of all patients underwent modified radical mastectomy (MRM). Of the 301 patients, 179 (59.5%) were in the prolonged drainage group. Statistically significant risk factors for prolonged drainage included: BMI (adjusted odds ratio [aOR] 2.42, 95% confidence interval [CI] = 1.20–4.90, $p = 0.014$), the number of axillary lymph nodes removed (aOR 1.30, 95% CI = 1.02–1.68, $p = 0.033$), and the 48-hour postoperative drain output (aOR 1.12, 95% CI = 1.07–1.18, $p < 0.001$).

Conclusions: Prolonged drainage was significantly associated with higher BMI, a greater number of axillary lymph nodes removed, and greater 48-hour postoperative drain output. These findings may help guide postoperative care for patients at higher risk of requiring prolonged drainage.

Keywords: Breast cancer, close suction drainage, duration of postoperative surgical drain, seroma

Introduction

According to data from the National Cancer Institute (NCI) registry in 2021, breast cancer was the most common malignancy among Thai women, accounting for 37.9% of cases, followed by cervical cancer at 13.8%. The incidence of breast cancer in Thailand is approximately 34.2 cases per 100,000 women per year, while in Lamphun

province, the incidence is slightly higher at 36 cases per 100,000 women per year¹. Over the past decade, chemotherapy and radiotherapy have become integral components of breast cancer management, however, surgical intervention remains the gold standard treatment^{2,3}. Surgical options include modified radical mastectomy (MRM), simple mastectomy with sentinel lymph

node biopsy, and breast-conserving surgery (BCS). According to the medical archives of Lamphun Hospital from 2017 to 2022, the most frequently performed procedure was MRM, followed by simple mastectomy with sentinel lymph node biopsy (SLNB), and BCS.

Frequently encountered postoperative complications following breast surgery include seroma and hematoma⁴. A study by Engsirorat T. reported that the incidence of seroma among breast cancer patients who underwent MRM was approximately 22.7%, with total drainage volume exceeding 200 ml within 48 hours identified as a significant risk factor for seroma formation⁵. Additionally, research by Zielinski J et al. identified age over 60 years and a BMI $\geq 30 \text{ kg/m}^2$ as risk factors for seroma⁶. In contrast, Sirisut B.'s study, which examined factors such as age, BMI, number of axillary lymph nodes removed, number of malignant nodes, disease stage, neoadjuvant chemotherapy, and type of surgery, found no significant associations with seroma formation⁷.

A randomized controlled trial (RCT) conducted by Gupta et al. compared the incidence of seroma in breast cancer patients whose drains were removed at 5 days versus 8 days postoperatively. The study, which included 112 patients, found that the early removal group had a higher incidence and volume of seroma compared to the group with delayed drain removal. They also found that prolonging the drainage could also reduce

the volume of subsequent seroma as well as the frequency of seroma aspiration⁸. Despite these findings, the optimal duration of drain indwelling time has yet to be thoroughly studied.

At Lamphun Hospital, a standardized protocol dictates that drains are removed only when the output is less than 30 ml per day in each bottle for two consecutive days. Patients undergoing modified radical mastectomy (MRM) have two drainage catheters inserted, one at the chest wall and one at the axilla, with each catheter connected to a separate collection bottle, and the fluid output measured separately for each bottle, while patients undergoing simple mastectomy with sentinel lymph node biopsy have a single drainage catheter inserted at the chest wall. Additionally, patients are required to have their drains removed before discharge. As a result, the duration of drain indwelling directly impacts the length of the hospital stay. Therefore, the author aims to identify risk factors associated with prolonged indwelling of closed-suction drains after breast cancer surgery at Lamphun Hospital.

Method

This research study is a retrospective cohort study conducted on breast cancer patients who underwent treatment with Modified Radical Mastectomy (MRM) or simple mastectomy with sentinel lymph node biopsy at Lamphun Hospital from January 2019 to December 2023. This study

received ethical approval from the Lamphun Hospital Ethics Committee (approval number: Ethic LPN 008/2567), ensuring compliance with ethical standards for research involving human participants. All patients had postoperative closed-suction drain placed under surgical wound after surgery and the drain removed according to the Lamphun hospital's protocol. The exclusion criteria include breast cancer patients who underwent breast conserving surgery (BCS) without a drain inserted under the wound, patients who underwent breast reconstruction, patients who had a second breast surgery during the same admission, and patients who developed wound infections. The primary outcome of this study is the duration of postoperative drainage, categorized as standard drainage insertion or prolonged drainage insertion. The secondary outcomes included identifying significant risk factors associated with prolonged drainage, such as age, BMI, comorbidities, stage of disease, the number of axillary lymph nodes removed, 48-hour postoperative drain output and operative details. Definitions in this research study:

1. In our study, the stage of disease using TNM classification was classified according to the AJCC (American Joint Committee on Cancer) system
2. The number of axillary lymph nodes is defined as the total number of axillary lymph nodes removed during breast surgery at the same

time as breast surgery.

3. 48-hour post-operative drain output defined as total volume of drain output, measured in milliliters, recorded over the first 48 hours after surgery from the bottles connected to the closed-suction drain. Each of the two drain catheters is connected to a separate bottle, with fluid output recorded separately for each.

4. First drain is a drainage catheter that is removed first

5. Last drain is a drainage catheter that is removed last

Data Analysis

This research study uses descriptive statistics to describe the characteristics of the study sample. A categorical data such as comorbidities are reported as frequencies and percentages (n (%)). Numerical data such as age, lymph fluid volume, and surgery duration are presented as mean and standard deviation (mean \pm SD) for data that follow a normal distribution. For data with a skewed distribution, the median and interquartile range (IQR) are used. Frequency distribution is visualized using a histogram for categorical data or continuous data, and a quantile-quantile (Q-Q) plot for examining the normality of numerical data.

Inferential statistics were used to analyze the nature and strength of the relationships between variables. This included univariable

analysis to examine the relationship between each independent variable (e.g., age, BMI) and the outcome variable (e.g., prolonged drainage), using the independent sample t-test for normally distributed data and the rank-sum test for non-normally distributed data.

For multivariable analysis includes a set of risk factors proposed from the previous literature^{5,6,7,10}. Multivariable binary logistic regression is used to examine the relationship between multiple independent variables and a binary outcome (whether the patient had prolonged drainage or not). This provides an adjusted odds ratio (aOR) and 95% confidence interval (CI), where statistical significance is determined with a p-value less than 0.05. All statistical calculations are performed using Stata version 18.0 (StataCorp. 2023)

Results

Among 301 female breast cancer patients who underwent surgery at Lamphun Hospital from January 2019 to December 2023, the mean age was 59.4 ± 10.4 years, with an average BMI was $24.1 \pm 4.4 \text{ kg/m}^2$. Hypertension, dyslipidemia, and diabetes mellitus were the most prevalent comorbidities. The majority of patients were diagnosed with stage IIA of the disease. Modified radical mastectomy (MRM) was performed on 297 patients (98.6%), while 4 patients (1.3%) underwent a simple mastectomy with sentinel

lymph node biopsy. Of the 301 patients, 59 (19.6%) patients developed post-operative seroma formation after drain removal. The average hospital stay across the two groups was 6 days, as seen in Table 1. In the absence of an established guideline for optimal drain placement duration, we selected median drainage duration observed in our study population. Approximately half of the patients had their drains removed within six days. This threshold divides the population into two groups, standard drainage insertion and prolonged drainage insertion (Figure 1).

The catheter indwelling time was measured

Table 1 Patients and clinical characteristic

Characteristic	N (%) (N = 301)
Age (year)	$59.4 \pm 10.4^*$
BMI (kg/m^2)	$24.1 \pm 4.4^*$
Underlying disease	
Hypertension	42 (34.4)
Dyslipidemia	27 (22.1)
Diabetes mellitus	21 (17.2)
Stage	
Stage IIA	94 (31.2)
Operative procedure	
Simple mastectomy with sentinel lymph node biopsy	4 (1.3)
Modified radical mastectomy (MRM)	297 (98.7)
Length of hospital stay (day)	$6.3 \pm 2.2^*$
Seroma	59 (19.6)

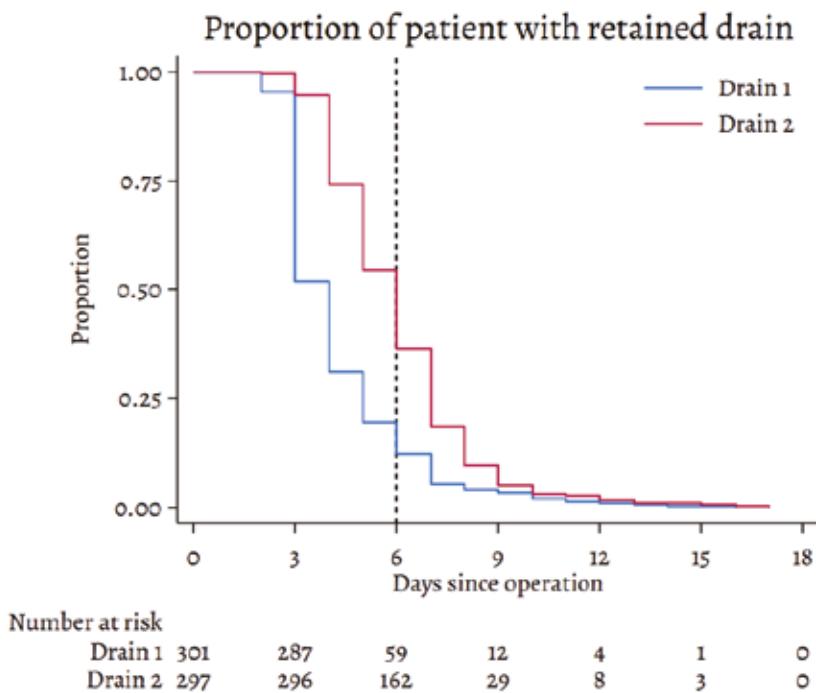


Figure 1 Median drainage duration of breast cancer patients who underwent surgery at Lamphun Hospital.

from insertion to the day of last drain removal. We observed that roughly half of the participants had their last drain removed within 6 days, thus we divided the patients into two groups. The standard drainage group refers to those who had their drains removed before the sixth day and the delayed drainage group refers to those whose drains were removed on the sixth day or later. In the delayed drainage group of 179 patients (59.5%), the mean age was 60.3 ± 9.9 years, and the mean BMI was $25.0 \pm 4.7 \text{ kg/m}^2$. Hypertension was the most common comorbidity, followed by diabetes mellitus and dyslipidemia. Univariate analysis identified several significant risk factors

for prolonged drainage, including BMI ($P < 0.001$), number of axillary lymph nodes removed ($P < 0.001$), and 48-hour postoperative drain output ($P < 0.001$) (Table 2).

Multivariate logistic regression confirmed the significance of these three risk factors. For each 10 kg/m^2 increase in BMI, the adjusted odds ratio (aOR) is 2.42 (95% CI 1.20-4.90, $P = 0.014$). Each additional 5 axillary lymph nodes removed corresponded to an aOR of 1.30 (95% CI 1.02-1.68, $P = 0.033$). Similarly, each 10 ml increase in 48-hour postoperative drain output resulted in an aOR of 1.12 (95% CI 1.07-1.18, $P < 0.001$) (Table 3).

