

Case Report

Advanced Coronary Atherosclerosis and Fatal Myocardial Infarction in Mild Dyslipidemic, Low Risk Young Man: A Case Report With Literature Reviewed

Gumpanart Veerakul, MD¹; Nidcha Ruttipichairuk, MD²; Varantiya Ruangmondhop, RN³

Gumpanart Veerakul, MD

Abstract

Acute Myocardial infarction (AMI) at a young age (below 45 years) is rare and difficult to predict. We reported a fatal myocardial infarction from advanced atherosclerosis in a healthy young man who had no other major coronary risk factors except mild hypercholesterolemia. Thus, all available systemic risk scores identified him as a low risk candidate for developing a cardiovascular event. Autopsy revealed advanced atherosclerosis in all three major coronary arteries causing acute and old myocardial infarction. Thick epicardial adipose tissue and myocardial bridging of the mid left anterior descending artery were also noted. He frequently used etoricoxib to treat knee and back pain for consecutive five years. Potential mechanisms of sudden death from atherosclerosis, myocardial bridging, epicardial adipose tissue and selective COXIB are discussed in more detail below.

Keywords: sudden death, young myocardial infarction, premature atherosclerosis, mild hypercholesterolemia, myocardial bridging, epicardial adipose tissue, COX 2 inhibitor

¹ Cardiovascular Disease Prevention, Bangkok Heart Hospital, Bangkok, Thailand.
² Division of Pathology, Bhumibol Adulyadej Hospital Bangkok, Thailand
³ Chandrubeksa Hospital, Nakhon Pathom, Thailand

Acute myocardial infarction (AMI) at young age, below 45 years, is rare and little known in clinical practice. Most victims are male and share common conventional coronary risk factors including cigarette smoking, a family history of premature coronary artery disease (CAD), dyslipidemia, hypertension, diabetes mellitus and being overweight or obese.¹⁻⁵ We reported a fatal AMI from advanced atherosclerosis in a relatively young man who had none of the aforementioned risk factors except dyslipidemia which was well controlled. Thus, all systemic risk score identified him as a low risk candidate for developing future cardiovascular disease and precluded primary prevention.

