

Adult Onset Immunodeficiency Associated with Anti-interferon Gamma Autoantibodies

Wannada Laisuan, MD¹; Chamard Wongsu, MD¹; Porntip Intapiboon, MD¹; Nizchapa Dechapaphapeaktak, RN, MS,¹; Malinee Tongdee, RN, BNS¹; Supa Oncham, SC¹; Thanuchporn Kafaksom, MS¹; Ticha Rerkpattanapipat, MD¹

Wannada Laisuan, MD

Abstract

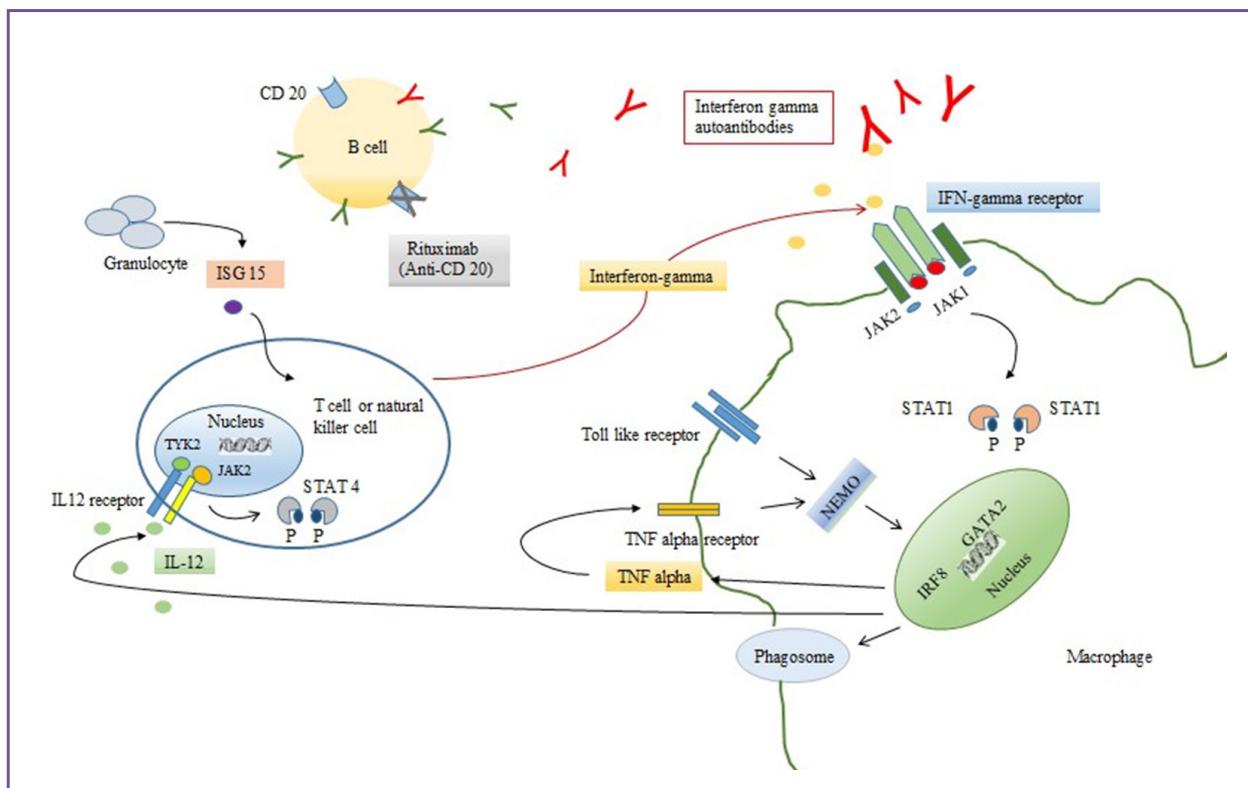
Adult onset immunodeficiency associated with anti-interferon-gamma autoantibodies is an emerging medical issue worldwide especially in South-east Asia. Most patients present with disseminated non-tuberculous mycobacteria (NTM) infection and other opportunistic infections. In addition to standard antimicrobial therapy, immunomodulator or immunosuppressive drug seem to play a role in some cases.

In the present study, we thoroughly reviewed the pathogenesis, clinical features, laboratory diagnosis, modalities of treatment, and clinical outcomes of this condition.

