

Identification of *blaOXA23* and *blaNDM1* from Carbapenem-resistant *Acinetobacter baumannii* at a Private Hospital in Thailand

Sombat Leelasupasri¹; Wichai Santimaleeworagun^{2,3}; Tossawan Jitwasinku^{3,4}

Sombat Leelasupasri

Abstract

OBJECTIVES: This study aimed to detect carbapenemase genes and their clonal relationships among carbapenem-resistant *Acinetobacter baumannii* (CRAB) clinical isolates.

MATERIAL AND METHODS: Fifteen CRAB isolates were collected from patients admitted to Phyathai II International Hospital, Bangkok, Thailand during August 2014 – April 2015. Polymerase chain reaction (PCR) amplification and DNA sequencing were used to identify *bla_{OXA23}*, *bla_{OXA40}*, *bla_{OXA48}*, *bla_{OXA58}*, *bla_{IMP}*, *bla_{VIM}*, *bla_{KPC}*, and *bla_{NDM1}*. Clonal relationships were explored by using repetitive element palindromic (REP)-PCR.

RESULT: The CRAB isolates were categorized by REP-PCR in 8 groups [A-H], with 53.3% belonging to group A, whereas the remaining 7 clones were in each member of B-H, respectively. The *bla_{OXA23}* was detected in most CRAB isolates (86.7%) whereas only two isolates harbored *bla_{NDM1}* with *bla_{OXA23}* (13.3%).

CONCLUSION: Most CRAB strains carried *bla_{OXA23}* as reported in several related studies but our finding confirmed the emergence of CRAB carrying multiple types of carbapenemase genes in Thailand. This is a worrying phenomenon that concerns the spread of such CRAB genotypes.

Keywords: OXA carbapenemase, carbapenemase, metallo-beta lactamase, clonal relationship

A *cinetobacter baumannii*, a Gram-negative coccobacilli, is a major causative pathogen involving nosocomial infection in various organs, such as the lower respiratory tract, skin/soft tissue, blood and, rarely, in the urinary tract and central nervous system.¹ In Thailand, regarding the data of the first half-year of 2018,² *A. baumannii* was the third and second ranked organism isolated from all specimens and sputum, respectively.

This pathogen is not only an important nosocomial pathogen, but also has multiple mechanisms to resist the current antimicrobials varied from multi-drug treatment (more than three groups), extensive drug resistance (resistant to all antibiotics except colistin and tigecycline) to pan-drug (resistant to all available antibiotics).³ Over the past 19 years (from 2000-2018), the prevalence of carbapenem resistant *A. baumannii* (CRAB) has increased.² The National Antimicrobial Resistance Surveillance, Thailand (NARST) reported that among *A. baumannii* isolates from hospitalized patients in 50 hospitals, the rate of CRAB increased from 5.8% in 2000 to 52.5% in 2018.²

However, the increasing rate of CRAB has affected carbapenems use as empirical therapy for infections suspected of *A. baumannii*. The known type of carbapenemase enzyme in CRAB remains important for some circumstances including the role of carbapenems in combination with the other antimicrobials against CRAB and the upcoming use of new beta-lactamase inhibitor such as avibactam against carbapenemase producing organisms.^{4,5}

To date, carbapenem-destroying enzymes in CRAB have been found in two major types, namely, OXA-carbapenemases and metallo-beta lactamases.¹

*Address Correspondence to author:
Wichai Santimaleeworagun,
Department of Pharmacy,
Faculty of Pharmacy, Silpakorn University,
Nakhon Pathom 73000, Thailand
email: swichai1234@gmail.com

Received: July 30, 2018
Revision received: November 05, 2018
Accepted after revision: April 23, 2019
BKK Med J 2019;15(2): 149-153.
DOI: 10.31524/bkkmedj.2019.09.004
www.bangkokmedjournal.com

In Thailand, several reports have revealed that *bla*_{OXA23} constituted the majority of carbapenemase genes^{6,7} but the rare prevalence of OXA-40⁸ and IMP-1⁹ among CRAB clinical isolates was observed. However, previous studies were conducted in university hospitals and a general hospital. The resistant mechanisms in CRAB from a private hospital might be different regarding the patterns of antibiotic use, patient characteristics and infection prevention and control methods. Thus, our study aimed to identify the presence of carbapenemase genes and clonal relationship among CRAB strains isolated from patients admitted to a private hospital.

Materials and Methods

Bacterial strains

All clinical *A. baumannii* strains were obtained from patients admitted to Phyathai II International Hospital, a 550-bed private hospital between August 2014 and April 2015. A carbapenem resistant strain was defined as isolates that were phenotypically resistant to imipenem (10 µg) and meropenem (10 µg) using the disk diffusion method based on The Clinical and Laboratory Standards Institute (CLSI).¹⁰ Only the first CRAB isolate from each patient was kept in tryptic soy broth containing 20% glycerol at -80°C until studied. The research protocols were approved by the Ethic Committee [No. ID0014/59].