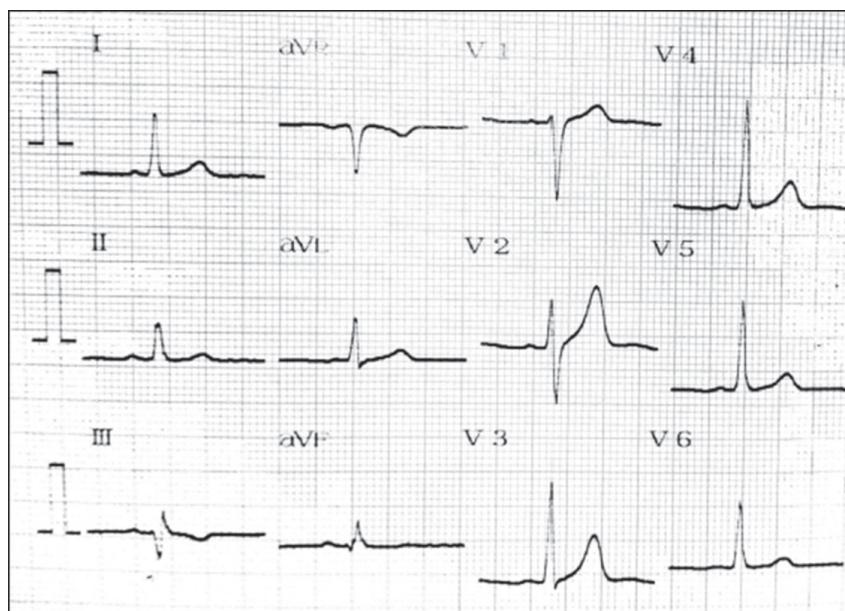
Case Report

A 43-year old man, regular tennis player, had been well, with a physically active life style for decades. In 2010, at the age of 39 years, he was diagnosed with hypercholesterolemia, with a total cholesterol of 260 mg/ dl. With dietary control, regular exercise i.e. swimming every day, jogging on weekend and simvastatin 10 mg/day, his lipid was well under control, see Table 1. At the same time, he was diagnosed with a herniated disc (L4-5 level) and spinal canal stenosis so surgery was recommended. He used to smoke cigarettes, for a year, and stopped seventeen years earlier. Preoperative physical examination was unremarkable; body mass index (BMI) was 25, BP was 110/70 mmHg and pulse rate was 76 beats per minute. Chest film was normal. Screening ECG showed regular sinus rhythm, normal QTc and had Q wave in lead III, see Figure 1. The total cholesterol was 164 mg/dl, triglyceride was 50 mg/dl. His father drank alcohol and had died during sleep in his mid 30's. His brother and one uncle also had dyslipidemia (no details available) but none of them had known cardiovascular diseases.

*Address Correspondence to author:
Gumpanart Veerakul, MD
Cardiovascular Disease Prevention,
Bangkok Heart Hospital,
2 Soi Soontjai 7, New Petchburi Rd.,
Bangkok 10310, Thailand
email: gumprevention@gmail.com

Received: January 28, 2019
Revision received: January 28, 2019
Accepted after revision: January 31, 2019
BKK Med J 2019;15(1): 66-72.
DOI: 10.31524/bkkmedj.2019.02.012
www.bangkokmedjournal.com

In Jan 2011, microdiscectomy and foraminostomy were uneventfully performed and allowed him to play tennis for two hours a day instead of swimming. Serial blood test showed fasting glucose of 91 mg/dl, total cholesterol of 177 mg/dl, triglyceride of 47 mg/dl, HDL-cholesterol of 78


mg/dl and LDL cholesterol of 96 mg/dl. In 2013, after having developed his own business, he exercised less, gained 6 kg and felt dyspnea on exertion. Cardiac check-up was scheduled but he did not come. From 10/2013-11/2014, he had ten OPD visits for pain of knee and back and took etoricoxib 90 mg daily. Two weeks prior to the event, he had chest discomfort but was still able to play two sets of tennis regularly. In December 2014, after having finished the first set, he felt dizzy and suddenly collapsed on the court. Resuscitation was performed by bystanders and later by paramedics but they failed to restore spontaneous circulation so he expired in the field.

An autopsy study was performed the next day. No pathological cause of death was found in any other organ except the heart. Cardiac weight was above average,⁶ 425 gm, and the organ was covered by epicardial adipose tissue (EAT), mostly over anterior and some around apico- basal part of the

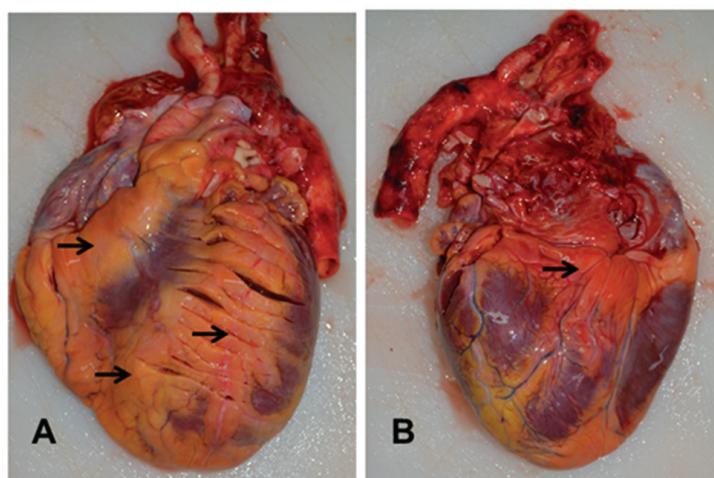
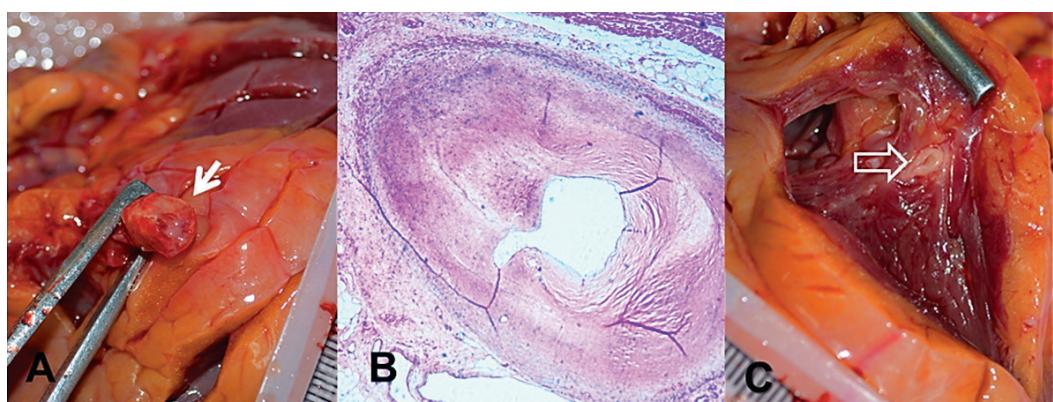
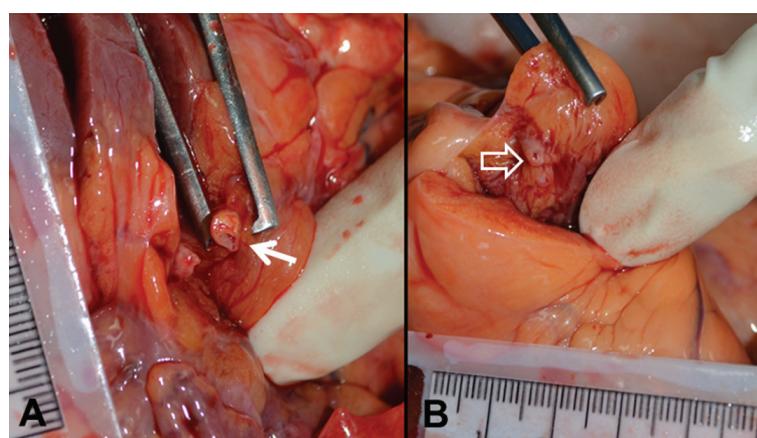