Table 2 Univariable analysis for risk factors for prolonged drainage insertion time

Characteristic	Standard drainage insertion N=122	Prolong drainage insertion N=179	<i>p</i> -value
Age (years)	58.1 ± 10.9*	60.3 ± 9.9*	0.063*
BMI (kg/m ²)	22.7 ± 3.7*	25.0 ± 4.7*	< 0.001*
Underlying disease			
Hypertension	42 (34.4%)	86 (48.0%)	0.024
Diabetes mellitus	21 (17.2%)	30 (16.8%)	1.00
Dyslipidemia	27 (22.1%)	47 (26.3%)	0.50
Chronic kidney disease	5 (4.1%)	0 (0.0%)	0.010
Ischemic heart disease	4 (3.3%)	2 (1.1%)	0.23
Staging			
Stage 0	2 (1.6%)	0 (0.0%)	0.24
Stage IA	19 (15.6%)	20 (11.2%)	
Stage IIA	30 (24.6%)	64 (35.8%)	
Stage IIB	24 (19.7%)	31 (17.3%)	
Stage IIIA	23 (18.9%)	31 (17.3%)	
Stage IIIB	12 (9.8%)	13 (7.3%)	
Stage IIIC	9 (7.4%)	18 (10.1%)	
Stage IV	3 (2.5%)	2 (1.1%)	
Neoadjuvant chemotherapy	29 (23.8%)	37 (20.7%)	0.57
Operative procedure		0.31	
Simple mastectomy with sentinel LN biopsy	3 (2.5%)	1 (0.6%)	
Modified radical mastectomy (MRM)	119 (97.5%)	178 (99.4%)	
Operative time (minute)	85.0 (60.0-115.0)**	95.0 (75.0-120.0)**	0.007**
Blood loss (mL)	30.0 (20.0-50.0)**	30.0 (20.0-50.0)**	0.21**
Number of lymph node removal	11.0 (8.0-16.0)**	14.0 (10.0-18.0)**	< 0.001**
48 hr. of chest wall drain volume (mL)	30.0 (15.0-60.0)**	60.0 (30.0-100.0)**	< 0.001**
48 hr. of axillary drain volume (mL)	60.0 (40.0-90.0)**	105.0 (70.0-170.0)**	< 0.001**
Duration of chest wall drainage insertion (day)	3.0 (3.0-4.0)**	4.0 (3.0-6.0)**	< 0.001**
Duration of axillary drainage insertion (day)	4.0 (4.0-5.0)**	7.0 (6.0-8.0)**	< 0.001**

*Mean ± SD with independent sample *t*-test

**Median (Quartile 1 – Quartile 3), tested with rank-sum test

Table 3 Multivariable analysis for risk factors for prolonged drainage insertion time

Variables	Multivariable analysis		
	Adjusted odds ratio	95% CI	P-value
Age (years) *	1.21	(0.90-1.63)	0.215
BMI (kg/m2) **	2.42	(1.20-4.90)	0.014
Stage			
Stage IA	Reference		
Stage IIA	1.42	(0.60-3.39)	0.424
Stage IIB	0.95	(0.37-2.45)	0.919
Stage IIIA	0.88	(0.32-2.46)	0.809
Stage IIIB	0.61	(0.16-2.27)	0.456
Stage IIIC	0.79	(0.23-2.71)	0.703
Stage IV	0.68	(0.08-6.03)	0.729
Hypertension	1.74	(0.91-3.30)	0.092
Diabetes mellitus	0.73	(0.32-1.64)	0.442
Dyslipidemia	0.89	(0.43-1.83)	0.747
Neoadjuvant chemotherapy	1.47	(0.67-3.24)	0.339
Total lymph node removal***	1.31	(1.02-1.68)	0.033
Optime (minutes)****	1.05	(0.96-1.15)	0.263
Blood loss (mL) *****	1.02	(0.92-1.12)	0.714
Last drain volume (mL)*****	1.13	(1.07-1.18)	< 0.001

*Age: aOR for each increase of 10 years,

**BMI: aOR for each increase of 10 kg/m²

***Total lymph node removal: aOR for each increase of 5 lymph nodes

****Optime: aOR for each increase of 10 minutes

*****Blood loss: aOR for each increase of 10 ml.

*****Last drain volume: aOR for each increase of 10 ml.

Discussion

This study identifies risk significant factors associated with prolonged drainage in breast cancer patients undergoing surgery at Lamphun Hospital. The findings demonstrate that higher BMI, a greater number of axillary lymph nodes

removed, and increased 48-hour postoperative drain output were statistically significant predictors of prolonged drainage.

A higher BMI was strongly associated with prolonged drainage time, as shown by an adjusted odds ratio (aOR) of 2.42 (95% CI = 1.20–4.90, *p*

= 0.014) for every 10 kg/m² increase. This finding is consistent with previous studies, such as those by Zielinski et al. and Omer et al., which reported similar associations between obesity and prolonged drain indwelling time.^{7,11} A plausible explanation for the link between high BMI and seroma development may be the greater breast tissue volume requiring extensive dissection, which increases the likelihood of blood and lymphatic vessel injury. Such an injury can facilitate seroma formation and raise postoperative drain output.

The number of axillary lymph nodes removed during surgery also emerged as a significant factor, with an aOR of 1.30 (95% CI = 1.02–1.68, $p = 0.033$) for every 5 additional lymph nodes removed. This result underscores the importance of lymphatic disruption in prolonged drainage. Extensive axillary lymph node dissection (ALND) increases the risk of postoperative complications, including seroma, due to greater disruption of lymphatic channels.^{12,13} Sentinel lymph node biopsy (SLNB), which involves the removal of fewer lymph nodes, may reduce these risks.

A higher 48-hour postoperative drain output was the strongest predictor of prolonged drainage, with an aOR of 1.12 (95% CI = 1.07–1.18, $p < 0.001$) for every 10 mL increase in drain output. This finding highlights the importance of monitoring early postoperative drainage as a potential indicator for prolonged indwelling time. Similar observations were previously reported

by Theunissen et al., who found a significant correlation between seroma formation on the first day and total seroma volume and total time of seroma treatment.¹⁴

In the era of axillary de-escalating, modified radical mastectomy (MRM) is still the main surgical procedure in Lamphun Hospital due to our institute's inability to perform frozen section SLNB, nonfrozen sentinel problem along with the lack of RT to limit positive SLNB along with patient unaccepted of second operation due to cost and Transport limitation. In addition, surgeons with different surgical techniques may be affected by seroma volume, since various techniques are used to dissect the skin flaps such as electrocautery, laser scalpel, argon diathermy, and ultrasonic scalpel. The use of electrocautery is associated with seroma formation compared with scalpel dissection alone. No specific method of skin flap dissection has proved to be beneficial in reducing seroma formation.¹⁵⁻¹⁷

Some studies suggest that the incidence of seroma formation may not significantly differ between patients with and without drains. Taylor et al. demonstrated the lack of difference in symptomatic seroma incidence and requirement for seroma intervention between mastectomy patients managed with and without drains.¹⁸ However other studies have reported that early drain removal, between POD 1-2, increased seroma incidence and concluded it is unsafe

and will require additional interventions.^{19,20} Gupta et al. has studied a comparison of 5-day and 8-day drainage following mastectomy and axillary clearance reported that prolonged drainage reduces seroma incidence and aspiration requirements⁸. In our institute policy, we insert closed suction drainage in all cases undergoing modified radical mastectomy (MRM) and simple mastectomy with sentinel lymph node biopsy. The drain is removed when the output is less than 30 ml per day in each bottle for two consecutive days in hospital before discharge because the patient has difficulty coming to the hospital frequently for follow-up visits and faces financial challenges regarding hospital expenses.

Drain volume also varies with the type of surgery performed. It is believed that MRM would have a higher incidence of seroma compared to simple mastectomy and breast-conserving surgery. Sentinel lymph node biopsy could prove to be a viable alternative to axillary dissection, potentially leading to a lower incidence of seroma. Removing fewer lymph nodes in sentinel biopsy results in less tissue and lymphatic vessel damage, which may contribute to reduced seroma formation²¹. In this study, the population of patients undergoing simple mastectomy with sentinel lymph node biopsy (SLNB) was notably small compared to those undergoing modified radical mastectomy (MRM). Only 4 out of 301 patients underwent simple mastectomy with SLNB, representing

just 1.3% of the study population. This small sample size limits the ability to draw statistically robust conclusions regarding the differences in outcomes between these two surgical techniques. Additionally, the small sample size reduces the statistical power to detect subtle differences or trends between groups, making it challenging to determine whether the shorter drain duration and lower drain output in SLNB patients are truly significant or merely an artifact of the limited data.

Less invasive procedures reduce postoperative complications and hospital stays. Promoting BCS at Lamphun Hospital could further these benefits, provided that patient selection and surgical techniques are carefully managed. Future studies with larger cohorts of SLNB patients are needed to validate these findings and provide a clearer comparison of outcomes between MRM and SLNB. Expanding the sample size would also allow for subgroup analyses to explore the impact of patient characteristics, such as BMI, comorbidities, and tumor stage, on postoperative drainage duration and fluid output for both surgical techniques. Until such data are available, the conclusions regarding SLNB in this study should be interpreted with caution.

These findings highlighted the risk factors which could lead to prolonged drainage in postoperative breast cancer patients and allow us to provide more cohesive care to patients at risk. Adopting advanced and minimally invasive

surgical techniques, particularly sentinel lymph node biopsy instead of full axillary lymph node dissection, could also lower the risks of seroma formation and postoperative drain output. In our results of this study, we will apply to improve postoperative care protocol and decrease hospital stay. Further research is needed to explore the clinical significance of these approaches.

Conclusion

Prolonged drainage in breast cancer patients was significantly associated with higher BMI, a greater number of axillary lymph nodes removed, and higher 48-hour postoperative drain output. These insights may aid in tailoring postoperative care to patients at an increased risk of prolonged drainage.

Limitation

As a single-center retrospective study, this research may have limitations regarding completeness of data due to certain parts of information missing from the medical records. These could negatively impact the accuracy of the analysis and limit the study's external applicability to other research centers. Retrospective data may not cover other important variables, such as patient behavior or variations in specific surgical techniques. There was no use of randomization, which could lead to selection bias. Finally, given the paucity of participants who undergone

mastectomy and SLNB, this result should not be applied in the mastectomy with SLNB and necessitate a further study.

References

1. Rojanamatin J. Cancer in Thailand Vol.X. Bangkok: Medical record and database cancer unit; 2021.
2. Hashemi E, Kaviani A, Najafi M, Ebrahimi M, Hooshmand H, Montazeri A. Seroma formation after surgery for breast cancer. *World J Surg Oncol.* 2004;2:44.
3. Bonnema J, Van Geel AN, Ligtenstein DA, Schmitz PIM, Wiggers T. A prospective randomized trial of high versus low vacuum drainage after axillary dissection for breast cancer. *Am J Surg.* 1997;173:76.
4. Classe J, Dupre PF, François T, Robard S, Theard JL, Dravet F. Axillary padding as an alternative to closed suction drain for ambulatory axillary lymphadenectomy. A prospective cohort of 207 patients with early breast cancer. *Arch Surg.* 2002;137:169-73.
5. Engsirorat T. Risk Factors Influencing Seroma Formation after Modified Radical Mastectomy. *Srinagarind Med J.* 2021;36(4):382-8.
6. Zielinski J, Jaworski R, Irga N, Kruszewski JW, Jaskiewicz J. Analysis of selected factors influencing seroma formation in breast cancer patients undergoing mastectomy. *Arch Med Sci.* 2013;9(1):86-92.
7. Sirisut B. Incidence and risk factors for seroma after breast cancer surgery in breast cancer patients receiving treatment in Photharam Hospital. *J Assoc Gen Surg Thai Under Royal Patron HM King.* 2023;8(1):19-33.
8. Gupta R, Pate K, Varshney S, Goddard J, Royle GT. A comparison of 5-day and 8-day drainage following mastectomy and axillary clearance. *Eur J Surg Oncol.* 2001;27:26-30.
9. Kuroi K, Shimozuma K, Taguchi T, Imai H, Yamashiro H, Ohsumi S, et al. Evidence-based risk factors for

seroma formation in breast surgery. *Jpn J Clin Oncol.* 2006;36(4):197-206.

10. Kopelman D, Klemm O, Bahous H, Klein R, Krausz M, Hashmonai M. Postoperative suction drainage of the axilla: for how long? Prospective randomised trial. *Eur J Surg.* 1999;165:117-20; discussion 121-2. PMID: 10192568.
11. Uslukaya O, Turkoglu A, Gumus M, Bozdag Z. Factors that affect drain indwelling time after breast cancer surgery. *J Breast Health.* 2016;12:102-6.
12. Barwell J, Campbell L, Watkins RM, Teasdale C. How long should suction drains stay in after breast surgery with axillary dissection? *Ann R Coll Surg Engl.* 1997;79:435-7.
13. Tadych K, Donegan WL. Postmastectomy seromas and wound drainage. *Surg Gynecol Obstet.* 1987;165:483-7.
14. Theunissen D, Cant PJ, Dent DM. Factors that influence volume and duration of wound drainage after mastectomy and level III axillary node clearance. *Breast.* 2001;10:538-9.
15. Srivastava V, Basu S, Shukla VK. Seroma formation after breast cancer surgery: what we have learned in the last two decades. *J Breast Cancer.* 2012;15:373-80.
16. Currie A, Chong K, Davies GL, Cummins RS. Ultrasonic dissection versus electrocautery in mastectomy for breast cancer: a meta-analysis. *Eur J Surg Oncol.* 2012;38:897-901.
17. Khan S, Chawla T, Murtaza G. Harmonic scalpel versus electrocautery dissection in modified radical mastectomy: a randomized controlled trial. *Ann Surg Oncol.* 2014;21:808-14.
18. Taylor JC, Rai S, Hoar F, Brown H, Vishwanath L. Breast cancer surgery without suction drainage: the impact of adopting a “no drains” policy on symptomatic seroma formation rates. *Eur J Surg Oncol.* 2013;39:334-8.
19. Baas-Vrancken Peeters MJ, Kluit AB, Merkus JW, Breslau PJ. Short versus long-term postoperative drainage of the axilla after axillary lymph node dissection: A prospective randomized study. *Breast Cancer Res Treat.* 2005;93:271-5.
20. Barton A, Blitz M, Callahan D, et al. Early removal of postmastectomy drains is not beneficial: results from a halted randomized controlled trial. *Am J Surg.* 2006;191:652-6.
21. Van Bemmel AJ, van de Velde CJ, Schmitz RF, Liefers GJ. Prevention of seroma formation after axillary dissection in breast cancer: a systematic review. *Eur J Surg Oncol.* 2011;37:829-83.

