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Abstract

OBJECTIVES: Bone age assessment is used by clinicians for estimating the maturity
of a child’s skeletal system. Traditionally, physicians use template matching methods
(GP and/or TW2). Time and accuracy of the evaluation rely on a physician’s experience.
Therefore, this research proposes a fully automatic system for bone age assessment with
cutting edge artificial Intelligence (AI) technology.

MATERIAL AND METHODS: Convolutional Neural Network (CNNs), a Deep
Learning (DL) technique is applied to skeletal bone age prediction combined with
transfer learning algorithm. Hence, various kinds of transfer learning algorithms
(ResNet-50, Inception-V3, and VGG-16) are investigated in training in the proposed
model fed by a number of x-ray images (12,000 image approximately—imbalanced
data).

RESULT: VGG-16 shows significant accuracy compared to ResNet-50 and Inception-V3
(mae = 6.53, 20.52 and 43.11 months respectively)

CONCLUSION: The most effective pre-trained layer for CNNs in bone age assessment
is VGG-16 according to the accuracy of its prediction.

Keywords: deep learning, convolutional neural network, bone age, growth disorder,
maturity estimation, transfer learning

and size show a difference between chronological ages and a child’s

assigned bone (bone ages). Therefore, physicians use a bone age
assessment to estimate the maturity of a child’s skeletal system. The
evaluation might indicate a growth disorder, endocrine diseases, neuro
diseases, and newborn malnutrition. Primarily, the evaluation methods start
with taking an x-ray image of the left hand covering bones from wrist to
fingertips. Later, the bones on the x-ray image are compared with radiographs
in a standardized atlas of bone development collected from children of the
same sex and age, ranging from 0-228 months.

The skeletal bone development during an organism’s changes in shape

Generally, bone age assessment has been performed manually over the
past decades using either Greulich and Pyle (GP)' or Tanner-Whitehouse
(TW2)? methods. In both cases, the evaluation requires considerable time and
its accuracy may have to rely on a clinician’s experience. Therefore, a fully
automatic bone age assessment system is strongly recommended. It would
not replace the physicians but rather it would support their decision with Al
technology.

In medical image processing, among various techniques in Al, Machine
Learning (ML) is important®. Apart from ML, Deep Learning (DL) is one of
the cutting edge technologies that applies ML to large data, which is a dominant
approach for medical imaging, especially, applied in segmentation* and
classification’. Therefore, this research aims to develop a bone age assessment
system that applies a DL based method, convolutional neural networks (CNNs).
Besides, the designing of the CNNs model architecture for bone age prediction,
this research intends to evaluate the performance of various pre-trained models
including ResNet-50, Inception-V3, and VGG-16 in order to create an
appropriate design of pre-trained layer for CNNs in bone age prediction.
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Background

The convolutional neural network (CNNs or ConvNets) is
one of the most effective algorithms for image classifications®
including x-ray images for bone age assessment. There are
numerous researches that have been conducted for bone age
prediction. CNNss, for example, were applied by Tom Van
Steenkiste and others’ to evaluate the effectiveness of data
augmentation in CNNs. Not only the performance of various
methods applied in CNNs® were investigated but also the
different architectures of CNNs*!'* were examined. Moreover,
successful CNNs were compared to results reached by
humans,*!" and they showed promising results.

That said, the CNNs model generally performs well if it
is given balanced data. The dataset would have almost the
same number of images in each category in order to train the
model. Imbalanced data can impede generalization and this
may cause the model to make grave mistakes after training.

Therefore, solving an imbalanced dataset is mandatory and
this can be achieved by resampling techniques'?; oversampling
and undersampling.

CNNs take an input x-ray image, process it and classify it
under certain categories (the bone age, 0-240 months for this
paper). CNN has two main parts including feature learning
(Convolution block(s)) and classification (fully connected
layer). CNNs works as an image recognition by transforming
the x-ray image through layers to a class score as shown in
Figure 1.