left ventricle (see Figure 2A&B). The pericardium and all valves were normal. New and old myocardial infarction areas were noted in postero-septum and posterior wall, as evident by fibrosis intervening with hemorrhagic infarction, see Figure 5. Under light microscope, most myocytes were hypertrophic and had changed edematous, especially at cardiac rim. Evidence of contraction band necrosis was documented, see Figure 5A. All three epicardial coronary arteries were occupied by advanced calcified atheromatous plaque. The left anterior descending artery (LAD) lumen was narrowed, ranging from 50% to over 90% stenosis, see Figure 3A&B. The mid LAD artery embedded, 10 mm, under myocardium for 20 mm in length, but was free from atherosclerotic disease, see Figure 3C. The circumflex (Cx) artery had calcified eccentric plaque causing 80% luminal stenosis, see Figure 4A. The right coronary artery (RCA) had 50-80% luminal stenosis, see Figure 4B.

Table 1: Summary of all available lipid profiles, exercise and medication from 2010-2014


Data	2010	2011	2012	2013	2014
Total Chol (mg/dl)	260	177	195 - 205	180	190
LDL- Chol (mg/dl)	NA	96	NA	NA	NA
HDL-Chol (mg/dl)	NA	78	NA	NA	NA
Triglyceride (mg/dl)	NA	47	NA	NA	NA
Simvastatin 10 mg	Yes	Yes	Yes	Yes	No
Exercise	Swimming Jogging	Swimming Jogging	Tennis	Tennis	Tennis
Etoricoxib	Yes	Yes	Yes	Yes	Yes


Figure 1: Pre-operative ECG in 2011 showed sinus rhythm with significant Q wave in lead III. Relative tall T wave was noted in V2 and V3. The QTc was within normal range.