การศึกษาเปรียบเทียบการใช้ยาระงับปวดทางหลอดเลือดดำ และระยะเวลาอน Rogypabala หลังผ่าตัดไส้ติ่งอักเสบระหว่างการผ่าตัดตั้งแต่ต้นและการผ่าตัดภายหลัง

พจน์ชระ แซ่จ้ว, พบ.*

กลุ่มงานศัลยกรรม โรงพยาบาลปัตตานี

บทคัดย่อ

บทนำ: การผ่าตัดไส้ติ่งอักเสบตั้งแต่ต้นที่เข้ารับการรักษาและการผ่าตัดภายหลังพบภาวะแทรกซ้อนโดยรวมไม่แตกต่างกันอย่างไรก็ตามอาการปวดหลังผ่าตัดและระยะเวลาพักฟื้นหลังผ่าตัดยังมีความแตกต่างกันในแต่ละราย การวิจัยนี้มีวัตถุประสงค์เพื่อเปรียบเทียบการใช้ยาระงับปวดทางหลอดเลือดดำหลังผ่าตัดและระยะเวลาอน Rogypabala หลังผ่าตัด ระหว่างการผ่าตัดไส้ติ่งอักเสบเฉียบพลันภายใน 8 ชม. และการผ่าตัดภายหลัง 8 ชม. ที่มาถึงโรงพยาบาลปัตตานี ผลการศึกษาจะเป็นข้อมูลที่สำคัญในการวางแผนพิจารณาผ่าตัดไส้ติ่งอักเสบและนำไปสร้างแนวทางการใช้ห้องผ่าตัดนอกเวลาราชการ

วิธีการศึกษา: เป็นการศึกษาข้อมูลทางแบบตัดขวาง (cross sectional study) ด้วยการวิเคราะห์ข้อมูลจากเวชระเบียนของผู้ป่วยที่ได้รับการวินิจฉัยไส้ติ่งอักเสบเฉียบพลันและรับการผ่าตัดไส้ติ่งอักเสบ โดยมีผลตรวจพยาธิวิทยาเป็นไส้ติ่งอักเสบเฉียบพลันของโรงพยาบาลปัตตานีจำนวน 486 ราย ระยะเวลาการศึกษาตั้งแต่เดือนกรกฎาคม พ.ศ. 2565 ถึง กรกฎาคม พ.ศ. 2567 บันทึกข้อมูลอายุ BMI ผลทางห้องปฏิบัติการ (WBC, %neutrophil, Na) ผลตรวจทางพยาธิวิทยา (mucositis, early appendicitis, suppurative, gangrenous, ruptured, abscess) ระยะเวลาถึงพ.จนถึงได้รับการผ่าตัด ระยะเวลาผ่าตัด ระยะเวลาอน Rogypabala หลังผ่าตัด จำนวนครั้งการให้ยาและระยะเวลาหลังผ่าตัด ผู้วิจัยนำข้อมูลที่ได้มาตรวจสอบความครบถ้วน และวิเคราะห์ข้อมูล โดยผู้ป่วยถูกแบ่งออกเป็น 2 กลุ่มตามระยะเวลาถึงพ.จนถึงได้รับการผ่าตัดคือ กลุ่มผ่าตัดภายใน 8 ชั่วโมง และกลุ่มที่ผ่าตัดหลัง 8 ชั่วโมง

ผลการศึกษา: ผู้ป่วยไส้ติ่งอักเสบที่ได้รับการผ่าตัด 486 ราย การใช้ยาระงับปวดหลังผ่าตัดไส้ติ่งอักเสบเฉียบพิมพายิธิวิทยาแบบ Uncomplicated appendicitis 334 ราย ระหว่างการผ่าตัดภายใน 8 ชม. และการผ่าตัดภายหลัง 8 ชม. ที่ผู้ป่วยมาถึงโรงพยาบาลไม่แตกต่างอย่างมีนัยสำคัญทางสถิติ (0.8 และ 0.8 ครั้ง/ราย; $p = 0.907$) ขณะที่ไส้ติ่งอักเสบที่มีพยาธิวิทยาแบบ Complicated appendicitis 152 ราย การผ่าตัดภายใน 8 ชม. ใช้ยาระงับปวดหลังผ่าตัดน้อยกว่าการผ่าตัดภายหลัง 8 ชม. อย่างมีนัยสำคัญทางสถิติ (1.4 และ 2.5 ครั้ง/ราย; $p = 0.020$) โดยที่ระยะเวลาอน Rogypabala หลังผ่าตัดไส้ติ่งอักเสบระหว่างการผ่าตัดภายใน 8 ชม. และการผ่าตัดภายหลัง 8 ชม. ไม่แตกต่างกันทั้งในกลุ่มพยาธิวิทยาแบบ Uncomplicated appendicitis และ Complicated appendicitis

สรุปผลการวิจัย: การผ่าตัดไส้ติ่งอักเสบเฉียบพลันภายใน 8 ชั่วโมงไม่ได้เพิ่มระยะเวลาอน Rogypabala หลังผ่าตัด แต่หากสามารถทำการผ่าตัดไส้ติ่งอักเสบเฉียบพลันได้ภายใน 8 ชั่วโมงที่ผู้ป่วยมาถึงพ.จนถึงได้ช่วยลดการใช้ยาระงับปวดหลังผ่าตัดลงได้ ทั้งนี้ การพิจารณาผ่าตัดรักษาขึ้นกับความยินยอมของผู้ป่วยแต่ละราย เวลาที่ผู้ป่วยมาถึงโรงพยาบาล และความเร่งด่วนของการใช้ห้องผ่าตัดฉุกเฉินนอกเวลาราชการในบริบทของแต่ละโรงพยาบาล

คำสำคัญ: ไส้ติ่งอักเสบ, การผ่าตัดตั้งแต่ต้น

Submission 4 January 2025 | Revised 10 February 2025 | Accepted 11 March 2025 | Published online 8 April 2025

*ผู้นิพนธ์หลัก: พน.พจน์ชระ แซ่จ้ว กลุ่มงานศัลยกรรม โรงพยาบาลปัตตานี, ปัตตานี

แฟลต 6 ชั้น โรงพยาบาลปัตตานี ตำบลสะบารัง อำเภอเมือง จังหวัดปัตตานี 94000; อีเมล: Onzachua@gmail.com

สมาคมศัลยแพทย์ทั่วไปแห่งประเทศไทย ในพระบรมราชูปถัมภ์ อาคารเฉลิมพระบรมราชูปถัมภ์ อาคารเฉลิมพระบรมราชูปถัมภ์ 50 ปี

เลขที่ 2 ซอยศูนย์วิจัย ถนนเพชรบุรีตัดใหม่ กรุงเทพฯ 10310 โทรศัพท์ : 0-2716-6450, 0-2716-6451

Comparison of Postoperative Intravenous Painkiller Usage and Hospital Length Between Early and Delayed Open Appendectomy

Potchara Saechua, MD.*

Department of Surgery, Pattani Hospital, Pattani

ABSTRACT

Background: The comparison of early appendectomy versus delayed appendectomy reveals no significant differences in overall postoperative complications. Nevertheless, variations in postoperative pain and recovery duration are observed across individual cases. The present study aims to compare the frequency of intravenous painkiller usage, and the length of postoperative hospitalization between patients undergoing appendectomy within eight hours versus those appendectomy after eight hours following hospital admission. The results of this study will be important information for Appendectomy planning.

Material and Method: This research is a cross-sectional analytic study using medical records of patient with pathologically confirmed Acute appendicitis who underwent appendectomy at Pattani Hospital, totaling 486 cases. The study period was from July 2022 to July 2024 and involved recording and collecting data on the following variables: Age, BMI, WBC, %Neutrophil, Hyponatremia, pathology report of Appendiceal specimens, Hospital arrival to appendectomy time, operative time, postoperative length of hospital stays, frequency of postoperative intravenous pain killer usage.

Result: 486 cases with pathological reports of acute appendicitis, for 334 cases of uncomplicated appendicitis, there was no significant difference in postoperative intravenous painkiller usage between appendectomies performed within 8 hours of hospital arrivals and those performed after 8 hours (0.8 vs. 0.8 times/case; $p = 0.907$). However, for 152 cases of complicated appendicitis, appendectomies within 8 hours were significantly lower postoperative intravenous painkiller usage compared to those performed after 8 hours (1.4 vs. 2.5 times/case; $p = 0.020$). The length of hospital stays following appendectomy did not differ between early and delayed appendectomy in either the uncomplicated or complicated appendicitis groups.

Conclusions: Performing an appendectomy for acute appendicitis beyond eight hours after hospital admission does not prolong the postoperative hospital stay. However, appendectomy within eight hours of the hospital arrival can reduce the need for postoperative analgesics. The decision to proceed with surgical intervention remains dependent on the patient's informed consent, the time of the patient's arrival, and the urgency of accessing emergency operating facilities outside regular working hours, all of which vary according to the specific context of each hospital.

Keywords: Early Appendectomy, acute appendicitis

Submission 4 January 2025 | Revised 10 February 2025 | Accepted 11 March 2025 | Published online 8 April 2025

Corresponding Authors: Potchara Saechua, Department of Surgery, Pattani hospital, Pattani, Thailand; Email: Onzachua@gmail.com

สมาคมศัลยแพทย์ทั่วไปแห่งประเทศไทยในพระบรมราชูปถัมภ์ อาคารเฉลิมพระบรมราชูปถัมภ์ 50 ปี
เลขที่ 2 ซอยศูนย์วิจัย ถนนเพชรบุรีตัดใหม่ กรุงเทพฯ 10310 โทรศัพท์ : 0-2716-6450, 0-2716-6451

บทนำ

โรคไส้ติ่งอักเสบเฉียบพลันเป็นภาวะฉุกเฉินทางที่พบบ่อยที่สุดของศัลยกรรมภายในช่องท้อง ในช่วงทศวรรษที่ผ่านมา มีข้ออกเกียงกันระหว่างการผ่าตัดไส้ติ่งอักเสบเฉียบพลันตั้งแต่ต้นและการผ่าตัดภายในหลัง การศึกษาการผ่าตัดไส้ติ่งอักเสบเฉียบพลันตั้งแต่ต้นเทียบกับการรักษาด้วยยาปฏิชีวนะก่อนแล้วได้รับการผ่าตัดภายในหลัง เมื่อมีการเปลี่ยนแปลง พบภาวะแทรกซ้อนไม่ต่างกันหลังผ่าตัด¹⁻³ อย่างไรก็ดีหลายศึกษาพบว่าการผ่าตัดไส้ติ่งอักเสบเฉียบพลันล่าช้าพบมีความสัมพันธ์กับการแตกของไส้ติ่งอักเสบเพิ่มขึ้น ภาวะแทรกซ้อนหลังผ่าตัดไส้ติ่งอักเสบ และระยะเวลาอนรมพ.นานขึ้น⁴⁻⁶ พบว่าปัจจัยพยากรณ์ภาวะไส้ติ่งอักเสบที่มีภาวะแทรกซ้อน เช่น การตรวจพบภาวะ Hyponatremia⁷ การตรวจ White blood cell count พบเพิ่มขึ้นของ %Neutrophil⁸ การได้รับผ่าตัดภายในหลัง 8 ชั่วโมงที่ผู้ป่วยมาถึงห้องฉุกเฉินของโรงพยาบาล⁹ เป็นต้น

โรงพยาบาลปัตตานีพบผู้ป่วยไส้ติ่งอักเสบเฉียบพลัน และรับการผ่าตัดไส้ติ่งอักเสบเฉียบพลันตั้งแต่ต้นภายใน 8 ชม. และภายในหลัง 8 ชม. ที่ผู้ป่วยมาถึงโรงพยาบาล ดังนั้น ผู้วิจัยจึงมีความสนใจที่จะศึกษาเปรียบเทียบผลการรักษาหลังผ่าตัดไส้ติ่งอักเสบเฉียบพลันของทั้งสองกลุ่ม ข้างต้น ผลการศึกษาจะเป็นข้อมูลเพื่อพัฒนาปรับปรุงการดูแลรักษาในผู้ป่วยเหล่านี้ต่อไป

วิธีดำเนินการวิจัย

การวิจัยนี้เป็นการศึกษาย้อนหลังแบบตัดขวาง (cross sectional study) ด้วยการวิเคราะห์ข้อมูลจากเวชระเบียนของผู้ป่วยที่ได้รับการวินิจฉัยและรับการผ่าตัดไส้ติ่งอักเสบ โดยมีผลตรวจพยาธิวิทยาเป็นไส้ติ่งอักเสบ

เฉียบพลันของโรงพยาบาลปัตตานีตั้งแต่เดือนกรกฎาคม พ.ศ. 2565 ถึงเดือนกรกฎาคม พ.ศ. 2567 โดยมีเกณฑ์ที่คัดเข้า (Inclusion criteria) คือ อายุ 15 ปีขึ้นไป ได้รับการผ่าตัดไส้ติ่งอักเสบ และมีการส่งตรวจทางพยาธิวิทยา มีเกณฑ์คัดออก (Exclusion criteria) คือ ผลตรวจทางพยาธิวิทยาไม่ใช่ไส้ติ่งอักเสบเฉียบพลัน เช่น วันโรค, เนื้องอกของไส้ติ่ง เป็นต้น