Besides the modification of CNNs’ architecture for improving
the model’s performance, transfer learning'>! is widely utilized
in CNNSs. It could improve accuracy of CNNs in a timesaving
way because transfer learning is built as a pre-trained model.
The model was trained on a large benchmark dataset (a variety
of images) to solve a problem similar to itself (the image
classification in this paper)

There are numerous pre-trained models that have been
used in CNNs, however, the investigation of transfer learning
algorithms in this research focuses on their characteristics,
widely applied in image classification, which are ResNet-50,
Inception-V3, and VGG-16.
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- ResNet-50: The pre-trained model is built from training
on more than a million images from the ImageNet data-
base.!"s It has 50 layers and can classify images into 1,000
categories.

- Inception-V3: The model is trained on a million data from
2012 for ImageNet Large Visual Recognition Challenge.
It is 42-layer deep and can be categorized into 1,000
classes.!®

- VGG-16: The model is also trained on ImageNet with 16
layers deep having 1000 outputs for 1000 classes.!”
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Figure 1: The proposed architecture of CNNs model for bone age assessment.

Materials and Methods
Materials

- Tools: The online Graphical Processing Unit, Google Colab
(K80 GPU) is used for training and testing the proposed
CNN model.

- Library: The proposed architecture of the CNNs model is
developed and verified with DL open source libraries based
on python programming language including: Keras 2.2.4
and Tensorflow 1.12.0.
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- Dataset: The online access dataset is provided by the 1. Inspect and verify image dataset. This is conducted primarily

Center of Al in Medicine & Imaging (Stanford University).'* to see data distribution including age range (0-240) and
They are x-ray images containing 12,611 images in total gender shown in Figure 2.
with two labels including bone age and gender. 2. Resampling data to equate data distribution. This is done
to avoid an imbalanced dataset that would cause ineffective
Method learning of the CNNs model. The training dataset is
divided into 20 non-overlapped classes (10 age categories x 2
The procedure for designing bone age prediction model genders) AGyp,in as follows in Table 1.

based CNNs are explained in detail as follows:
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Figure 2: The X-Ray images distribution for bone age (0-240 months) of male (green) and female (blue).

The target dataset size of each class is set to n = 1,500.

Table 1: The 20 non-overlapped classes for the resampling.
We perform oversampling on all categories except in the age

Bone age category Gender Count range (137.2, 159.9] months of male images, which has
(0.773,23.7] Female 29 the original sample size of 1,564 images. We perform
Male 43 undersampling on this particular class to match sample size of .
With the oversampling method, we ensure that the resampled
(23.7,46.4] Female 175
Male 147 dataset is a strict superset of original dataset by following
(46.4,69.1] Female 363 Algorithm 1.
Male 296
(69.1,91.8] Female 453 Algorithm 1: let » € AG,,,;, be the group of age (range in
Male 441 months) and gender, and D (r) be a function return a set of
(91.8, 114.5] Female o1 image in group r
Male 535
(114.5,137.2] Female 1161 1. Set n=1,500
Male 698 2. For each age and gender group, count total number x of D(7)
(137.2, 159.9] Female 915 3.0fx<n: _
Male 1564 a. Include D(7) into D'(r)
(159.9, 182.6] EE—— 469 b. Randomly select image / € D (1)
Male 1261 for n - x images
4. Else:
(182.6, 205.3] Female 75 a. Randomly select image € D (¥)
Male 378 " £
for n images
(205.3, 228.0] Female 13
Male 73
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3. Image Data Augmentation is applied to the dataset not only mechanism as shown in Figure 4. This paper focuses on
to enlarge the dataset but also to replace redundant images evaluating well-known pretrained models, which are
created in the resampling process. Despite the inherent ResNet-50, Inception-V3, and VGG-16. The other parts
translation invariance of CNN,!** Image Data Augmentation such as model hyper- parameters adjustment, attention
can help improve scaling and the rotation invariant. mechanism, and the comparison of the proposed model
The augmented images are performed by utilizing image with prior methods are recommended studies in the future.
translation, rotation, scaling techniques as shown in Figure
3. It randomly performed image translation on the x and y . Model training is conducted several times with different
axis in the range of up to 5%, scaling up to 2% and rotation pretrained layers as shown in Table 2. Every pre-trained
of up to 10 degrees in respect of the original image. model (VGG-16, ResNet-50, and Inception-V3) is