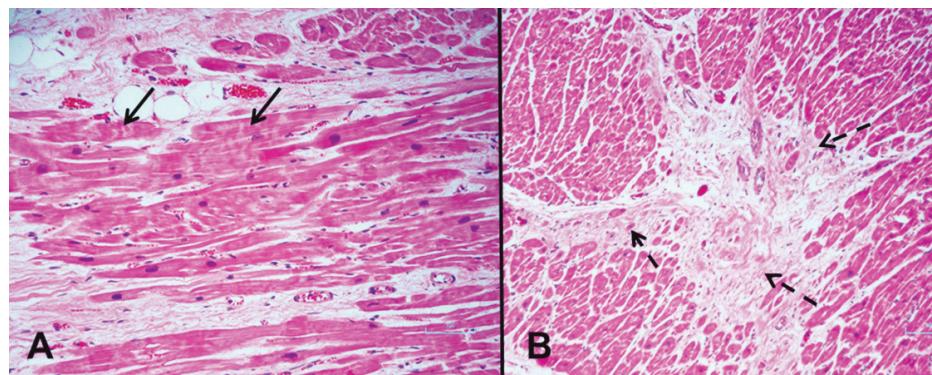

Figure 2: The heart weight was above normal range, 425 gm. It was covered by the thick yellowish epicardial adipose tissue (EAT, black arrow), mostly over anterior (A), apico-basal parts of the left ventricle (B).

Figure 3: The lumen of the proximal left anterior descending artery (LAD) was occupied by atherosclerotic plaque (white arrow, A) causing over 90% luminal stenosis, as shown in histological section B. The mid LAD embedded, 10 mm deep into myocardium (bridging or tunneled) for 20 mm length, and was free from atherosclerotic lesion (arrow, C). The epicardial adipose tissue (EAT) overlying the proximal LAD was obviously thickened, see Figure A & C.

Figure 4: Cross section profile of the circumflex artery showed severe eccentric atheroma causing 80% luminal stenosis (A). The right coronary artery had concentric plaque with 50-80% luminal stenosis along its course (B).

Figure 5: A dark red, cross striation (black arrow, A) of myocytes, (contraction band necrosis) was noted. Area of fibrotic scar (dashed black arrow) of previous myocardial infarction was shown in B.

Discussion

The cause of death

AMI occurred at a young age, below 45 years old, which is quite rare and accounts for only 5.7-7% of total AMI cases.¹⁻⁵ In general, the etiologies of young AMI cases could be classified in four groups: ^{7,8} 1) atheromatous coronary artery disease (CAD); 2) non-atheromatous CAD i.e. vasculitis, coronary dissection, myocardial bridging; 3) hyper-coagulable states ; and 4) AMI related to substance misuse. History provided by his wife confirmed that he never used cocaine or any other substance and had no hyper-coagulable conditions. There was no evidence of vasculitis or spontaneous coronary dissection on examination. The presence of advanced atheromatous CAD in all coronary arteries (Figure 3A&B and 4A), the scar and the contraction band necrosis located in postero-septum of the left ventricle (Figure 5A&B) indicated that the cause of death was AMI on top of an old myocardial scar. Both ischemic myocardium and the scar could serve as an arrhythmogenic substrate for ventricular arrhythmia and led to sudden cardiac death.⁹

COX-2 inhibitor and adverse cardiovascular effect

In addition, our case often took the selective non-steroidal anti-inflammatory drug, etoricoxib 90 mg/day to treat knee and back pain for five consecutive years, Table 1. It is known that COX-2 inhibitors predominantly suppress the formation of prostaglandin I₂, the cardiac-protective cyclooxygenase product in endothelium. It inhibits platelet aggregation, provides vasodilatation, and prevents the proliferation of vascular smooth-muscle cells in vitro.^{10,11} Although the cardiovascular safety of selective cyclooxygenase-2 (COX-2) drugs had previously been reported but the data remained controversial and conflicting.^{12,13} A recent meta-analysis of 31 trials involving 116,429 patients, followed up with more than 115,000 patient years, supported the excessive cardiovascular risk of COX-2 inhibitor.¹⁴ Studied patients were allocated to naproxen, ibuprofen, diclofenac, celecoxib, etoricoxib,

rofecoxib, lumiracoxib, or placebo. Compared with placebo, Etoricoxib (rate ratio, RR, 4.07, 95% CI 1.23 to 15.7) and diclofenac (RR 3.98, CI 1.48 to 12.7) were associated with the highest risk of cardiovascular death. Rofecoxib was associated with the highest risk of myocardial infarction (RR 2.12, 95% CI 1.26 to 3.56), followed by lumiracoxib (RR 2.00, 95% CI 0.71 to 6.21). Ibuprofen was associated with the highest risk of stroke (RR 3.36, 95% CI 1.00 to 11.6), followed by diclofenac (RR 2.86, 95% CI 1.09 to 8.36).¹⁴ In fact, two AMI Thai cases had been previously reported by our group and one in each case had taken celecoxib and etoricoxib a few days before having events.¹⁵ Although we still could not prove how much etoricoxib contributed to AMI in this case, it has been recommended not to use COX2 inhibitors in known cardiovascular disease patients.^{16,17} Only in case of need it should be used within a short period and a low dose aspirin should be added to reduce thromboxane A2 production.¹⁷