Keywords: immunodeficiency, adult onset, anti-interferon-gamma autoantibodies, NTM infection

¹ Division of Allergy Immunology and Rheumatology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

*Address Correspondence to author:
Wannada Laisuan, MD
Division of Allergy Immunology and Rheumatology,
Ramathibodi Hospital,
Bangkok 10400, Thailand.
email: aunatty2000@yahoo.com


Received: October 3, 2016
Revision received: November 3, 2016
Accepted after revision: November 14, 2016
BKK Med J 2017;13(1): 87-94
www.bangkokmedjournal.com

Non-tuberculous mycobacterium (NTM) infection in immunocompetent hosts with associated Sweet's syndrome have been reported in Thailand and Taiwan since 1998.¹⁻⁵ Adult onset immunodeficiency syndrome associated with anti-interferon gamma autoantibodies was first described in patients without human immunodeficiency virus (HIV) infection in 2004. The strong inhibitory anti-interferon gamma activity in the patient's plasma and a high affinity neutralizing anti-interferon gamma were identified.^{6,7} It is associated with disseminated infections with lowly pathogenic microorganisms including non-tuberculous mycobacteria (NTM), *Salmonella*, *Burkholderia* sp., *Talaromyces marneffei*, *Cryptococcus neoformans*, *Histoplasma capsulatum* and varicella zoster virus.⁸⁻²³ This condition was predominantly found in South-east Asians.^{10,12-14,17,22,24,25} Although it's rare, most patients developed opportunistic infections without HIV infection emerging as an important cause of morbidity and mortality.^{5,26}

Pathogenesis

The integrity of interleukin-12 (IL-12) - interferon gamma (IFN-gamma) pathway plays a crucial role in the control of infection with intracellular microorganisms, salmonella and dimorphic molds.²⁷

In normal responses, the activation of phagocytes results in the production of IL-12 and tumor necrosis factor - alpha (TNF-alpha). IL-12 is involved in the production of IFN-gamma by T cells and natural killer (NK) cells. IFN-gamma binds to its receptor, IFN-GR, and leads to phosphorylation of JAK2, JAK1 and STAT1, and phosphorylated STAT1 homodimerization. The homodimerization of STAT1 then translocates to the nucleus resulting in upregulated IFN-gamma transcription gene leading to macrophage activation, differentiation and turning to upregulate the expression of IL-12 and TNF-alpha. The activated macrophages are capable of killing intracellular microorganism by the induction of autophagy, nutrient deprivation and exposure to reactive oxygen species and antimicrobial peptides.^{28,29} (Figure 1)

Figure 1: Pathogenesis of interferon gamma autoantibody associated with adult onset immunodeficiency syndrome and role of Rituximab in treatment

Disruption of this pathway, either in primary immunodeficiencies or anti-cytokine antibodies, may lead to susceptibility to such infections.^{27,30} Mendelian susceptibility to mycobacterial disease (MSMD) is a rare genetic defect which manifests as an autosomal and X-linked mutation. These diseases are characterized by a predisposition to weakly virulent mycobacteria such as bacillus Calmette-Guerin vaccines (BCG-osis), non-tuberculous mycobacteria³¹ and other intracellular microorganisms such as salmonellosis, histoplasmosis, coccidioidomycosis³²⁻³⁴ which generally occurred at the early age of onset (infancy to early childhood). Mutation of three autosomal genes are implicated in the control of IFN-gamma production including IL12B (encode the subunit of IL-12 and IL-23),^{35,36} IL12RB1 (IL-12 receptor B1),^{37,38} and ISG15 (interferon-stimulated gene 15).³⁹ Other autosomal mutation genes implicated in IFN-gamma responsiveness are IFNGR1 (interferon-gamma receptor 1),³² IFNGR2 (interferon-gamma receptor 2),^{40,41} STAT1,^{42,43} and IRF8 (interferon regulator factor 8).⁴⁴ Mutations of IKBKG (encode NEMO) and CYBB (encode gp91phox subunit of phagocyte NADPH oxidase) cause X-linked MSMD.⁴⁵⁻⁴⁷ IFNGR1 and IL12RB1 deficiency account for almost 80% of MSMD patients.⁴⁸ The prognosis of disease depends on the type and the severity of genetic defects.

GATA2 is an essential transcription factor and plays a critical role in early hematopoietic, lymphatic and vascular development.⁴⁹ GATA2 deficiency has a wide range of clinical phenotypes and varies in the age of onset from early childhood to late adulthood. Most of the patients had

profoundly decreased or absence of circulating monocytes, natural killer cells, dendritic cells and B cell with opportunistic infections including human papillomavirus infection, non-tuberculosis mycobacterial, histoplasmosis, cryptococcal meningitis, invasive aspergillosis and Clostridium difficile infection.^{50,51}

In the case of anti-cytokine antibodies, anti-interferon-gamma autoantibodies were acquired in adult onset with predisposition to NTM infections and other opportunistic infections. The trigger of the production of anti-IFN-gamma autoantibody remains unknown, however, genetic factors are strongly suspected to be involved. A clinical study from Taiwan indicated that HLA-DRB1*16:02 and DQB1*05:02 are associated with this syndrome.⁵² A recent clinical study in 32 patients from Thailand also demonstrated a strong association between the HLA-DRB1 and DQB1 allele, especially HLA-DRB1*15:01, DRB1*16:02 and disseminated opportunistic infection with anti-IFN-gamma autoantibody.⁵³

Although the disruption of IFN-gamma - IL-12 pathway increased the susceptibility to similar infections, the age of onset of diseases was useful to discriminate these conditions.