การเก็บรวบรวมข้อมูล

หลังจากได้รับการอนุมัติจากคณะกรรมการจริยธรรมการวิจัยในมนุษย์และได้รับหนังสืออนุญาตจากผู้อำนวยการโรงพยาบาลปัตตานี ดำเนินการค้นข้อมูลประชากรที่ศึกษาจากฐานข้อมูล HOSXP โดยเลือกรายงานและระบุเงื่อนไขในการดึงข้อมูล ได้แก่ ข้อมูลเดือนกรกฎาคม พ.ศ. 2565 ถึง กรกฎาคม พ.ศ. 2567, โรคไส้ติ่งอักเสบเฉียบพลัน, ผ่าตัดไส้ติ่งอักเสบ แล้วนำรายชื่อประชากร ดำเนินการยืนแบบฟอร์มของยีมเวชระเบียนผู้ป่วยในตามรายชื่อเพื่อขอเข้าถึงข้อมูลส่วนบุคคลและข้อมูลการรักษา ประกอบด้วยข้อมูล อายุ BMI ผลทางห้องปฏิบัติการ (WBC, %neutrophil, Na) ผลตรวจทางพยาธิวิทยาระดับการอักเสบ(mucositis, early appendicitis, suppurative, gangrenous, ruptured, abscess) ระยะเวลาแรกที่รพ.จนถึงได้รับการผ่าตัด ระยะเวลาผ่าตัด ระยะเวลาอนรมพ.หลังผ่าตัด จำนวนครั้งการให้ยาและจำนวนทางหลอดเลือดดำหลังผ่าตัด ผู้วิจัยนำข้อมูลที่ได้มาตรวจสอบความครบถ้วน และวิเคราะห์ข้อมูล โดยผู้ป่วยถูกแบ่งออกเป็น 2 กลุ่มตามระยะเวลาถึงรพ.จนถึงได้รับการผ่าตัดคือ กลุ่มผ่าตัดภายใน 8 ชั่วโมง และกลุ่มที่ผ่าตัดหลัง 8 ชั่วโมง จากนั้นทำการเปรียบเทียบผลการรักษาในผู้ป่วยทั้งสองกลุ่ม ดังรูปที่ 1 โดยก่อนผ่าตัดผู้ป่วยทุกรายได้รับ

- Ceftriaxone 2 g iv. และ Metronidazole 500 mg iv. หากไม่มีข้อห้ามการให้ยา และพิจารณาให้ต่อหลังผ่าตัดหาก intraoperative finding พบรูป complicated appendicitis¹⁰

- พิจารณาให้ยาระงับปวดทางหลอดเลือดดำหลังผ่าตัด เมื่อผู้ป่วยที่มี pain score มากกว่าเท่ากับ 4 ร้องขอและไม่มีข้อห้ามการใช้ยา¹¹ ร่วมกับเริ่มให้ยาระงับปวดแบบกินเมื่อเริ่มให้ผู้ป่วยจินน้ำได้

- การพิจารณาจำหน่ายผู้ป่วยเมื่อไม่มีไข้มากกว่า 24 ชม. สามารถทานอาหารได้ปกติ สามารถใช้เครื่องราชบัปปูดแบบกินได้และไม่มีอาการแสดงที่ต้องเฝ้าระวังของการติดเชื้อคือคงเหลือไข้ปอดพยาบาล

ตัวแปรที่ศึกษา

ตัวเปรอิสระ คือ ปัจจัยส่วนบุคคล ได้แก่ อายุ ดัชนีมวลกาย ผลทางพยาธิวิทยา(pathological report of specimens) ผลทางห้องปฏิบัติการ (WBC, %neutrophil, Hyponatremia) ระยะเวลามาถึงโรงพยาบาลจนได้รับการผ่าตัด ระยะเวลาผ่าตัด. ปัจจัยด้านการรักษา ได้แก่

การผ่าตัดภายนอก 8 ซม. และภายนอกหลัง 8 ซม. ที่ม้าถึงโรงพยาบาล

ตัวแปรตาม คือ จำนวนการใช้ยาระงับปวดทางหลอดเลือดดำหลังผ่าตัด และระยะเวลาอนโรงพยาบาลหลังผ่าตัด

การวิเคราะห์ข้อมูลทางสกิตติ

ผู้วิจัยใช้โปรแกรม StataMP 18.0 ในการวิเคราะห์ข้อมูล โดยข้อมูลส่วนบุคคลของผู้ป่วยได้ตั้งอักษรเป็นโดยใช้สถิติเชิงพรรณนา ได้แก่ จำนวน ร้อยละ ค่าเฉลี่ย และส่วนเบี่ยงเบนมาตรฐาน การเปรียบเทียบความแตกต่างของข้อมูลสองกลุ่ม ใช้สถิติ Chi square test ในกรณีที่กลุ่มเปรียบเทียบมีจำนวนน้อยมากจนไม่มีลักษณะการกระจายตัวตาม chi-square distribution จะวิเคราะห์ด้วย Fisher's test และข้อมูลที่มีการแจกแจงแบบปกติ วิเคราะห์ด้วย Independent sample t-test กำหนดให้มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ โดยใช้ค่าความเชื่อมั่นอยู่ที่ 95% (P -value < 0.05)

รูปที่ 1 ขั้นตอนการวิจัย

สมาคมศัลยแพทย์ทั่วไปแห่งประเทศไทย ในพระบรมราชูปถัมภ์ อาคารเฉลิมพระบรมราชูปถัมภ์ ถนนเพชรบuri ตัดใหม่ กรุงเทพฯ 10310 โทรศัพท์ : 0-2716-6450, 0-2716-6451 เลขที่ 2 ซอยศุนย์วิจัย ถนนเพชรบuri ตัดใหม่ กรุงเทพฯ 10310 โทรศัพท์ : 0-2716-6450, 0-2716-6451

ผลการวิจัย

1. ข้อมูลส่วนบุคคลของกลุ่มตัวอย่าง

จากข้อมูลเวชระเบียนจากฐานข้อมูล HOSxP ทั้งหมด 486 ราย รับการผ่าตัดใส่ติ่งอักเสบเฉียบพลัน แบ่งเป็นกลุ่มที่รับการผ่าตัดภายใน 8 ชั่วโมง 101 รายและกลุ่มที่รับการผ่าตัดภายใน 8 ชั่วโมง 385 ราย โดยข้อมูล อายุ ค่าดัชนีมวลกาย ผลตรวจทางพยาธิวิทยา ผลตรวจน้ำท้องห้องปฏิบัติการก่อนผ่าตัด และระยะเวลาผ่าตัดของห้องส่องกลุ่มไม่แตกต่างกันอย่างมีนัยสำคัญ ดังตารางที่ 1

2. เปรียบเทียบจำนวนครั้งการใช้ยาและปัจจัยทางห้องเดือดสำหรับการผ่าตัดใส่ติ่งอักเสบ

ผลการศึกษาจำนวนครั้งการใช้ยาและปัจจัยทางห้องเดือดสำหรับการผ่าตัดใส่ติ่งอักเสบ กลุ่มพยาธิวิทยาแบบ Uncomplicated appendicitis พบร่วมกับการผ่าตัดภายใน 8 ชั่วโมง 101 รายและกลุ่มที่รับการผ่าตัดภายใน 8 ชั่วโมง 385 ราย. และการผ่าตัดภายใน 8 ชั่วโมงไม่แตกต่างกัน (0.8 และ 0.8 ครั้ง/ราย; $p = 0.907$) กลุ่มพยาธิวิทยาแบบ Complicated appendicitis พบร่วมกับการผ่าตัดภายใน 8 ชั่วโมง. ใช้ยาและปัจจัยทางห้องเดือดสำหรับการผ่าตัดภายใน 8 ชั่วโมงอย่างมีนัยสำคัญทางสถิติ (1.4 และ 2.5

ตารางที่ 1 ลักษณะผู้ป่วยรับการผ่าตัดใส่ติ่งอักเสบ ($N = 486$)

ลักษณะส่วนบุคคล	ผ่าตัดตั้งแต่ต้น* ($n = 101$)	ผ่าตัดภายใน 8 ชั่วโมง** ($n = 385$)	P-value
อายุ (mean \pm SD)	33.6 ± 18.2	34.3 ± 15.9	0.700
ดัชนีมวลกาย (kg/m^2) (mean \pm SD)	22.4 ± 3.4	22.9 ± 3.7	0.293
Uncomplicated Pathology			
Mucositis	4 (4.0%)	24 (6.2%)	0.383
Early appendicitis	36 (35.6%)	121 (31.4%)	0.420
Suppurative	24 (23.8%)	125 (32.5%)	0.091
Complicated Pathology			
Gangrenous	4 (4.0%)	11 (2.9%)	0.527 ^F
Ruptured	31 (30.7%)	101 (26.2%)	0.370
Abscess	2 (2.0%)	3 (0.8%)	0.278 ^F
ผลทางห้องปฏิบัติการก่อนผ่าตัด			
WBC ($> 12,000$ or $< 4,000 \text{ cell}/\text{mm}^3$)	71 (70.3%)	256 (66.5%)	0.468
% Neutrophil ($> 80\%$)	66 (65.3%)	237 (61.6%)	0.484
Hyponatremia ($< 130 \text{ mEq}/\text{L}$)	1 (1.0%)	9 (2.3%)	0.696 ^F
ระยะเวลาอรับการผ่าตัด (ชั่วโมง \pm SD)	3.1 ± 2.26	24.2 ± 16.2	<0.001
ระยะเวลาทำการผ่าตัด (นาที \pm SD)	58.0 ± 36.3	65.0 ± 52.8	0.211

*ผ่าตัดตั้งแต่ต้น = ภายใน 8 ชั่วโมงที่มีถึงโรงพยาบาล, **ผ่าตัดภายใน 8 ชั่วโมงที่มีถึงโรงพยาบาล,

F = Fisher's test

ครั้ง/ราย; $p = 0.020$) เมื่อแยกวิเคราะห์เปรียบเทียบการผ่าตัดได้สัติงอักเสบการผ่าตัดภายในและภายนอก 24 และ 48 ชั่วโมง ทั้งกลุ่มพยาธิวิทยาแบบ Uncomplicated appendicitis และ Complicated appendicitis จำนวนครั้งการใช้ยาแรงงับปวดทางหลอดเลือดดำหลังผ่าตัดไม่แตกต่างกัน ดังตารางที่ 2

3. เปรียบเทียบระยะเวลาอันตรายหลังการผ่าตัดได้สัติงอักเสบ

ผลการศึกษาระยะเวลาอันตรายหลังการผ่าตัดได้สัติงอักเสบ กลุ่มพยาธิวิทยาแบบ Uncomplicated appendicitis พบว่าการผ่าตัดภายใน 8 ชม. และการผ่าตัดภายนอก 8 ชม. ไม่แตกต่างกัน (44.6 และ 47.9 ชม./ราย; $p = 0.368$) กลุ่มพยาธิวิทยาแบบ Complicated

appendicitis พบว่าการผ่าตัดภายใน 8 ชม. และการผ่าตัดภายนอก 8 ชม. ไม่แตกต่างกัน (81.2 และ 105.0 ชม./ราย; $p = 0.062$) อย่างไรก็ไดเมื่อแยกวิเคราะห์เปรียบเทียบการผ่าตัดได้สัติงอักเสบการผ่าตัดภายในและภายนอกของทั้ง 24 และ 48 ชั่วโมง กลุ่มพยาธิวิทยาแบบ Uncomplicated appendicitis พบว่าการผ่าตัดภายใน 24 และ 48 ชม. มีระยะเวลาอันตรายหลังการผ่าตัดได้สัติงอักเสบ น้อยกว่าการผ่าตัดภายนอก 24 และ 48 ชม. อย่างมีนัยสำคัญทางสถิติ (45.4 และ 57.5 ชม./ราย; $p = 0.003$) และ (46.4 และ 67.6 ชม./ราย; $p = 0.004$) ตามลำดับ ในขณะที่กลุ่มพยาธิวิทยาแบบ Complicated appendicitis พบว่าการผ่าตัดภายใน 48 ชม. และภายนอก 48 ชม. มีระยะเวลาอันตรายหลังการผ่าตัดได้สัติงอักเสบไม่แตกต่างกัน ดังตารางที่ 2

ตารางที่ 2 เปรียบเทียบการใช้ยาแรงงับปวดทางหลอดเลือดดำและระยะเวลาอันตรายหลังการผ่าตัดได้สัติงอักเสบ

ผลทางพยาธิวิทยา กลุ่มเวลาอันตรายหลังการผ่าตัด	การใช้ยา (ครั้ง) mean \pm SD	P-value	ระยะเวลาอันตรายหลังผ่าตัด(ชม.) mean \pm SD	P-value
Uncomplicated (n = 334)				
- Early appendectomy (n = 64)	0.8 \pm 0.8	0.907	44.6 \pm 19.7	0.368
- Delayed appendectomy (n = 270)	0.8 \pm 1.3		47.9 \pm 27.7	
Complicated (n = 152)				
- Early appendectomy (n = 37)	1.4 \pm 1.7	0.020	81.2 \pm 46.0	0.062
- Delayed appendectomy (n = 115)	2.5 \pm 2.5		105.0 \pm 72.7	
Subgroup analysis Delayed > 24 Hours				
- Uncomplicated Early appendectomy (n = 284)	0.9 \pm 2.0	0.188	45.4 \pm 23.6	0.003
Delayed appendectomy (n = 50)	0.8 \pm 1.0		57.5 \pm 37.3	
- Complicated Early appendectomy (n = 133)	2.2 \pm 2.4	0.918	97.5 \pm 69.5	0.424
Delayed appendectomy (n = 19)	2.2 \pm 1.9		110 \pm 54.8	
Subgroup analysis Delayed > 48 Hours				
- Uncomplicated Early appendectomy (n = 321)	0.6 \pm 0.5	0.492	46.4 \pm 25.1	0.004
Delayed appendectomy (n = 13)	0.8 \pm 1.2		67.6 \pm 44.8	
- Complicated Early appendectomy (n = 146)	2.1 \pm 2.3	0.235	149.3 \pm 42.8	0.065
Delayed appendectomy (n = 6)	3.3 \pm 2.9		97.2 \pm 68.0	