Role of myocardial bridging in sudden death

In the autopsy study, the tunneled mid LAD artery, so-called myocardial bridging (MB), was also noted, Figure 3C. The prevalence of MB varied widely in the literature, from 0.5-12% by angiography,^{18,19} to 26% by CT coronary angiogram,²⁰ and up to 58% in some autopsy studies.²¹ MB had been considered a benign anatomical variant since the long term prognosis was excellent. Krammer and colleague²² reported the excellent five-year survival rate, 97.5%, in 81 MB cases. In the 11 ± 3 year study of 28 cases of isolated MB in the LAD artery, the survival rate was very high, 98%, and the few deaths that occurred in this report were not relevant to MB.²³ However, acute myocardial infarction,²⁴⁻²⁶ ventricular septal rupture,²⁷ paroxysmal AV block,²⁸ ventricular tachycardia during exercise²⁹ or even sudden death³⁰ had been reported in MB cases. Recently, Hostiuc S et al.,³¹ performed a meta-analysis of 21 MB studies and found that MB was associated with major adverse cardiac events, OR = 1.52 (95% CI: 1.01–2.30), and myocardial ischemia, OR = 3.00 (95% CI: 1.02–8.82), but not with acute myocardial infarction, cardiovascular death, ischemia (identified using imaging

techniques), or positive exercise stress testing. In summary, MB could have significant cardiovascular consequences (MACE, myocardial ischemia) in three ways; 1) by direct systolic compression of the tunneled artery causes delayed relaxation and reduces blood supply,³²⁻³⁴ 2) by induced atherosclerosis of the proximal segment prior to the MB,³⁵⁻³⁷ as found in this case, and 3) enhanced vasospasm.³⁸ In other autopsy studies, the length (20-30 mm) and the depth of MB (2-3mm) were considered pathologic anatomy for sudden death.⁸ In our case, the length and the depth of MB segment were 20 mm and 10 mm respectively, so it could easily produce myocardial ischemia during exertion and contributed to sudden cardiac death.

Current risk predictor failed to predict this case

The reported common coronary risk factors of young AMI cases were male gender, cigarette smoker, family history of premature atherosclerosis, dyslipidemia, diabetes mellitus, obese, overweight, and hypertension.¹⁻⁵ Our case had none of these conditions except mild hypercholesterolemia which was under control. His LDL cholesterol was 96 mg/dl in 2011 and was considered to be safe by the 2016 European Guidelines on cardiovascular disease prevention in clinical practice.³⁹ However, it was not clear what caused the sudden death of his father who died at night in his sleep after drinking alcohol. The patient did not have tendon xanthoma and his cholesterol was not unusually high, so it was less likely for him to have familial hypercholesterolemia.⁴⁰ With no other risk factors, he was classified as a low risk candidate for developing future CVD events by the current risk score including the Atherosclerotic Cardiovascular Disease (ASCVD), Thai CV risk score, World Health Organization (WHO) and the modified Coronary Risk Chart (CVD Risk Score: <http://caprecvdrisk.com/CVDRiskScore/>).⁴¹⁻⁴⁴ In retrospect, the inferior Q wave on ECG and the coronary calcium score would have been suitable indicators to predict his event.

AMI with no conventional coronary risk factors

All of these risk calculators required conventional risk factors include gender, age, current smoker, blood pressure, serum lipid for calculation so they failed to predict the cardiovascular death in this reported case. It is known that 15-40% of population could have CAD or AMI with no major risk factors. Knot and colleagues analyzed 122,458 CAD cases that had been enrolled in 14 international randomized trials and found that 15.4% of women and 19.4% of men still had CAD without having the four major conventional risk factors, i.e. cigarette smoking, diabetes mellitus, hyperlipidemia and hypertension.⁴⁵ In Southern China (Hakka) population, Zhang et al.,⁴⁶ studied coronary risk factors of the first AMI 1,382 cases. The authors found that 31.1% and 40.6% of non-elderly men and women had AMI with normal LDL, HDL and triglyceride levels. This led to the next question: how could advanced atherosclerotic CAD develop in these patients?