Clinical Characteristics

Anti-IFN gamma autoantibodies comprise the majority of anticytokine autoantibodies which are described as a ninth category of primary immunodeficiencies (PIs) the so called

“Phenocopies of PIDs” according to the 2015 International Union of Immunological Society (IUIS) classification.⁵⁴ This syndrome has been demonstrated to be strongly associated with immunodeficiency leading to opportunistic infection in adults. Most of whom occurred among Asian population (92.2%) occurring more frequently among women.²⁶ The incidence and prevalence may be underestimated, as suggested by several studies describing patients with disseminated NTM infection but for whom Anti-IFN gamma autoantibodies was not investigated.¹³ The disease typically manifests in adult onset of life (median 48 [range 44.8-60.0] years of age).^{13,26}

From the literature review, non-tuberculous mycobacterium (NTM) was the most opportunistic infection especially rapidly growing mycobacteria and slowly growing mycobacteria.^{13,26} Other infections were reported including

Herpesviridae reactivation, *Salmonella*, *Talaromyces marneffei*, *Cryptococcus neoformans*, *Histoplasma capsulatum*, *Burkholderia pseudomallei* and varicella zoster infection.^{8,12,13,17,26,52,55} Most patients manifested with multiple organs involvement. Lymph nodes were the most common sites of involvement, followed by the osteoarticular tissue, lungs and skin, respectively. Cervical lymphadenopathy was the most common manifestation.^{13,55} Reactive dermatoses were reported including Sweet’s syndrome, erythema nodosum, lobular panniculitis, and generalized pustular eruption (acute generalized erythematous pustulosis, pustular psoriasis and subcorneal pustulosis). Among these, Sweet’s syndrome was frequently linked to anti-IFN gamma autoantibodies.⁵⁶

The epidemiology of adult onset immunodeficiency with anti-interferon-gamma autoantibodies is summarized in Table 1.

Table 1: Epidemiology of adult onset immunodeficiency associated with Anti-interferon-gamma autoantibodies

Year (Ref.)	Sex/age (ethnicity)	Infection	Organ involvement	Treatment
2004				
(6)	M/47 (Filipino)	M. tuberculosis, M. chelonae	LN, heart, lungs, bone marrow, liver	INH,RMP,PZA, EMB, CLA, DOX, AMK
(7)	F/25 (Thai)	Burkholderia gladioli, M. chelonae	LN, lungs, tonsil	NA
2005				
(8)	1. F/43 (Taiwanese) 2.F/45 (Filipino) 3.F/52 (Chinese-vietnamese) 4.F/40 (Filipino) 5.F/66 (Filipino) 6. F/31 (Filipino)	MAC MAC, M. chelonae M. tuberculosis, M. szulgai, M. kansasii, M. scrofulaceum M. abscessus, M. fortuitum, MAC M. abscessus, MAC MAC	Bone, skin, soft tissue LN, lungs, skin LN, bone , lungs, skin LN, lungs LN, lungs Appendix, bone, cutaneous soft tissue, retropharyngeal, parapharyngeal, prevertebral	NA NA NA NA NA NA
2009				
(9)	F/34 (Filipino)	MAC, M. intracellulare	Lungs, bone	Rifabutin, EMB, AZ, RMP, plasmaphoresis, cyclophosphamide
(10)	F/44	MAC	Bone	Intravenous immunoglobulin (IVIG)
2010				
(11)	1. F/42 2. F/45 3. F/39	M. chelonae, M. kansasii, T marneffei, burkholderia pseudomallei MAC, M. intracellulare, T. marneffei, M. fortuitum Salmonella enteritidis	LN, joints LN, bone marrow LN, lungs	IMP, ITC, AMK, TG INH, EMB, OFX, AMK, CLA, LVX AMP, LVX
2011				
(12)	1. M/56 (Thai) 2. M/45 (Thai) 3. M/39 (Thai)	M. intermedium, T. marneffei Salmonella group D, M. tuberculosis, varicella zoster, M. abscessus Salmonella gr. D, M. abscessus, M. tuberculosis	LN, lungs, skin LN, lungs, liver LN, bone, joint, skin	INH,RMP,PZA, EMB, MOX, ITC INH,RMP,PZA, EMB, CLA, DOX, CIP, AMK, MOX CLA, CIP, INH,RMP, PZA, EMB