สมาคมศัลยแพทย์ทั่วไปแห่งประเทศไทย ในพระบรมราชูปถัมภ์ อาคารเฉลิมพระบรมราชูปถัมภ์ 50 ปี
เลขที่ 2 ซอยศุนย์วิจัย ถนนเพชรบุรีตัดใหม่ กรุงเทพฯ 10310 โทรศัพท์ : 0-2716-6450, 0-2716-6451

การอภิปรายผลการวิจัย

1. จำนวนครั้งการใช้ยาระงับปวดทางหลอดเลือดดำหลังการผ่าตัดไส้ติ้งอักเสบ

จำนวนครั้งการใช้ยาระงับปวดทางหลอดเลือดดำหลังการผ่าตัดไส้ติ้งอักเสบ ในกลุ่มพยาธิวิทยาแบบ Uncomplicated appendicitis การผ่าตัดภายใน 8 ชม. และภายในหลัง 8 ชม. ใช้ยาระงับปวดหลังผ่าตัดไม่แตกต่างกัน สอดคล้องกับการศึกษาการใช้ยาปฏิชีวนะก่อนในผู้ป่วยไส้ติ้งอักเสบเฉียบพลันและผ่าตัดไส้ติ้งในเข้าวันต่อมาพบผลการรักษาหลังผ่าตัดไม่แตกต่างกัน^{1,2} อย่างไรก็ได้ในกลุ่มพยาธิวิทยาแบบ Complicated appendicitis การผ่าตัดภายใน 8 ชม. ที่ผู้ป่วยมาถึงโรงพยาบาลช่วยลดความต้องการยาระงับปวดหลังผ่าตัดไส้ติ้งอักเสบได้ สอดคล้องกับการศึกษาการผ่าตัดไส้ติ้งอักเสบล่าช้ากว่า 8 ชม. ที่มาถึงห้องฉุกเฉินของโรงพยาบาลพบว่าสัมพันธ์กับการเกิดภาวะแทรกซ้อนมากขึ้น⁹ ใน การศึกษานี้พบว่า กลุ่มที่ผ่าตัดภายในหลังมีระยะเวลาการผ่าตัดมากกว่าการผ่าตัดด้วยตัวตัน ซึ่งอาจเป็นเพราะกลุ่มพยาธิวิทยาแบบ Complicated appendicitis มีระดับการอักเสบตั้งต้นมากกว่า Uncomplicated appendicitis เมื่อเวลาผ่านไป การดำเนินโรคมากขึ้นส่งผลให้อาจมีการผ่าตัดที่ซับซ้อนกว่า จึงมีอาการปวดหลังผ่าตัดได้มากกว่าและผู้ป่วยต้องการยาระงับปวดหลังผ่าตัดมากกว่าการผ่าตัดไส้ติ้งอักเสบภายใน 8 ชั่วโมงที่มาถึงโรงพยาบาล

2. ระยะเวลาบนโรงพยาบาลหลังการผ่าตัดไส้ติ้งอักเสบ

ระยะเวลาบนโรงพยาบาลหลังผ่าตัดไส้ติ้งอักเสบ ทั้งในกลุ่มพยาธิวิทยาแบบ Uncomplicated appendicitis และกลุ่มพยาธิวิทยาแบบ Complicated appendicitis

การผ่าตัดภายใน 8 ชม. และภายในหลัง 8 ชม. มีระยะเวลาบนโรงพยาบาลหลังผ่าตัดไม่แตกต่างกัน ขัดแย้งกับการศึกษาการผ่าตัดภายใน 8 ชม. ที่มาถึงห้องฉุกเฉินของโรงพยาบาลพบว่าสัมพันธ์กับภาวะแทรกซ้อนและระยะเวลาบนโรงพยาบาลนั้น อย่างไรก็ตามแยกวิเคราะห์เปรียบเทียบการผ่าตัดภายใน 24 และ 48 ชม. พบว่าในกลุ่มกลุ่มพยาธิวิทยาแบบ Uncomplicated appendicitis หากระยะเวลาการผ่าตัดนานกว่า 24 ชม. ที่ผู้ป่วยมาถึงโรงพยาบาลจะเพิ่มระยะเวลาบนโรงพยาบาลหลังผ่าตัดนานขึ้น และแม้ว่าจะผ่าตัดภายใน 24 ชม. แต่ยังผ่าตัดภายใน 48 ชม. ก็ยังได้ประโยชน์ ซึ่งอาจเป็นผลมาจากการเมื่อเวลาผ่านไป การอักเสบดำเนินมากขึ้นแม้ว่าผลตรวจอุจิวิทยาจะยังไม่เปลี่ยนกลุ่มเป็น Complicated appendicitis ก็ตาม โดยการศึกษานี้กลุ่มพยาธิวิทยาแบบ Complicated appendicitis พบแพลตติดเชื้อหลังผ่าตัดแบบ superficial wound infection 9 รายจากทั้งหมด 152 ราย คิดเป็นร้อยละ 6 สอดคล้องกับการศึกษาไส้ติ้งอักเสบ ที่ให้ยาปฏิชีวนะก่อนและผ่าตัดไส้ติ้งอักเสบเปรียบเทียบกลุ่มที่ให้ยาปฏิชีวนะก่อนและไม่ผ่าตัดหากผู้ป่วยมีอาการตื้นพบร้า กลุ่มที่รับการผ่าตัดมีแพลตติดเชื้อหลังผ่าตัดแบบ superficial wound infection 19 รายใน 273 ราย คิดเป็นร้อยละ 7¹² เนื่องจากแพลตติดเชื้อหลังผ่าตัดอาจเป็นผลมากจากการติดเชื้อที่หลงเหลือในช่องท้องและจำเป็นต้องสังเกตุอาการใกล้ชิดเป็นสาเหตุที่ทำให้ระยะเวลาบนหลังผ่าตัดนานขึ้นได้

สรุป

การรับผ่าตัดไส้ติ้งอักเสบเฉียบพลันภายใน 8 ชั่วโมงแล้วนำผู้ป่วยไปผ่าตัดในวันต่อมาไม่ได้เพิ่มระยะเวลาบนโรงพยาบาลหลังผ่าตัด แต่หากสามารถทำการผ่าตัดไส้ติ้งอักเสบเฉียบพลันได้ภายใน 8 ชั่วโมงที่ผู้ป่วยมาถึงรพ. จะช่วยลดการใช้ยาระงับปวดหลังผ่าตัดลงได้ ทั้งนี้

การพิจารณาผ่าตัดรักษาขึ้นกับความยินยอมของผู้ป่วยแต่ละราย เวลาที่ผู้ป่วยมาถึงโรงพยาบาล และความเร่งด่วนของการใช้ห้องผ่าตัดฉุกเฉินนอกเวลาราชการในบริบทของแต่ละโรงพยาบาล เพื่อประโยชน์แก่ผู้ป่วยทุกคนอย่างแท้จริง

ข้อเสนอแนะ

การรักษาไส้ติ่งอักเสบเฉียบพลันที่ยังไม่มีภาวะแทรกซ้อนด้วยยาปฏิชีวนะก่อนช่วยลดจำนวนการผ่าตัดไส้ติ่งอักเสบฉุกเฉินลงได้ และหากจำเป็นต้องผ่าตัดควรพิจารณาผ่าตัดภายใน 24-48 ชม. ที่ผู้ป่วยมาถึงโรงพยาบาล ทั้งนี้การผ่าตัดไส้ติ่งอักเสบในปัจจุบันสามารถทำได้ทั้งการผ่าตัดแบบเปิด และการผ่าตัดผ่านกล้องซึ่งให้ผลการรักษาที่ดีและเพิ่มทางเลือกการรักษาให้กับผู้ป่วยมากขึ้น

ข้อจำกัดการวจัย

ผู้ป่วยที่ได้รับยาปฏิชีวนะและมีอาการตีนี้แล้ว อาจไม่จำเป็นต้องผ่าตัดไส้ติ่งอักเสบ และผู้ป่วยบางรายรับการส่งตัวมาจากโรงพยาบาลชุมชน ซึ่งได้รับการรักษาด้วยยาปฏิชีวนะมาก่อนแล้ว (partial treatment) ควรเก็บข้อมูลเพิ่มเติมแยกวิเคราะห์เพื่อการศึกษาต่อไป

เอกสารอ้างอิง

1. Shin CS, Roh YN, Kim JI. Delayed appendectomy versus early appendectomy in the treatment of acute appendicitis: a retrospective study. World J Emerg Surg 2014;9:8.
2. Patel SV, Zhang L, Mir ZM, Lemke M, Leeper WR, Allen LJ, et al. Delayed Versus Early Laparoscopic Appendectomy for Adult Patients With Acute Appendicitis: A Randomized Controlled Trial. Ann Surg 2024;279:88-93.
3. Seudeal K, Abidi H, Shebrain S. Early versus delayed appendectomy: A comparison of outcomes. Am J Surg 2018;215:483-6.
4. Nyström P, Nordberg M, Boström L. Is the performance of acute appendectomy at different times of day equal, in terms of postoperative complications, readmission, death, and length of hospital stay? A Swedish retrospective cohort study of 4950 patients. European Journal of Trauma and Emergency Surgery 2023;50.
5. Cheng Y, Xiong X, Lu J, Wu S, Zhou R, Cheng N. Early versus delayed appendectomy for appendiceal phlegmon or abscess. Cochrane Database Syst Rev 2017;6: Cd011670.
6. Zhou S, Cheng Y, Cheng N, Gong J, Tu B. Early versus delayed appendectomy for appendiceal phlegmon or abscess. Cochrane Database Syst Rev 2024;5: Cd011670.
7. Giannis D, Matenoglou E, Moris D. Hyponatremia as a marker of complicated appendicitis: A systematic review. Surgeon 2020;18:295-304.
8. Hajibandeh S, Hajibandeh S, Hobbs N, Mansour M. Neutrophil-to-lymphocyte ratio predicts acute appendicitis and distinguishes between complicated and uncomplicated appendicitis: A systematic review and meta-analysis. Am J Surg 2020;219:154-63.
9. Bolmers MDM, de Jonge J, Bom WJ, van Rossem CC, van Geloven AAW, Bemelman WA. In-hospital Delay of Appendectomy in Acute, Complicated Appendicitis. J Gastrointest Surg 2022;26:1063-9.
10. Di Saverio S, Podda M, De Simone B, Ceresoli M, Augustin G, Gori A, et al. Diagnosis and treatment of acute appendicitis: 2020 update of the WSES Jerusalem guidelines. World J Emerg Surg 2020;15:27.
11. Thienthong S, editor Clinical Guidance for Acute Postoperative Pain Management 2019 The Royal College of Anesthesiologists of Thailand (RCAT) and The Thai Association for the Study of Pain (TASP) : Second Edition 2020.
12. Salminen P, Paajanen H, Rautio T, Nordström P, Aarnio M, Rantanen T, et al. Antibiotic Therapy vs Appendectomy for Treatment of Uncomplicated Acute Appendicitis: The APPAC Randomized Clinical Trial. JAMA 2015;313:2340-8.

Original Article

Clinicopathological Finding and Prognosis in Bilateral Breast Cancer: Nakhonphanom Hospital

Natawan Hunpayon, M.D.^{1*}
Sutthichai Nakphook, M.D. Ph.D.^{2*}

¹Department of Surgery, Nakhonphanom Hospital, Nakhonphanom

²Nakhonphanom & Department of Disease Control Epidemiological Research Unit, Nakhonphanom Hospital, Nakhonphanom

ABSTRACT

Background and Objectives: The incidence of bilateral breast cancer is 2-12% of patients with breast cancer. This study aimed to study and compare clinicopathological finding, associated factor, previous treatment and prognosis of patients with bilateral breast cancer, both of synchronous and metachronous bilateral breast cancer (SBBC and MBBC) who visited Nakhonphanom Hospital.

Material and Methods: This study was a single center, retrospective descriptive study. Data was collected from medical records. 32 patients with bilateral breast cancer. (24 MBBC and 8 SBBC) who visited at Nakhonphanom Hospital between 1st October 2014 – 30th September 2024 were selected from the database. A total of 196 patients with unilateral breast cancer were selected as the control group. Data was analyzed by statistical distribution, frequency, mean and standard deviation (SD). The continuous data was tested for normal distribution. Quantitative variables were compared mean among two groups by independent t-test and compared the mean more than two groups using one-way ANOVA test. Nominal categorical data was compared proportion using Fisher's exact test. The statistically significant variance was *p*-value < 0.05.