EAT, a new risk predictor

From other autopsied studies, the average heart weight of Thai men, age ranging from 35-45 years, varied from 265 ± 8 gm to 302 ± 7 gm.⁶ In our case, the heart weight was up to 425 gm. The thick epicardial adipose tissue (EAT) was found and possibly contributed to an excess weight. The inflammatory role of EAT had been addressed in 2003 by Mazurek and colleagues.⁴⁷ By studying the inflammatory markers of EAT vs subcutaneous fat in 42 CAD patients before undergoing coronary bypass surgery, they found that the EAT exhibited significantly higher levels of chemokine, MCP-1 and other inflammatory cytokines: IL-1, IL-6, IL-6sR, and TNF, than subcutaneous fat did. Subsequent clinical studies supported this observation. In 2005, Meenakshi K and colleague⁴⁸ measured epicardial fat thickness by echocardiogram in 110 patients who underwent coronary angiography. They found that epicardial fat is independently and linearly associated with CAD severity. Recently, Hwang et al.,⁴⁹ performed a serial Coronary Computerized Tomogram of coronary artery (CTA) in 122 asymptomatic cases who had no CAD at baseline study. After the mean follow up of 65.4 months, EAT and diabetes mellitus independently predicted the development of new non-calcified plaque with the odd ratio of 4.29 and 9.0 respectively. All of these studies supported the paracrine effect of EAT by creating local inflammation, from outside to inside the coronary artery, and contributed to atherosomatous plaque formation.⁴⁷⁻⁵⁰ Without studying the inflammatory marker of EAT, we could only ask the question but could not confirm this hypothesis in this reported case.

Conclusion

We report a sudden death after exercise of a relatively young man who had no other conventional coronary risk factors except for treated dyslipidemia. Thus, all risk calculators failed to predict this fatal event. With no other major risk factors, his advanced atherosclerosis and fatal event could have resulted from various factors. The thick EAT, which had been previously shown to be the site of the inflammatory marker, was found and possibly induced CAD development. The presence of MB of the mid LAD, 10 mm depth and 20 mm long (also known as pathologic anatomy), could reduce coronary flow during exertion leading to ischemia. The chronic use of COX-2 inhibitor could precipitate vascular thrombosis and an ischemic event. In retrospect, the inferior Q wave on ECG and the calcium score, if it had been done, might have been a better predictor of risk in our case. This case reminds us that prediction of sudden death in young AMI patient remains one of a challenging issues. We should keep searching for unidentified risk factors to find the better ways to predict and prevent these catastrophic events.