Year (Ref.)	Sex/age (ethnicity)	Infection	Organ involvement	Treatment
2012				
(13)	85 patients (Thai, Taiwanese)	NTM, <i>Salmonella</i> , <i>Burkholderia pseudomallei</i> , <i>Cryptococcus neoformans</i> , <i>Histoplasma capsulatum</i> , <i>T. marneffei</i>	LN, skin, lungs	NA
(57)	1. F/46 (Filipino)	<i>M. abscessus</i> , MAC	LN, skin	IFN-gamma, CLA, INH, EMB, LZD, MOX, TG, RTX
	2. F/69 (Filipino)	<i>M. abscessus</i>	LN, bone	IFN-gamma, Ivg, plasma-aphoresis, AMK, amoxicillin/clavulanate, AZ, CIP, ETP, INH, RMP, PZA, EMB, LZD, MRP, RTX
	3. F/50 (Laotian)	<i>M. avium</i>	LN, bone, muscle	IFN-gamma, CLA, EMB, MOX, RTX
	4. F/60 (Vietnamese)	<i>M. intracellulare</i>	Bone, muscle, skin	INH, RMP, PZA, EMB, AMK, AZ, CLA, LVX, MOX, RTX
2013				
(14)	F/40	MAC, <i>Salmonella</i> gr.D	LN, joint, liver, spleen, bone marrow, skin	AZ, RMP, EMB
(15)	M/66	MAC	LN, bone, joints,	NA
(16)	M/53	<i>M. kansasii</i>	LN, lungs, liver, spleen, bone marrow	NA
(24)	F/49 (Laotian)	<i>M. colombiense</i> , <i>P. aeruginosa</i> , CMV	LN, lungs	LVX, RMP, EMB, CLA, DRP, TOB, piperacillin-tazobactam, CIP
(52)	1. M/55	<i>M. abscessus</i> , <i>S. enteritidis</i> B, <i>T. marneffei</i>	LN, bone	NA
	2. F/51	<i>M. scrofulaceum</i>	LN, bone, skin	NA
	3. M/69	MAC, <i>S. enteritidis</i> B	LN, lungs, bone	NA
	4. F/47	<i>M. gordonaie</i> , <i>S. enteritidis</i> D	LN, bone	NA
	5. M/55	<i>M. terrae</i>	Bone, soft tissue	NA
	6. M/81	NTM	LN, skin	NA
	7. M/66	NTM	LN, lungs	NA
	8. M/87	<i>M. scrofulaceum</i> , <i>S. aureus</i>	LN, bone, skin	NA
	9. M/48	MAC, <i>S. enteritidis</i>	LN, bone, lungs	NA
	10. F/61	NTM	LN	NA
	11. M/49	<i>M. kansasii</i>	LN, lungs	NA
	12. F/56	NTM	LN, bone, skin	NA
	13. F/46	NTM, <i>S. enteritidis</i>	LN, lungs	NA
	14. F/42	MAC	Bone	NA
	15. F/49	NTM, legionellosis, <i>T. marneffei</i>	LN, lungs, pericardium, bone	NA
	16. F/47	NTM, <i>S. enteritidis</i>	LN, lungs, bone, skin	NA
	17. M/76	<i>M. abscessus</i> , <i>M. chelonae</i>	LN, lungs	NA
2014				
(18)	M/77 (Filipino)	Salmonellosis, MAC	Skin, lungs, pleura	NA
(19)	F/39 (Caucasian)	MAC	LN, lungs, brain	INH, RMP, PZA, EMB, AZ
(20)	F/74	<i>M. fortuitum</i>	LN, lungs	LVX, AMK, CLA
(25)	F/34 (Chinese)	<i>M. chelonae</i>	LN, lungs, skin	INH, RMP, PZA, EMB, IMP, AMK, CLA
(60)	M/78	<i>M. chelonae</i> , <i>M. abscessus</i> , varicella zoster, CMV	LN, lungs, joints, bone	AZ, IMP, TOB, MOX, RTX
2015				
(21)	F/65 (German)	MAC, Toxoplasmosis, Salmonellosis	MAC, Toxoplasmosis, Salmonellosis	Sulfadiazine/Pyrimethamine
(22)	M/65 (Japanese)	<i>M. gordone</i> , <i>M. mantenii</i>	<i>M. gordone</i> , <i>M. mantenii</i>	RMP, EMB, CLA
(23)	F/65	MAC	MAC	RMP, EMB, CLA, KAN, LVX
2016				
(26)	F/50 (Laotian)	<i>M. fortuitum</i> , <i>M. intracellulare</i>	LN, spinal cord	AZ, CIP, AMK, EMB
(55)	45 patients (M/21)	NTM, salmonellosis, varicella zoster	LN, lungs, bone, joints, skin	as reference