Result: The incidence of bilateral breast cancer in Nakhonphanom Hospital is 4.15%. Diagnosis breast cancer at premenopausal period is associated risk of bilateral breast cancer, significantly (*p* = 0.003), especially SBBC. (*p* = 0.008) ER negative and PR negative of the first cancer is associated factors of bilateral breast cancer, significantly. (*p* < 0.001, *p* = 0.047) The interval between diagnosis the first and the second cancer in MBBC ranged 7-216 months. Patients who were lost to follow up had poor prognosis.

Conclusion: Associated factors of bilateral breast cancer are diagnosis breast cancer in premenopausal period and ER/PR negative. Breast cancer patients should be followed up and surveillance to prevent and aware breast cancer in contra lateral breast.

Keywords: Bilateral breast cancer, synchronous bilateral breast cancer, metachronous bilateral breast cancer, clinicopathological finding, prognosis, associated factor

Submission 10 February 2025 | Revised 15 March 2025 | Accepted 16 April 2025 | Published online 20 April 2025

Corresponding Authors: Natawan Hunpayon, Department of Surgery, Nakhonphanom Hospital, Nakhonphanom 48000, Thailand; Telephone 081-8732426; Email: natawanh@hotmail.com

Introduction

Bilateral breast cancer is uncommon. The incidence varies between 2-12% of all breast cancer patients.^{1,2,4,5} The risk of developing the second contralateral breast cancer is 2-6 times higher than the risk of developing the initial breast cancer in general population.^{1,5,6} The prognosis of patients with BBC depends on the stage at the detection of both breast cancer.⁶ The risks of BBC include family history of cancer, diagnosed breast cancer at early age less than 40 years old, lobular carcinoma, hormonal receptor status, HER2 expression positive, treatment for the first breast cancer and BRCA mutation.^{1,2,4-7}

Bilateral breast cancer is divided to synchronous bilateral breast cancer (SBBC) and metachronous bilateral breast cancer (MBBC), depending on the time interval between the diagnosis of BBC in both breasts. The time interval to determine between SBBC and MBBC is controversial.^{1,3} Synchronous bilateral breast cancer defines as the cancers diagnosed at the same time or within 6 months.^{1,12,13} Metachronous bilateral breast cancer defines as the second breast cancer occurs after 6 months the first breast cancer was diagnosed.^{1,12,13} The literature³ reported the incidence of SBBC and MBBC was 2% and 3%, respectively. The literature⁵ shown 5 years overall survival in SBBC was 60% and 78.7% for MBBC. Chaudary et al. proposed the following criteria to differentiate second primary breast cancer from metastasis

to contralateral breast: in the case of a second primary.

1. The tumor in the second breast is histologically different from the primary tumor.
2. Presence of *in situ* change in the contralateral breast.
3. The degree of histological differentiation in the second breast is distinctly greater than the lesion in the first breast.
4. There is no evidence of local, regional, or distant metastases from cancer of the ipsilateral breast.
5. Presence of DCIS (*in situ* component) in contralateral breast favors a primary over metastatic lesion.¹⁵

There were an increasing number of bilateral breast cancer patients visited at Nakhonphanom Hospital last 3 years. (3 in 2022, 9 in 2023 and 7 in 2024) There were an increasing number of unilateral breast cancer at Nakhonphanom Hospital also. There is no previous study about BBC in Nakhonphanom Hospital. The aim of this study is to study clinicopathological report, previous treatment and associated factor of BBC, lead to surveillance and prevention BBC for Nakhonphanom Hospital in the future.

Methods

This study was a single center, retrospective descriptive study. All patients with bilateral breast cancer who visited at Nakhonphanom Hospital

between 1st October 2014 – 30th September 2024 were selected from the database. Patients who underwent surgery at other hospitals and patients who were referred out or referred from other hospital were included. The exclusion criteria were patients who missing important clinicopathological report or required data. The data were extracted from the hospital database, which included age at diagnosis each tumor of breast cancer, menopausal status, family history of breast cancer, cell type, tumor grade, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 (HER2) status and TMN stage, according to National Comprehensive Cancer Network. (NCCN)

Menopause defined according to National Comprehensive Cancer Network (NCCN) 1) age ≥ 60 years old, 2) patients who underwent bilateral oophorectomy. 3) patients who younger than 60 years old with amenorrhea for 12 months or more in the absence of chemotherapy, endocrine therapy or ovarian suppression, FSH and estradiol (E2) level were in postmenopausal range. 4) patients who younger than 60 years old and taking endocrine drugs with FSH and estradiol (E2) level were in postmenopausal range.³

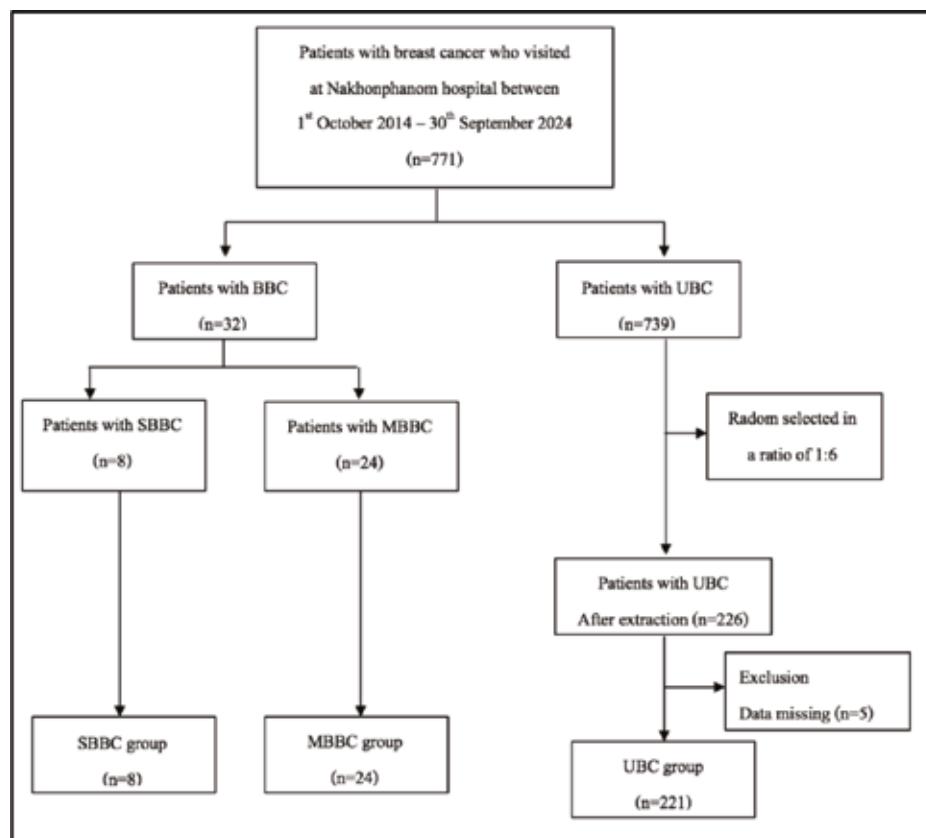
Family history of cancer was defined as one or more first-or second-degree relatives of patients had cancer (breast cancer or another cancers).³

For bilateral breast cancer, the first tumor was defined as breast cancer which was confirmed

by pathological report from biopsy.³ The second tumor was defined as breast cancer which was confirmed after that.³ TMN stage was defined according to the staging of National Comprehensive Cancer Network. (NCCN) The cutoff value for Ki 67 was set at 20% due to the patients' probability of receiving more aggressive treatment, according to National cancer institute guideline.

After determining the number of patients with bilateral breast cancer, unilateral breast cancer patients (UBC) who visited at Nakhonphanom Hospital at the same time were selected randomly from the database by simple random with Excel program, as the control group at a ratio 1:6. Assuming that the critical data loss rate is 15%. Patients who underwent surgery at another hospitals and patients who were referred out or referred from another hospital were included. The exclusion criteria were patients who missing important clinicopathological report or required data.

From the hospital database 771 patients with all breast cancer patients who visited Nakhonphanom Hospital between 1st October 2014 – 30th September 2024, we found 739 patients with unilateral breast cancer and 32 patients with bilateral breast cancer. (24 MBBC and 8 SBBC) After excluding 5 patients with unilateral breast cancer who missing required data, a total of 221 patients with unilateral breast cancer were selected as the control group and all patients with



bilateral breast cancer were enrolled. (As Figure 1: flow diagram)

Statistical analysis

This study was performed with Stata version 17.0. Data was collected from medical records. Patients characteristic information, age at diagnosis each side breast cancer, family history of cancer, interval between diagnosis each side breast cancer, follow up as an appointment, previous treatment of first breast cancer, pathological report was collected and analyzed by statistical distribution,

frequency, mean and standard deviation (SD). The continuous data was tested for normal distribution. Quantitative variables were compared mean among two groups by independent *t*-test and compared the mean more than two groups using one-way ANOVA test. Nominal categorical data was compared proportion using Fisher's exact test. The statistically significant variance was *p*-value < 0.05. This study was approved by the institutional ethics committee with approval number NP-EC11-No.49/2567

Figure 1 Flow diagram of this study. BBC = bilateral breast cancer, SBBC= synchronous bilateral breast cancer, MBBC = metachronous bilateral breast cancer, UBC = unilateral breast cancer.

Results

771 patients with breast cancer were screened, all 32 bilateral breast cancer patients were selected. (8 were synchronous and 32 were metachronous) 739 were patients with unilateral breast cancer and 226 patients were selected by Excel program computer randomly as a ratio of 1:6. After 5 patients with unilateral breast cancer were excluded due to missing required data, 221 patients with unilateral breast cancer were enrolled as a control group. (Figure 1)

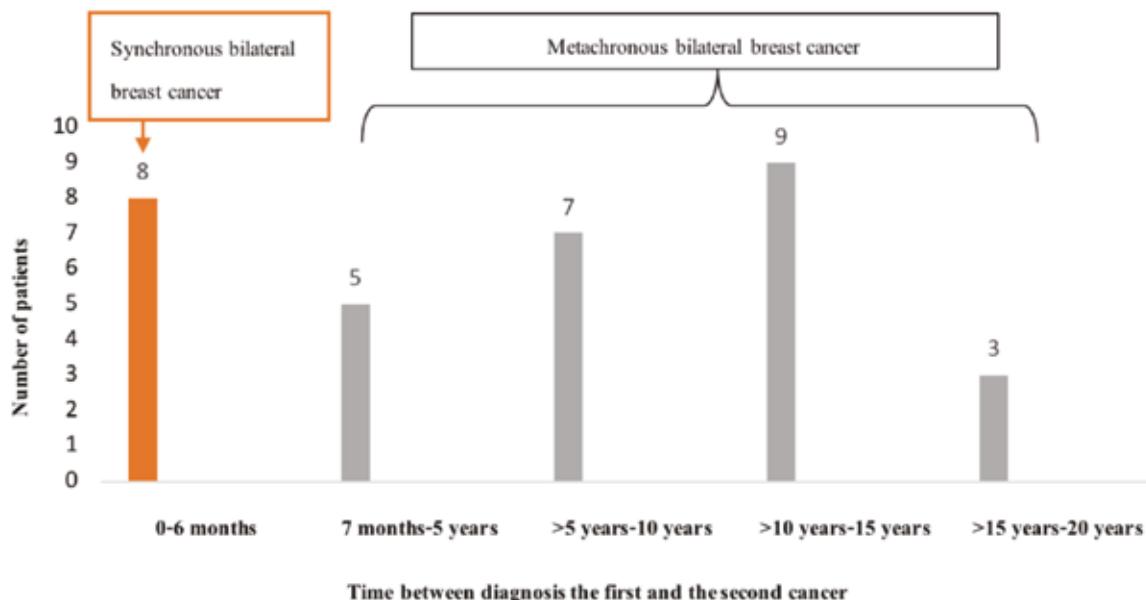
The overall incidence of bilateral breast cancer is 4.15%. The incidence of SBBC and MBBC in this study were 25% and 75% from all BBC, respectively. All patients in this study were female. The average age at the first diagnosis of cancer in SBBC, MBBC and UBC were 61.13 ± 5.11 , 47.83 ± 8.50 and 54.64 ± 10.25 years, respectively. The average age at the second diagnosis of cancer in MBBC was 57.63 ± 6.51 years. There was no significant difference in the average age at the first and the second diagnosis of cancer in all group. (Table 1) All patients with SBBC developed cancer at the same time. For MBBC, the interval between diagnosis two cancer ranged since 7 to 216 months, mean 113 ± 59.63 months. Most patients developed MBBC between more than 10 to 15 years after the date of first diagnosis cancer (9 patients). The risk persisted after that until nearly 20 years. (As table 1 and figure 2) About the menopausal status,

all patients with SBBC were in postmenopausal period. ($n = 8, 100\%$) Mostly patients with MBBC were in premenopausal period. ($n = 16, 66.67\%$) The number of postmenopausal periods in patients with UBC were higher than patients in premenopausal period. ($n = 114, 51.58\%$) Summary, patients with BBC were in premenopausal period, higher than UBC, significantly ($p = 0.003$), especially in SBBC. ($p = 0.008$) But there was no significant difference between UBC and MBBC. (Table 1) In BBC groups, there were only 10 (31.25%) had a family history of cancer, 4 (40%) for history of breast cancer and 6 (60%) for others cancer. In the UBC groups, only 44 (19.91%) had family history of cancer which 17 (38.64%) for history of breast cancer and 27 (61.36%) for others cancer. from this study, we found that there was no significant difference in family history of cancer in all group. ($p = 0.272, p = 0.663, p = 0.185$ respectively.) (Table 1) About surgical methods, all patients with BBC underwent MRM ($n = 32, 100\%$) Most of patients with UBC underwent MRM ($n = 218, 98.64\%$), only 2 (0.90%) underwent BCS and 1 (0.45%) underwent mastectomy with SLNB. However, there was no significant difference in surgical methods in three groups. (Table 1)

Pathological features in the first cancer, the most patients in all groups were invasive ductal carcinoma. (7 in SBBC, 22 in MBBC and 208 in UBC) Patients with tumor grade 2 were found the most in BBC and UBC groups, $n = 19$ (59.38%) and $n =$

Table 1 Baseline characteristic of bilateral breast cancer and unilateral breast cancer patients.