References

1. Zimmerman, FH, Cameron A, Fisher L, et al. Myocardial infarction in young adults: Angiographic characterization, risk factors and prognosis (Coronary Artery Surgery Study Registry). *JACC* 1995;26(3):654-61.
2. Guipeng A, Zhongqi Du, Xiao M, et al. Risk factors for long-term outcome of drug-eluting stenting in adults with early-onset coronary artery disease. *Inter J Medical Sciences* 2014;11(7):721-5. doi: 10.7150/ijms.8718
3. Tungsututra W, Treesukosol D, Buddhari W, et al. Acute coronary syndrome in young adults: the Thai ACS Registry. *J Med Assoc Thai* 2007; 90(Suppl1):81-90.
4. Wong CP, Loh SY, Loh KK, et al. Acute myocardial infarction: Clinical features and outcomes in young adults in Singapore. *World Cardiol J* 2012; 496:206-10.
5. Chen TS, Incani A, Butler TC, et al. The demographic profile of young patients (<45 years-old) with acute coronary syndrome in Queensland. *Heart Lung Circ* 2014; 23:49-55.
6. Narongchai P, Narongchai S. Study of the normal internal organ weights in Thai population. *J Med Assoc Thai* 2008;91(5):747-53.
7. Eged M, Viswannathan G, Davis K. Myocardial infarction in young adults. *Postgrad Med J* 2005;81:741-5. doi: 10.1136/pgmj.2004.027532
8. Hill SF, Sheppard MN. Non-atherosclerotic coronary artery disease associated with sudden cardiac death. *Heart* 2010; 96:1119-25.
9. Gorenk B, Lundqvist CB, Terradellas JB, et al. Cardiac arrhythmias in acute coronary syndromes: The joint task force EHRA, ACCA, and EAPCI task force. *EuroIntervention* 2015;10(9):1095-108. doi: 10.4244/EIJY14M08_19
10. Fitzgerald GA. COX-2 and beyond: approaches to prostaglandin inhibition in human disease. *Nat Rev Drug Discov* 2003;2:879-90.
11. Fitzgerald GA. Coxibs and cardiovascular disease. *N Engl J Med* 2014;351(17):209-11.
12. Nissen SE, Yeomans ND, Solomon DH, et al. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. *N Engl J Med* 2016; 375(26):2519-29.
13. De Vecchis R, Bald C, Di Biase G, et al. Cardiovascular risk associated with celecoxib or etoricoxib: a meta-analysis of randomized controlled trials which adopted comparison with placebo or naproxen. *Minerva Cardioangiologica* 2014; 62:437-48.
14. Trelle S, Reichenbach S, Wandel S, et al. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. *BMJ* 2011;342:c7086 doi:10.1136/bmj.c7086
15. Veerakul G, Lapanun W, Sindhuvanna U, et al. Acute myocardial infarction development after COX-2 inhibitor drug administration: a report of two cases. *Intern Med J Thai* 2005; 21(4):276-81.
16. Lenzer J. FDA advisers warn: COX 2 inhibitors increase risk of heart attack and stroke. *BMJ* 2005; 330(26):440.
17. Antman EM, DeMets D, Loscalzo J. Cyclooxygenase Inhibition and Cardiovascular Risk, special report. *Circulation* 2005;112:759-70.
18. Noble J, Bourassa MG, Petitclerc R, et al. Myocardial bridging and milking effect of the left anterior descending coronary artery: normal variant or obstruction? *Am J Cardiol* 1976;37:993-9.
19. Kramer JR, Kitazume H, Proudfoot WL, et al. Clinical significance of isolated coronary bridges: benign and frequent condition involving the left anterior descending artery. *Am Heart J* 1982;103:283-88.
20. Leschka S, Koepfli P, Husmann L, et al. Myocardial bridging: Depiction rate and morphology at CT coronary angiography: Comparison with conventional coronary angiography. *Radiology* 2008;246:754-62.
21. Lee SS, Wu TL. The role of the mural coronary artery in prevention of coronary atherosclerosis. *Arch Pathol* 1972;93:32-5.
22. Kramer JR, Kitazume H, Proudfoot WL, et al. Clinical significance of isolated coronary bridges: benign and frequent condition involving the left anterior descending artery. *Am Heart J* 1982;103:283-88.
23. Juilliére Y, Berder V, Suty-Selton C, et al. Isolated myocardial bridges with angiographic milking of left anterior descending coronary artery: a long-term follow-up study. *Am Heart J* 1995; 129:663-5.
24. Bauters C, Chmait A, Tricot O, et al. Coronary thrombosis and myocardial bridging. *Circulation* 2002;105(1):130.
25. Bergmark BA, Galper BZ, Shah AM, et al. Myocardial bridging in a man with non-ST-elevation myocardial infarction. *Circulation* 2015 131(11):e373-e374
26. Arjomand H, AlSalman J, Azain J, et al. Myocardial bridging of left circumflex coronary artery associated with acute myocardial infarction. *J Invasive Cardiol* 2000;12(8):431-4.
27. Tio RA, Ebels T. Ventricular septal rupture caused by myocardial bridging. *Ann Thoracic Surg* 2001;72:1369-70.
28. Den Dulk K, Brugada P, Braat S, et al. Myocardial bridging as a cause of paroxysmal atrioventricular block. *J Am Coll Cardiol* 1983;1: 965-9.
29. Feld H, Guadanino V, Hollander G, et al. Exercise-induced ventricular tachycardia in association with a myocardial bridge. *Chest* 1991;99:1295-6.
30. MCutler D, Wallace JM. Myocardial bridging in a young patient with sudden death. *Clin Cardiol* 1997;20:581-3.
31. Hostiuc S, Rusu MC, Hostiu M, et al. Cardiovascular consequences of myocardial bridging: A meta-analysis and meta-regression. *Sci Rep* 2017;7:14644. DOI:10.1038/s41598-017-13958-0.
32. Ishikawa Y, Kawawa Y, Kohda E, et al. Significance of the anatomical properties of a myocardial bridge in coronary heart disease. *Circ J* 2011;75:1559-66.
33. Bourassa MG, Butnaru A, Lesperance J, et al. Symptomatic myocardial bridges: overview of ischemic mechanisms and current diagnostic and treatment strategies. *J Am Coll Cardiol* 2003;41:351-9.
34. Klues HG, Schwarz ER, vom Dahl J, et al. Disturbed intracoronary hemodynamics in myocardial bridging: early normalization by intracoronary stent placement. *Circulation* 1997; 96:2905-13.
35. Risse M, Weiler G. Coronary muscle bridge and its relations to local coronary sclerosis, regional myocardial ischemia and coronary spasm: a morphometric study [German]. *Z Kardiol* 1985;74:700-5.
36. Masuda T, Ishikawa Y, Akasaka Y, et al. The effect of myocardial bridging of the coronary artery on vasoactive agents and atherosclerosis localization. *J Pathol* 2001;193: 408-14.