AMK = amikacin, AZ = azithromycin, INH = isoniazid, RMP = rifampin, PZA = pyrazinamide, EMB = ethambutol, CLA = clarithromycin, LVX = levofloxacin, CIP = ciprofloxacin, MOX = moxifloxacin, OFX = ofloxacin, DOX = doxycycline, TG = tigecycline, KAN = kanamycin, TOB = tobramycin, AMP = ampicillin, LZD = linezolid, RTX = rituximab, ITC = itraconazole, ETP = ertapenem, IMP = imipenem, DRP = doripenem, MRP = meropenem

Laboratory investigation

In general, for the diagnosis in adult onset of immunodeficiency associated with anti-IFN-gamma autoantibodies, HIV testing should be done in all patients. Lymphocyte phenotype might be useful to differentiate GATA2 deficiency as it demonstrated a low number of NK cells, monocytes and B cells.

In almost all patients, anti-IFN gamma autoantibody in plasma was detected and demonstrated the inhibition of STAT-1 phosphorylation function.^{12,13,57} Indirect enzyme-linked immunosorbent assay (ELISA) was applied to detect the Anti-IFN-gamma autoantibody in plasma or serum of patients. The higher titers of autoantibodies ($\geq 10^{-5}$ dilution) tend to determine the recurrent episodes of NTM infection.⁵⁵

Inflammatory markers which indicated active disease activity including a high proportion of white blood cell counts, absolute neutrophil counts, ESR, CRP and alkaline phosphatase level.^{17,55} The IFN-gamma autoantibodies titers was relatively higher in active infection compared to those without infection.¹⁷

A lymphocyte phenotype study revealed an increase in natural killer cells and activated macrophage (CD119) counts and a drop in naive T lymphocyte counts in this syndrome compared to healthy cells, whereas the total numbers of the CD4+, CD8+, CD3+ T and CD19+ B cells were similar.^{13,58,59}

Imbalance of Th1/Th2 in Anti-IFN gamma autoantibodies was demonstrated in several reports. Patel et al.,⁸ proposed that these autoantibodies are able to block the binding of IFN-gamma and to inhibit some downstream cytokine production resulting in the reduction of TNF-alpha and IL-12. In the study of the intracellular cytokine production of T cell, upon the intact T cell receptor (TCR) activation, T cell proliferation and IL-2 receptors of patients, IFN-gamma and TNF-alpha (Th1) production were upregulated, nevertheless the production of IL-4 (Th2) and IL-17 (Th17) remained normal in comparison with healthy cells.⁵⁹ In yet another study, there was a discrepancy reported in the decline of production of TNF-alpha and IL-2.⁵⁸

Treatment

Specific treatment for adult onset immunodeficiency associated with IFN-gamma autoantibody is not codified. Despite intensive treatment with antimicrobial therapy, more than half of these patients still had persistent NTM infection and required long term treatment.^{26,55}

Rituximab (Anti-CD20), has been used off-label in progressive refractory patients associated with IFN-gamma autoantibodies, demonstrated the good clinical response, decline in IFN-gamma autoantibodies titers as well as neutralizing ability.^{57,60} Other strategies included plasmapheresis, cyclophosphamide,⁹ IFN-gamma and intravenous immunoglobulin (IVIG).¹⁰ (Table 2)

In our opinion, immunomodulator or immunosuppressive drugs seem to play a role in cases of refractory or relapse infections. Further investigations for modalities of treatment are needed to optimize the clinical outcome.

Clinical outcome

More than half of anti-IFN-gamma autoantibodies patients had persistent or relapsing infections, only 20-30% were declared cured and there was a 10% mortality rate.^{26,55}

Conclusion

Adult onset immunodeficiency associated with anti-IFN-gamma autoantibodies was predominantly found in South East Asians including Thai patients. Most patients manifested as NTM infection with multiple organ involvements especially cervical lymphadenopathy, however, other opportunistic infections such as salmonella, fungus and virus can occur. Physicians should be aware of this syndrome. Despite intensive antimicrobial treatment, some patients' symptoms remained persistent or the infection relapsed. Other therapeutic targeting antibody production or targeting IFN-gamma autoantibodies may warrant further investigations.

Table2: Summary of reported treatment for adult onset immunodeficiency associated Anti-interferon-gamma autoantibodies.