evaluated under the same conditions as input- bone age

4. The proposed model based CNNs is designed and x-ray image and gender, the hyper-parameters, as well as
developed by applying a pretrained model and attention the number of test datasets.
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Figure 4: The proposed bone age assessment model with CNNs utilizing transfer learning, as well as, attention mechanism.
Table 2: The evaluation of different pretrained models
Architect Input Image size  Age range Training size Step/ #Epoch Testsize  mae Time (s)
(Original/Augmented)  Epoch (months)
VGG-16 Gender 500 x 500 0-228 10,000/30,000 3750 20 1,000 6.53 60.70
ImageAugmented
ResNet-50 Gender 500 x 500 0-228 10,000/30,000 3750 20 1,000 20.52 50.07
ImageAugmented
Inception-v3 ~ Gender 500x500  0-228 10,000/30,000 3750 20 1000 4311 3497
ImageAugmented
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6. The model performance evaluation is examined using a
fixed test dataset of 1,000 images. There are two criteria
for testing the proposed model:

- Mean Absolute Error (mae) is used for evaluating the
model / month. We define mae over test dataset as:

2iolyp(x,g)|
n

mae =

Where
n is total number of testing data
y, is true bone age
p(x,g,) is a predicted bone age on image
x, and g, gender.

- Prediction time in second is measured averagely (3-trial).
Results and Discussion

The results suggest VGG-16 as the best pre-trained model
for the proposed CNNs model after 20 epochs training of
30,000 augmented image dataset. The VGG-16 yields mae of
6.53 months on the test set is shown in Figure 5. The figure
depicts a clear correlation between the predicted age and the
bone age dataset. However, some outliers make prediction
results differ to the actual bone age by a large margin as shown
in Figure 5. The variation is due to the low quality images in
the dataset shown in Figure 6.

The results also demonstrate that prediction accuracy is
higher around the middle age range, when we have more
image data. This suggests that a large set of original images
impact on model accuracy more than augmented images data.
In the pre-trained ResNet-50 converses at epoch 20, the mae
is 20.52 months. Whereas, Inception-V3 shows the mae result
of 43.11 months. The prediction results for RestNet-50 and
Inception-V3 are shown in Figure 7 and 8 respectively.
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Figure 7: Evaluation of ResNet-50.
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Figure 5: Example of the low quality images.
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Figure 6: Evaluation of VGG-16.
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Figure 8: Evaluation of Inception-V3.
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Despite the performance of the evaluation, InceptionV3
performs well during the training period. The large mae on the
test dataset suggests that the model is overfitting. There are
several ways for model improvement such as increasing the
image augmentation and training on more epochs. The time
evaluation is set out in Table 2, and the forecasting time for
predicting 1,000 images, is the average number calculated from
3 trials. The Inception-V3 shows the fastest rate of prediction
when compared to the speed of ResNet-50 and VGG-16, at
34.97, 50.07, and 60.70 respectively.

Although VGG-16 spends a considerable amount of time
to make a prediction from 1,000 images, the accuracy rate (mae)
of the model performance is significantly lower than RestNet-50
and Inception-V3. Therefore, VGG-16 is widely recommended
to be applied as a pre-trained layer in CNNs for the proposed
bone age assessment model in order to improve the model
accuracy drawing on prior knowledge from the transfer learning.

Conclusion & Future work

Bone age assessment aims to examine a child’s skeletal
system bone age compared to a chronological age. Generally,
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