37. Ishii T, Asuwa N, Masuda S, et al. Atherosclerosis suppression in the left anterior descending coronary artery by the presence of a myocardial bridge: an ultrastructural study. *Mod Pathol* 1991;4:424-31.

38. Teragawa H, Fukuda Y, Matsuda K, et al. Myocardial Bridging Increases the risk of Coronary Spasm. *Clin Cardiol* 2003;26:377-83.

39. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts). *Eur Heart J* 2016; 37(29):2315-81.

40. Shapiro M, Fazio S. Familial hypercholesterolemia: use of registries, biobanks, and cohort studies to improve its diagnosis and management in non-western populations. *BKK Med J* 2018; 14(1):63-8.

41. Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Circulation* 2014;129(25suppl2):S49-73.

42. Sritara P, Cheepudomwit S, Chapman N, et al. Twelve year changes in vascular risk factors and their associations with mortality in a cohort of 3,499 Thais: the electricity generating authority of Thailand study. *Int J Epidemiol* 2003;32:461-8.

43. World Health Organization. Prevention of cardiovascular disease: pocket guidelines of assessment and management of cardiovascular risk (WHO/ISH Cardiovascular Risk Prediction Charts for WHO epidemiological sub-regions AFR D and AFR E), Geneva 2007, (Accessed at January 15, 2019 at https://www.who.int/cardiovascular_diseases/guidelines/PocketGL.ENGLISH.AFR-D-E.rev1.pdf?ua=1).

44. Veerakul G, Khajornyai A, Wongkasia S, et al. Predicting and preventing cardiovascular events in asymptomatic patients: a 10-year prospective study. *BKK Med J* 2017;13:1-12.

45. Knot UN, Khot MB, Bajzer CT, et al. Prevalence of conventional risk factors in patients with coronary heart disease. *JAMA* 2003;290(7):898-904.

46. Zhong Z, Liu J, Li B et al. Serum lipid profiles in patients with acute myocardial infarction in Hakka population in southern China. *Lipids Health Dis* 2017;16(1):246. doi: 10.1186/s12944-017-0636-x.

47. Mazurek T, Zhnag L, Zalewski A, et al. Human epicardial adipose tissue is a source of inflammatory mediators. *Circulation* 2003;108:2460-6.

48. Meenakshi K, rajendran M, Srikumar S, et al. Epicardial fat thickness: A surrogate marker of coronary artery disease, assessment by echocardiography. *Indian Heart J* 2006;68: 336-41.

49. Hwang IC, Park HE, Choi SY. Epicardial adipose tissue contributes to the development of non-calcified coronary plaque: a 5-year computed tomography follow-up study. *J Atheroscler Thromb* 2017;24:262-74. doi:10.5551/jat.36467.

50. Kaikita K. Epicardial adipose tissue as a predictor for the development of Non-calcified coronary plaque. *J Atheroscler Thromb* 2017;24:254-5. doi: 10.5551/jat.ED062.