Characteristics	BBC			UBC (n=221)	P value		
	Overall (n=32)	SBBC (n=8)	MBBC (n=24)		UBC vs. SBBC vs.	UBC vs. SBBC	UBC vs. MBBC
Age (years) Mean (SD)							
1 st cancer	51.16 (9.68)	61.13 (5.11)	47.83 (8.50)	54.64 (10.25)	0.067*	0.077†	0.256†
2 nd cancer	58.50 (6.30)	61.13 (5.11)	57.63 (6.51)	-	0.178†	-	-
Interval between two cancers diagnosis (months)	85.38 ± 71.49 (7-216)	0 (0)	113.83 ± 59.23 (7-216)	-	< 0.001†	-	-
Mean ± SD (range)							
Menopause status (%)							
Pre menopause	16 (50)	0 (0)	16 (66.67)	107 (48.42)	0.003‡	0.008‡	0.131‡
Post menopause	16 (50)	8 (100)	8 (33.33)	114 (51.58)	-	-	-
Family history of cancer (%)							
No	22 (68.75)	6 (75)	16 (66.67)	177 (80.09)	0.272‡	0.663‡	0.185‡
Yes	10 (31.25)	2 (25)	8 (33.33)	44 (19.91)	-	-	-
Breast cancer	4 (40)	1 (50)	3 (37.50)	17 (38.64)	1.000‡	1.000‡	1.000‡
Others	6 (60)	1 (50)	5 (62.50)	27 (61.36)	-	-	-
Surgical methods (%)							
MRM	32 (100)	8 (100)	24 (100)	218 (98.64)	1.000‡	1.000‡	1.000‡
BCS	0 (0)	0 (0)	0 (0)	2 (0.90)	-	-	-
Mastectomy and SLNB	0 (0)	0 (0)	0 (0)	1 (0.45)	-	-	-


SBBC = synchronous bilateral breast cancer, MBBC = metachronous bilateral breast cancer, UBC = unilateral breast cancer,

MRM = modified radical mastectomy, BCS = breast conservative surgery, SLNB = sentinel lymph node biopsy

* P-value from ANOVA Analysis of variance, †P-value from independent t-test, ‡P-value from Fisher's exact probability test

141 (63.80%) respectively. There was no significant difference in cell type and tumor grade between all group. (Table 2) Considering about hormonal status in the first cancer, both groups of BBC were in ER negative group and positive group equally. (n = 16, 50% in each group) In specific details in

each group, the study found that all SBBC had ER positive (n = 8, 100%) but in MBBC, the proportion between ER negative was higher than ER positive. (n = 16, 66.67% and n = 8, 33.33% respectively) In UBC, the number of patients in ER positive were higher than ER negative. (n = 148, 66.97% and n

Figure 2 The frequency of bilateral breast cancer depending on the time between diagnosis the first and the second cancer.

= 73, 33.33% respectively) There was significant difference in ER status between UBC and the first cancer of BBC group ($p < 0.001$), especially between UBC and the first cancer of MBBC. ($p = 0.002$) About PR status in the first cancer, this study found that mostly patients with SBBC had PR positive ($n = 6, 75\%$), but mostly patients with MBBC had PR negative. ($n = 16, 66.67\%$) The proportion between PR negative group in UBC was higher than positive group. ($n = 94, 42.53\%$ and $n = 127, 57.47\%$ respectively) There were significant difference PR status between three groups, $p = 0.047, 0.047, p = 0.030$ respectively. (Table 2)

Most patients in all three groups had HER-2

negative, 6 (75%) in SBBC, 13 (54.17%) in MBBC and 131 (59.28%) in UBC. However, HER2 expression 2+ was not further evaluated on fluorescence in situ hybridization (FISH) due to this test was not available in Nakhonphanom Hospital. Therefore, all patients who had HER2 equivocal could not be determined in positive or negative group. Most patients in MBBC and UBC groups had Ki 67 $\pm 20\%$. ($n = 18, 75\%$ and $n = 147, 66.52\%$ respectively) All patients with SBBC had Ki 67 $\pm 20\%$. There was no significant difference between each group whether HER2 expression and Ki 67. (Table 2)

According to this study, most of patients with SBBC were diagnosed in stage 2A ($n = 4, 50\%$)

Table 2 Comparison of pathological features between unilateral breast cancer and bilateral breast cancer patients (1st cancer).

Characteristics	1 st BBC			UBC	P value		
	Overall (n = 32)	1 st SBBC (n = 8)	1 st MBBC (n = 24)		UBC vs. 1 st SBBC vs. 1 st MBBC	UBC vs. 1 st SBBC	UBC vs. 1 st MBBC
Cell type (%)					0.188*	0.217*	0.226*
Invasive ductal	29 (90.63)	7 (87.50)	22 (91.67)	208 (94.12)	-	-	-
Invasive Lobular	3 (9.38)	1 (12.50)	2 (8.33)	5 (2.26)	-	-	-
Others	0 (0)	0 (0)	0 (0)	8 (3.62)	-	-	-
Tumor grade (%)					0.182*	0.569*	0.095*
Grade 1	1 (3.13)	1 (12.50)	0 (0)	27 (12.22)	-	-	-
Grade 2	19 (59.38)	4 (50.00)	15 (62.50)	141 (63.80)	-	-	-
Grade 3	12 (37.50)	3 (37.50)	9 (37.50)	53 (23.98)	-	-	-
ER status (%)					< 0.001*	0.058*	0.002*
Negative	16 (50)	0 (0)	16 (66.67)	73 (33.33)	-	-	-
Positive	16 (50)	8 (100)	8 (33.33)	148 (66.97)	-	-	-
PR status (%)					0.047*	0.047*	0.030*
Negative	18 (56.25)	2 (25)	16 (66.67)	94 (42.53)	-	-	-
Positive	14 (43.75)	6 (75)	8 (33.33)	127 (57.47)	-	-	-
HER2 expression (%)					0.299*	0.157*	0.425*
Negative	19 (59.38)	6 (75.00)	13 (54.17)	131 (59.28)	-	-	-
Positive	5 (15.63)	0 (0)	5 (20.83)	57 (25.79)	-	-	-
Equivocal	8 (25.00)	2 (25.00)	6 (25.00)	33 (14.93)	-	-	-
Ki 67 status (%)					0.097*	0.057*	0.496*
< 20%	6 (18.75)	0 (0)	6 (25.00)	74 (33.48)	-	-	-
≥ 20%	26 (81.25)	8 (100.00)	18 (75.00)	147 (66.52)	-	-	-
Tumor stage (%)					0.198*	0.170*	0.267*
T1	0 (0)	0 (0)	0 (0)	19 (8.60)	-	-	-
T2	25 (78.13)	5 (62.50)	20 (83.33)	154 (69.68)	-	-	-
T3	3 (9.38)	1 (12.50)	2 (8.33)	36 (16.39)	-	-	-
T4	4 (12.50)	2 (25)	2 (8.33)	12 (5.43)	-	-	-
Axillary lymph node stage (%)					0.991*	0.899*	0.961*
N0	15 (46.88)	4 (50)	11 (45.83)	109 (49.32)	-	-	-
N1	11 (34.38)	3 (37.50)	8 (33.33)	62 (28.05)	-	-	-
N2	4 (12.50)	1 (12.50)	3 (12.50)	27 (12.22)	-	-	-
N3	2 (6.25)	0 (0)	2 (8.33)	23 (10.41)	-	-	-

Table 2 (cont.) Comparison of pathological features between unilateral breast cancer and bilateral breast cancer patients (1st cancer).

Characteristics	1 st BBC			UBC	P value		
	Overall (n = 32)	1 st SBBC (n = 8)	1 st MBBC (n = 24)		UBC vs. 1 st SBBC vs 1 st MBBC	UBC vs. 1 st SBBC	UBC vs. 1 st MBBC
Distant metastasis (%)**					0.706*	1.000*	0.606*
No	32 (100)	8 (100)	24 (100)	211 (95.48)			
Yes	0 (0)	0 (0)	0 (0)	10 (4.52)	-	-	-
Lung	0 (0)	0 (0)	0 (0)	8 (80)	-	-	-
Liver	0 (0)	0 (0)	0 (0)	5 (50)	-	-	-
Stage (%)					0.547*	0.291*	0.789*
1A	0 (0)	0 (0)	0 (0)	14 (6.33)	-	-	-
1B	0 (0)	0 (0)	0 (0)	1 (0.45)	-	-	-
2A	13 (40.63)	4 (50)	9 (37.50)	86 (38.91)	-	-	-
2B	11 (34.38)	1 (12.50)	10 (41.67)	59 (26.70)	-	-	-
3A	4 (12.50)	1 (12.50)	3 (12.50)	30 (13.57)	-	-	-
3B	2 (6.25)	2 (25.00)	0 (0)	8 (3.62)	-	-	-
3C	2 (6.25)	0 (0)	2 (8.33)	16 (7.24)	-	-	-
4	0 (0)	0 (0)	0 (0)	7 (3.17)	-	-	-

ER = estrogen receptor, PR = progesterone receptor, HER2 = human epidermal growth factor 2

* P-value from Fisher's exact probability test

** Some patients had more than one distance metastasis

* P-value from ANOVA Analysis of variance, [†]P-value from independent t-test, [‡]P-value from Fisher's exact probability test

and most of patients with MBBC were in stage 2B at the first diagnosis of cancer. (n = 10, 41.67%) There was no distant metastasis in SBBC and at the first diagnosis of MBBC but distant metastasis was found in UBC (n = 10, 4.52%) which were lung and liver metastasis. (n = 8, 80% and n = 5, 50% respectively) However, TMN stage was not significant difference between three groups. (Table 2)

There was no significant difference between the first and second cancer of bilateral breast cancer in specific details in pathological report whether cell type, tumor grade, ER/PR status HER2 and Ki 67. However, HER2 expression 2+ was not further evaluated on fluorescence in situ hybridization (FISH) due to this test was not available in Nakhonphanom hospital. Therefore, patients who were in HER2 equivocal group could

Table 3 Comparison of pathological features between synchronous and metachronous bilateral breast cancer (1st and 2nd cancer)

Characteristics	SBBC (n = 8)			MBBC (n = 24)		
	1 st cancer	2 nd cancer	P value	1 st cancer	2 nd cancer	P value
Cell type (%)	1.000*			0.489*		
Invasive ductal	7 (87.50)	7 (87.50)	-	22 (91.67)	24 (100)	-
Invasive lobular	1 (12.50)	1 (12.50)	-	2 (8.33)	0 (0)	-
Others	0 (0)	0 (0)	-	0 (0)	0 (0)	-
Tumor grade (%)	1.000*			0.760*		
Grade 1	1 (12.50)	1 (12.50)	-	0 (0)	1 (4.17)	-
Grade 2	4 (50)	5 (62.50)	-	15 (62.50)	16 (66.67)	-
Grade 3	3 (37.50)	2 (25.00)	-	9 (37.50)	7 (29.17)	-
ER status (%)	-			0.380*		
Negative	0 (0)	0 (0)	-	16 (66.67)	12 (50)	-
Positive	8 (100)	8 (100)	-	8 (33.33)	12 (50)	-
PR status (%)	1.000*			0.380*		
Negative	2 (25)	2 (25)	-	16 (66.67)	12 (50)	-
Positive	6 (75.00)	6 (75)	-	8 (33.33)	12 (50)	-
HER2 expression (%)	0.467*			0.606*		
Negative	6 (75)	8 (100)	-	13 (54.17)	14 (58.33)	-
Positive	0 (0)	0 (0)	-	5 (20.83)	2 (8.33)	-
Equivocal	2 (25)	0 (0)	-	6 (25)	8 (33.33)	-
Ki 67 status (%)	-			0.245*		
< 20%	0 (0)	0 (0)	-	6 (25)	2 (8.33)	-
≥ 20%	8 (100)	8 (100)	-	18 (75)	22 (91.67)	-
Tumor stage (%)	1.000*			0.001*		
T1	0 (0)	0 (0)	-	0 (0)	5 (20.83)	-
T2	5 (62.50)	5 (62.50)	-	20 (83.33)	7 (29.17)	-
T3	1 (12.50)	2 (25.00)	-	2 (8.33)	4 (16.67)	-
T4	2 (25)	1 (12.50)	-	2 (8.33)	8 (33.33)	-
Axillary lymph node stage (%)	0.765*			0.814*		
N0	4 (50)	6 (75)	-	11 (45.83)	10 (41.67)	-
N1	3 (37.50)	1 (12.50)	-	8 (33.33)	6 (25.00)	-
N2	1 (12.50)	1 (12.50)	-	3 (12.50)	6 (25.00)	-
N3	0 (0)	0 (0)	-	2 (8.33)	2 (8.33)	-