Year (Ref)	Modality/No. of patients	Indication	Dose administration	Efficacy and comment
2009 (9)	Plasmaphoresis + cyclophosphamide + quadruple antimicrobial	Recurrent MAC infection	NA	<ul style="list-style-type: none"> - Reduction of anti-IFN-gamma autoantibody level - Clinical remission after 3 years
2012 (36)	treatment Rituximab/ 4 patients	Refractory or relapsed cases over 1 year of treatment	<ul style="list-style-type: none"> - 375 mg/m² weekly for > 4 doses then vary interval depend on recurrent infection - In 1 year, all patients received 8-12 doses 	<ul style="list-style-type: none"> - Good therapeutic response as determined by clearance of infection, reduction of anti-IFN-gamma autoantibody level and improve IFN-gamma signaling - 75% of patients were relapsed but successfully retreated
2014 (39)	Rituximab (RTX) + Methylprednisolone (MP)	Treatment refractory or ≥ 2 recurrent NTM infection	<ul style="list-style-type: none"> - RTX 375 mg/m² weekly X 4 doses - MP 100 mg weekly X 4 doses 	<ul style="list-style-type: none"> - Sustained remission until 8 months - Reduction of anti-IFN-gamma autoantibody level - Improve IFN-gamma signaling

References

1. Choonhakarn C, Chetchotisakd P, Jirarattanapochai K, et al. Sweet's syndrome associated with non-tuberculous mycobacterial infection: a report of five cases. *Br J Dermatol* 1998;139(1):107-10.
2. Chetchotisakd P, Mootsikapun P, Anunnatsiri S, et al. Disseminated infection due to rapidly growing mycobacteria in immunocompetent hosts presenting with chronic lymphadenopathy: a previously unrecognized clinical entity. *Clin Infect Dis* 2000;30(1):29-34.
3. Mahaisavariya P, Chaiprasert A, Manonukul J, et al. Scrofuloderma and Sweet's syndrome. *Int J Dermatol* 2002;41(1):28-31.
4. Sungkanuparph S, Sathapatayavongs B, Pracharktam R. Infections with rapidly growing mycobacteria: report of 20 cases. *Int J Infect Dis* 2003;7(3):198-205.
5. Chetchotisakd P, Kiertiburanakul S, Mootsikapun P, et al. Disseminated nontuberculous mycobacterial infection in patients who are not infected with HIV in Thailand. *Clin Infect Dis* 2007;45(4):421-7.
6. Doffinger R, Helbert MR, Barcenas-Morales G, et al. Autoantibodies to interferon-gamma in a patient with selective susceptibility to mycobacterial infection and organ-specific autoimmunity. *Clin Infect Dis* 2004;38(1):e10-4.
7. Hoflich C, Sabat R, Rousseau S, et al. Naturally occurring anti-IFN-gamma autoantibody and severe infections with *Mycobacterium cheloneae* and *Burkholderia cocovenenans*. *Blood* 2004;103(2):673-5.
8. Patel SY, Ding L, Brown MR, et al. Anti-IFN-gamma autoantibodies in disseminated nontuberculous mycobacterial infections. *J Immunol* 2005;175(7):4769-76.
9. Baerlecken N, Jacobs R, Stoll M, et al. Recurrent, multifocal *Mycobacterium avium*-intercellulare infection in a patient with interferon-gamma autoantibody. *Clin Infect Dis* 2009;49(7):e76-8.
10. Koya T, Tsubata C, Kagamu H, et al. Anti-interferon-gamma autoantibody in a patient with disseminated *Mycobacterium avium* complex. *J Infect Chemother* 2009;15(2):118-22.
11. Tang BS, Chan JF, Chen M, , et al. Disseminated penicilliosis, recurrent bacteremic nontyphoidal salmonellosis, and burkholderiosis associated with acquired immunodeficiency due to autoantibody against gamma interferon. *Clin Vaccine Immunol* 2010;17(7):1132-8.
12. Kampitak T, Suwanpimolkul G, Browne S, et al. Anti-interferon-gamma autoantibody and opportunistic infections: case series and review of the literature. *Infection* 2011;39(1):65-71.
13. Browne SK, Burbelo PD, Chetchotisakd P, et al. Adult-onset immunodeficiency in Thailand and Taiwan. *N Engl J Med* 2012;367(8):725-34.
14. Chaisathaphol T, Jitmuang A. Disseminated *Mycobacterium avium* and recurrent *Salmonella* group D infection in a patient with autoantibodies to interferon-gamma. *Southeast Asian J Trop Med Public Health* 2013;44(3):460-7.
15. Ishii T, Tamura A, Matsui H, et al. Disseminated *Mycobacterium avium* complex infection in a patient carrying autoantibody to interferon-gamma. *J Infect* Chemother 2013;19(6):1152-7.
16. Nei T, Okabe M, Mikami I, et al. A non-HIV case with disseminated *Mycobacterium kansasii* disease associated with strong neutralizing autoantibody to interferon-gamma. *Respir Med Rep* 2013;8:10-3.
17. Wongkulab P, Wipasa J, Chaiwarith R, et al. Autoantibody to interferon-gamma associated with adult-onset immunodeficiency in non-HIV individuals in Northern Thailand. *PloS one* 2013;8(9):e76371.
18. DeLeon TT, Chung HH, Opal SM, et al. *Mycobacterium avium* complex empyema in a patient with interferon gamma autoantibodies. *Hawai'i J Med Public Health* 2014;73(9 Suppl 1):15-7.
19. O'Connell E, Rosen LB, LaRue RW, et al. The first US domestic report of disseminated *Mycobacterium avium* complex and anti-interferon-gamma autoantibodies. *J Clin Immunol* 2014;34(8):928-32.
20. Suzuki K, Terada J, Sasaki Y, Kawasaki T, et al. Pulmonary *Mycobacterium fortuitum* infection with cervical lymphadenitis in a patient carrying autoantibodies to interferon-gamma. *Intern Med* 2014;53(12):1361-4.
21. Hanitsch LG, Lobel M, Muller-Redetzky H, et al. Late-Onset Disseminated *Mycobacterium avium* intracellular Complex Infection (MAC), Cerebral Toxoplasmosis and *Salmonella* Sepsis in a German Caucasian Patient with Unusual Anti-Interferon-Gamma IgG1 Autoantibodies. *J Clin Immunol* 2015;35(4):361-5.
22. Hase I, Morimoto K, Sakagami T, et al. Disseminated *Mycobacterium gordoneae* and *Mycobacterium mantenii* infection with elevated anti-IFN-gamma neutralizing autoantibodies. *J Infect Chemother* 2015;21(6):468-72.
23. Nishimura T, Fujita-Suzuki Y, Yonemaru M, et al. Recurrence of disseminated *Mycobacterium avium* complex disease in a patient with anti-gamma interferon autoantibodies by reinfection. *J Clinical Microbiol* 2015;53(4):1436-8.
24. Poulin S, Corbeil C, Nguyen M, et al. Fatal *Mycobacterium colombiense*/cytomegalovirus coinfection associated with acquired immunodeficiency due to autoantibodies against interferon gamma: a case report. *BMC Infect Dis* 2013;13:24.
25. Chan JF, Yee KS, Tang BS, et al. Adult-onset immunodeficiency due to anti-interferon-gamma autoantibody in mainland Chinese. *Chin Med J (Eng)* 2014;127(6):1189-90.
26. Valour F, Perpoint T, Senechal A, et al. Interferon-gamma Autoantibodies as Predisposing Factor for Nontuberculous Mycobacterial Infection. *Emerg Infect Dis* 2016;22(6):1124-6.
27. Haverkamp MH, van Dissel JT, Holland SM. Human host genetic factors in nontuberculous mycobacterial infection: lessons from single gene disorders affecting innate and adaptive immunity and lessons from molecular defects in interferon-gamma-dependent signaling. *Microbes Infect* 2006;8(4):1157-66.
28. Gutierrez MG, Master SS, Singh SB, et al. Autophagy is a defense mechanism inhibiting BCG and *Mycobacterium tuberculosis* survival in infected macrophages. *Cell* 2004;119(6):753-66.

29. Wu UI, Holland SM. Host susceptibility to non-tuberculous mycobacterial infections. *Lancet Infect Dis* 2015;15(8):968-80.

30. van de Vosse E, Hoeve MA, Ottenhoff TH. Human genetics of intracellular infectious diseases: molecular and cellular immunity against mycobacteria and salmonellae. *Lancet Infect Dis* 2004;4(12):739-49.

31. Holland SM. Interferon gamma, IL-12, IL-12R and STAT-1 immunodeficiency diseases: disorders of the interface of innate and adaptive immunity. *Immunol Res* 2007;38 (1-3):342-6.

32. Zerbe CS, Holland SM. Disseminated histoplasmosis in persons with interferon-gamma receptor 1 deficiency. *Clin Infect Dis* 2005;41(4):e38-41.

33. Vinh DC, Masannat F, Dzioba RB, et al. Refractory disseminated coccidioidomycosis and mycobacteriosis in interferon-gamma receptor 1 deficiency. *Clin Infect Dis* 2009;49(6):e62-5.

34. Sampaio EP, Hsu AP, Pechacek J, et al. Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis. *J Allergy Clin Immunol* 2013;131(6): 1624-34.

35. Picard C, Fieschi C, Altare F, et al. Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. *Am J Hum Genet* 2002;70(2): 336-48.

36. Prando C, Samarina A, Bustamante J, et al. Inherited IL-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 kindreds. *Medicine* 2013;92(2):109-22.

37. Fieschi C, Dupuis S, Catherinot E, et al. Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor beta1 deficiency: medical and immunological implications. *J Exp Med* 2003;197(4):527-35.