Table 3 (cont.) Comparison of pathological features between synchronous and metachronous bilateral breast cancer (1st and 2nd cancer)

Characteristics	SBBC (n = 8)			MBBC (n = 24)		
	1 st cancer	2 nd cancer	P value	1 st cancer	2 nd cancer	P value
Distant metastasis (%) **			-	0.109*		
No	8 (100)	0 (0)	-	24 (100)	20 (83.33)	-
Yes	0 (0)	8 (100)	-	0 (0)	4 (16.67)	-
Lung	0 (0)	0 (0)	-	0 (0)	3 (75)	-
Liver	0 (0)	0 (0)	-	0 (0)	2 (50)	-
Bone	0 (0)	0 (0)	-	0 (0)	3 (75)	-
Stage (%)			1.000*	< 0.001*		
1A	0 (0)	0 (0)	-	0 (0)	3 (12.50)	-
1B	0 (0)	0 (0)	-	0 (0)	1 (4.17)	-
2A	4 (50)	5 (62.50)	-	9 (37.50)	5 (20.83)	-
2B	1 (12.50)	1 (12.50)	-	10 (41.67)	0 (0)	-
3A	1 (12.50)	1 (12.50)	-	3 (12.50)	4 (16.67)	-
3B	2 (25.00)	1 (12.50)	-	0 (0)	5 (20.83)	-
3C	0	0	-	2 (8.23)	2 (8.33)	-
4	0	0	-	0 (0)	4 (16.67)	-

* P-value from Fisher's exact probability test

** Some patients had more than one distance metastasis

not be determined into positive or negative group. (Table 3) According to TMN stage, this study found there was significant difference in tumor grade between the first and second cancer of MBBC. ($p = 0.001$) Distant metastasis was found in patients with MBBC when the second cancer was diagnosed ($n = 4$, 16.67%), including lung ($n = 3$, 75%), liver ($n = 2$, 50%) and bone ($n = 3$, 75%) but there was no significantly. However, there was significant different in stage between the first and

second cancer of MBBC. ($p < 0.001$) This study found patients with MBBC were diagnosed as locally advanced breast cancer (stage 3A, 3B, 3C) and metastatic breast cancer (stage 4) more than early breast cancer (stage 1A, 1B, 2A, 2B) when the second cancer was diagnosed. (Table 3)

According to this study, the number of the patients with MBBC who visited a doctor as an appointment and were lost to follow up were equal. ($n = 50$ in each group) In specific details

about distant metastasis finding when the second cancer was diagnosed in MBBC, patients who follow up as an appointment had no distant metastasis more than patients who were lost to follow up ($n = 11$, 55% and $n = 9$, 45% respectively) but there was no significant difference. (Table 4). The

reasons patients lost to follow up were financial problem, there was no any caregiver and COVID 19 outbreak. Mostly patients had appointments at the cancer center hospital where are distant from Nakhonphanom province.

Table 4 Comparison of distant metastasis between patients who follow up as an appointment in the second cancer of metachronous bilateral breast cancer.

	Follow up (n=12)	Loss follow up (n=12)	P-value
Distant metastasis (%)			0.590*
No	11 (55)	9 (45)	-
Yes	1 (25)	3 (75)	-

* P-value from Fisher's exact probability test

Discussion

According to this study, the overall incidence of bilateral breast cancer was 4.15% which makes it comparable to other literatures that reported the incidence of bilateral breast cancer varies between 2-12%.^{1,2,4,5} The incidence of SBBC and MBBC in this study were 25% and 75% of the BBC population, similar to the previous literatures.^{1,5,6} Most of patients who developed bilateral breast cancer were in premenopausal period. Associated factors of bilateral breast cancer were ER negative, especially metachronous bilateral breast cancer, and PR negative. The interval between diagnosis two cancer ranged for 7 months to 216 months.

(nearly 20 years) Metachronous bilateral breast cancer had poor prognosis due to most of patients were in higher stage when the second cancer was diagnosed.

Modified radical mastectomy (MRM) is the most performed surgery for breast cancer in Nakhonphanom Hospital in this study due to sentinel lymph node biopsy and frozen section are not available in Nakhonphanom Hospital. Only 2 patients with UBC had undergone breast conservative surgery. 1 patient with UBC had undergone mastectomy with sentinel lymph node biopsy from other hospital then return to continue surveillance at hometown. All patients with SBBC

decided to undergo MRM the same as patients with MBBC due to conserving contra lateral breast is not necessary if the patients decided to remove entire of breast when the first cancer was diagnosed.

From the data in this study, it shown a family history of cancer does not likely relate to unilateral or bilateral breast cancer. Most of patients had no family history of cancer. In contrast, we found that most of breast cancer patients who had family history of cancer, other cancer was reported more often which was cholangiocarcinoma. This information was supported by National cancer institute which reported cholangiocarcinoma was found the highest rate in northeastern Thai population caused of the consumption of uncooked fish. However, the population in this study was low which may affect the result and can not conclude the result.

All SBBC was found at the same time. The shortest interval between two cancers diagnosis in MBBC was 7 months which not long after the first cancer was diagnosed and treated. According to individual data analysis, mammogram did not be performed to evaluate contra lateral breast before biopsy in this patient. We found that some patients did not be examined by mammogram or ultrasound both breasts before biopsy because a doctor did not request. Furthermore, mammogram was available in Nakhonphanom Hospital after September 2017, for this reason the patients who

visited Nakhonphanom Hospital before that period might not be examined by mammogram. However, mammogram and ultrasound breasts are useful for evaluation abnormal lesion in breast, especially non-palpable lesion.^{5,6,9}

Consequently, mammogram and ultrasound breasts should be performed in patients who have indication for breast cancer screening and breast cancer patients who need follow up surveillance in order to detecting early-stage breast cancer.^{5,6,9,14} The most patients with MBBC were diagnosed the second cancer at the period of more than 5–10 years and more than 10–15 years. From this study, the data shown the period when the disease could be occurred the most in this study. However, the breast cancer patients should be followed up for every 3 to 6 months for the first 2 to 3 years, then every six months until the 5th year and annually thereafter.¹⁴

In assessing the pathological features, the associated factors increased risk of bilateral breast cancer was hormonal status. ER and PR negative were the factors affecting develop bilateral breast cancer, as the literatures supported.^{3,5} In this study, cell type and HER2 expression did not affect increasing incidence of bilateral breast cancer. However, FISH test is not available in Nakhonphanom Hospital so that patients with HER2 expression 2+ (equivocal) could not be determined in positive or negative group. We cannot divide molecular subtypes of breast cancer

in this study.

Patients with MBBC were diagnosed as locally advanced breast cancer and metastatic breast cancer more than early-stage breast cancer when the second cancer was diagnosed. Patients who were lost to follow up had distant metastasis more than the patients who follow up as an appointment. According to the individual data analysis, the reasons for loss follow up were some patients had financial problem, there was no any caregiver and COVID 19 outbreak. Mostly patients had appointments at the cancer center hospital where are distant from Nakhonphanom province. The breast clinic just has been actively established at Nakhonphanom Hospital since 2019 until the present which clearly is the responsibility of surgeons. For this reason, some patients who were sent for treatment at the other hospital were lost to follow up. According to the database from Nakhonphanom Hospital, 2 patients with MBBC (stage 4) from this study died at about 1 year after diagnosis the second cancer.

Many literatures^{2,4,6,7} mentioned that BRCA mutation is the risk factor of bilateral breast cancer. No patients in this study were tested for genetic testing. Therefore, genetic testing for BRCA mutation should be considered in patients with bilateral breast cancer to prevent and others related cancer awareness.^{8,14} This study was limited by the small number of patients and the absence of FISH test BRCA test. The study

about bilateral breast cancer should be observed continuously to verify the risk factors, prognosis and survival rate of bilateral breast cancer when the number of patients is increased in the future.

Conclusion

Breast cancer patients should be continuously followed up and surveillance to prevent and aware breast cancer in contra lateral breast, especially patients who were diagnosed breast cancer at premenopausal period and hormonal receptor negative. BRCA gene mutation is one of the factors increased incidence of bilateral breast cancer (BRCA testing was not available in Nakhonphanom Hospital for this reason, patients in this study were not examined.) Mammogram or ultrasound breasts should be performed at the first visit and at follow up period in order early detection of contra lateral breast cancer.

The provincial hospital should be the important role in follow up and surveillance due to some patients have no ability to go to the distant hospital.

According to the database from Nakhonphanom Hospital, the number of patients with breast cancer, both of unilateral and bilateral keep increasing. In the past, we found that some patients with breast cancer were lost to follow up due to many reasons, for example, financial problem, no care giver or not available to go to the cancer center hospital. So, we expect this study

is useful in the development of Breast cancer of Nakhonphanom Hospital in the future. Moreover, we aim to study about BRCA mutation and study molecular subtype in patients with bilateral breast cancer in the future by improvement the laboratory potentiality of Nakhonphanom Hospital.

References

1. Beata SK, Wojciech K, Marta KR, Jerzy WM, Wojciench MW. The characteristics of bilateral breast cancer patients. *NOWOTWORY J Oncol* 2018;68(5-6):221-6.
2. Jun Hyung Kim, Tae Wan Won. Comparison of clinicopathologic features and outcomes between synchronous and metachronous bilateral breast cancer. *J Breast Dis* 2023;11(1):21-9.
3. Chenyan H, Yiqiong Z, Rui G, Huayu H, Yuting Z, Qingyu G, et al. Clinicopathological features and prognosis of bilateral breast cancer: a single-center cohort study based on Chinese data. *Ann Transl Med* 2022;10(13):742.
4. Mishra S, Sable M, Das Majumdar K, Mishra P, Muduly K, Parida K. Bilateral breast cancer – Its clinicopathological profile and management: An experience from a tertiary care center from Eastern India. *J Cancer Res Ther* 2022;18(2):341-6.
5. Noha Y Ibrahim, Mahmoud Y Sroor, Dalia O Darwish. Impact of bilateral breast cancer on prognosis: synchronous versus metachronous tumors. *Asian Pac J Cancer Prev* 2015;16(3):1007-10.
6. Onthira L, Pailin K, Malai M, Neelaya S. Bilateral breast cancer: The role of mammography and ultrasound in early detection. *Chiang Mai Med J* 2012;51(4):103-10.
7. Anne-Sophie H, Judith A, Keltouma D, Lauren D, Mathias V, Cecile L. Evolution of synchronous female bilateral breast cancers and response to treatment. *Nature Med* 2023;29:646-55.
8. Lucka B, Gorana G, Srdjan N, Vida S, Erik S. An interesting case of likely BRCA 2 related bilateral breast cancer with metastasis in the fimbrial part of fallopian tube. *Hered Cancer Clin Pract* 2020;18(7):1-6.
9. Suhani, Seenu V, Parshad R, Harim S, Mathur S, KP H. Bilateral breast cancer: Different in more ways than one. *ACS Case Reviews in Surgery* 2018;2(1):14-7.
10. Zuhair DH, Kayhan AN, Shaban L, Abdulwahid MS, Fahmi HK, Shvan HM, et al. Bilateral invasive ductal carcinoma of the breast; a case report with literature review. *Ann Med Surg* 2022;78: <https://doi.10.1016/j.amsu.2022.103743>.
11. Lertsithichai P. Breast cancer and breast cancer surgery in Thailand: A View from The Thai Journal of Surgery. *Thai J Surg* 2021;42(4):134-52.
12. Mallory MA, Whiting K, Park A, Gönen M, Gilbert E, King TA, Pilewskie ML. Synchronous and metachronous bilateral breast cancer among women with a history of lobular carcinoma in situ. *Breast Cancer Res Treat*. 2022;194(1):137-48. doi: 10.1007/s10549-022-06532-4. Epub 2022 Apr 29. PMID: 35488092; PMCID: PMC11325477.
13. Pan S-Y, Huang C-P, Chen W-C. Synchronous/metachronous multiple primary malignancies: review of associated risk factors. *Diagnostics* 2022; 12(8):1940. <https://doi.org/10.3390/diagnostics12081940>.
14. Gradishar WJ, Moran MS, Abraham J, et al. Breast Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. *J Natl Compr Canc Netw* 2024;22(5):331-57. doi:10.6004/jnccn.2024.0035
15. Aravind S, Deepak Roshan VG, Vinin NV, Nayanar SK. Histobiologic comparative analysis is insufficient to differentiate second primary from metastasis in bilateral breast cancer. *2020;14(4):21-4.*