38. Gruenberg DA, Awner-Sombke S, Gern JE, et al. Atypical presentation of IL-12 receptor beta1 deficiency with pneumococcal sepsis and disseminated nontuberculous mycobacterial infection in a 19-month-old girl born to nonconsanguineous US residents. *J Allergy Clin Immunol* 2010;125(1):264-5.

39. Bogunovic D, Byun M, Durfee LA, et al. Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. *Science* 2012;337(6102):1684-8.

40. Kilic SS, van Wengen A, de Paus RA, et al. Severe disseminated mycobacterial infection in a boy with a novel mutation leading to IFN-gammaR2 deficiency. *J Infect* 2012;65(6):568-72.

41. Kong XF, Vogt G, Itan Y, et al. Haploinsufficiency at the human IFNGR2 locus contributes to mycobacterial disease. *Hum Mol Genet* 2013;22(4):769-81.

42. Kristensen IA, Veirum JE, Moller BK, et al. Novel STAT1 alleles in a patient with impaired resistance to mycobacteria. *J Clin Immunol* 2011;31(2):265-71.

43. Vairo D, Tassone L, Tabellini G, et al. Severe impairment of IFN-gamma and IFN-alpha responses in cells of a patient with a novel STAT1 splicing mutation. *Blood* 2011;118(7):1806-17.

44. Hambleton S, Salem S, Bustamante J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. *N Engl J Med* 2011;365(2):127-38.

45. Niehues T, Reichenbach J, Neubert J, et al. Nuclear factor kappaB essential modulator-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. *J Allergy Clin Immunol* 2004;114(6):1456-62.

46. Filipe-Santos O, Bustamante J, Haverkamp MH, et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. *J Exp Med* 2006;203(7):1745-59.

47. Bustamante J, Arias AA, Vogt G, et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. *Nat Immunol* 2011;12(3):213-21.

48. Filipe-Santos O, Bustamante J, Chapgier A, et al. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. *Semin Immunol* 2006;18(6):347-61.

49. Ling KW, Ottersbach K, van Hamburg JP, et al. GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells. *J Exp Med* 2004;200(7): 871-82.

50. Vinh DC, Patel SY, Uzel G, et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. *Blood* 2010;115(8):1519-29.

51. Spinner MA, Sanchez LA, Hsu AP, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. *Blood* 2014;123(6):809-21.

52. Chi CY, Chu CC, Liu JP, et al. Anti-IFN-gamma autoantibodies in adults with disseminated nontuberculous mycobacterial infections are associated with HLA-DRB1*16:02 and HLA-DQB1*05:02 and the reactivation of latent varicella-zoster virus infection. *Blood* 2013;121(8):1357-66.

53. Pithupakorn M, Roothumong E, Angkasekwinai N, et al. HLA-DRB1 and HLA-DQB1 Are Associated with Adult-Onset Immunodeficiency with Acquired Anti-Interferon-Gamma Autoantibodies. *PLoS one* 2015;10(5):e0128481.

54. Picard C, Al-Herz W, Bousfiha A, et al. Primary Immunodeficiency Diseases: an Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. *J Clin Immunol* 2015;35(8):696-726.

55. Chi CY, Lin CH, Ho MW, et al. Clinical manifestations, course, and outcome of patients with neutralizing anti-interferon-gamma autoantibodies and disseminated nontuberculous mycobacterial infections. *Medicine* 2016;95(25):e3927.

56. Chan JF, Trendell-Smith NJ, Chan JC, et al. Reactive and infective dermatoses associated with adult-onset immunodeficiency due to anti-interferon-gamma autoantibody: Sweet's syndrome and beyond. *Dermatology* 2013;226(2):157-66.

57. Browne SK, Zaman R, Sampaio EP, et al. Anti-CD20 (rituximab) therapy for anti-IFN-gamma autoantibody-associated nontuberculous mycobacterial infection. *Blood* 2012;119(17):3933-9.

58. Wipasa J, Wongkulab P, Chawansuntati K, et al. Cellular immune responses in HIV-negative immunodeficiency with anti-interferon-gamma antibodies and opportunistic intracellular microorganisms. *PLoS One* 2014;9(10):e110276.

59. Chruewkamlow N, Mahasongkram K, Pata S, et al. Immune Alterations in Patients with Anti-Interferon-gamma Autoantibodies. *PLoS One* 2016;11(1):e0145983.

60. Czaja CA, Merkel PA, Chan ED, et al. Rituximab as successful adjunct treatment in a patient with disseminated nontuberculous mycobacterial infection due to acquired anti-interferon-gamma autoantibody. *Clin Infect Dis* 2014;58(6):e115-8.