Table 1: Primers, amplicon sizes and annealing temperature used in PCR-based detection of *A. baumannii* carbapenemase genes.^{8,11}

Gene	Primer sequence	Size of amplicon (bp)	Annealing temperature (°C)
<i>bla</i> _{OXA23}	F- 5' GGAATTCCATGAATAATATTTA 3'	822	42
	R-5' GGATCCCGTTAATAATATTCAAGC 3'		
<i>bla</i> _{OXA40}	F-5' GGAATTCCATGAAAAAATTATAC 3'	828	45
	R-5' GGATCCCGTTAATGATTCCAAGA 3'		
<i>bla</i> _{OXA58}	F-5' GGAATTCCATGAAATTATTAAAAA 3'	843	45
	R-5' GGATCCCGTTATAAATAATGAAAA 3'		
<i>bla</i> _{IMP}	F-5' GGAATAGAGTGGCTTAAYTCTC 3'	232	52
	R-5' GGTTTAAAYAAAACAACCACC 3'		
<i>bla</i> _{VIM}	F-5' GATGGTGTGGCTCGCATA 3'	390	52
	R-5' CGAATGCGCAGCACCAG 3'		
<i>bla</i> _{KPC}	F-5' CGTCTAGTTCTGCTGTCTG 3'	798	52
	R-5' CTTGTCATCCTGTTAGCGC 3'		
<i>bla</i> _{NDM}	F-5' GGTTGGCGATCTGGTTTC 3'	621	52
	R-5' CGGAATGGCTCATCAGCAGTC 3'		
<i>bla</i> _{OXA48}	F-5' GCGTGGTTAAGGATGAACAC 3'	438	52
	R-5' CATCAAGTTCAACCCAACCG 3'		

Clonal relationships

The clonal relationships of CRAB were evaluated using the REP-PCR method. The 15 µl PCR mixture was composed of 1 µl of DNA, 0.4 µl of 20 µM each forward and reverse primers, 7.5 µl of PCR master mix kit (JumpStart Red Taq®

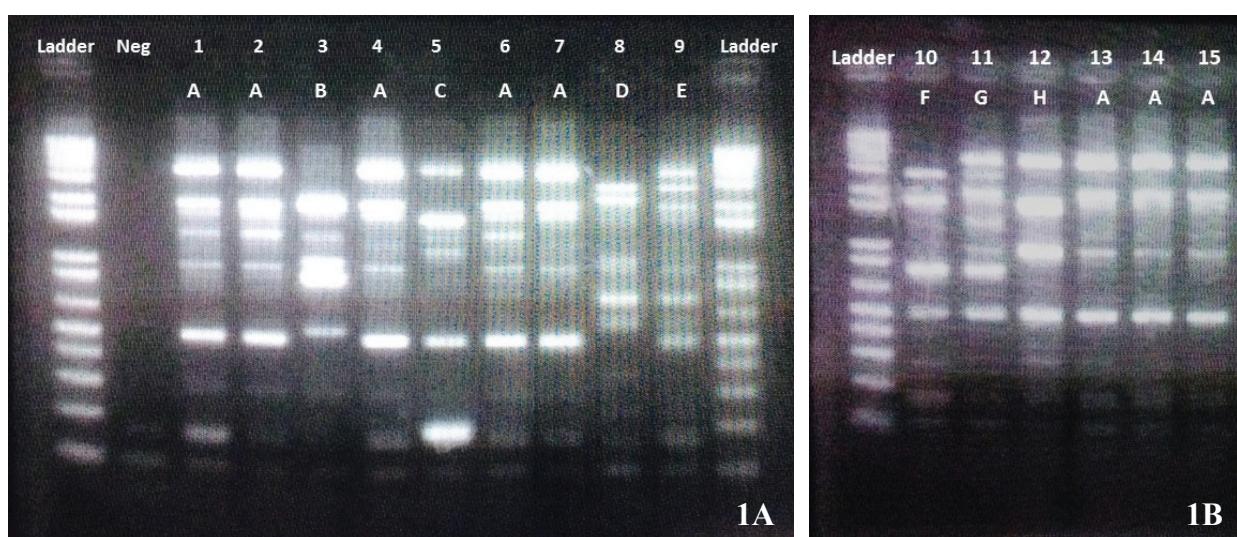
Carbapenemase genes

Each DNA sample of CRAB strains was extracted using a commercial kit (RBC Bioscience, California, USA). The primers of genes (*bla*_{OXA23}, *bla*_{OXA40}, and *bla*_{OXA58}) and conditions that were used, are described in Table 1. Thermocycler was performed as follows: 94°C for 5 minutes; 30 cycles of 94°C for 45 seconds, annealing temperature specific for each primer pair for 45 seconds, and 72°C for 1 minute; with a final heating at 72°C for 10 minutes.⁸

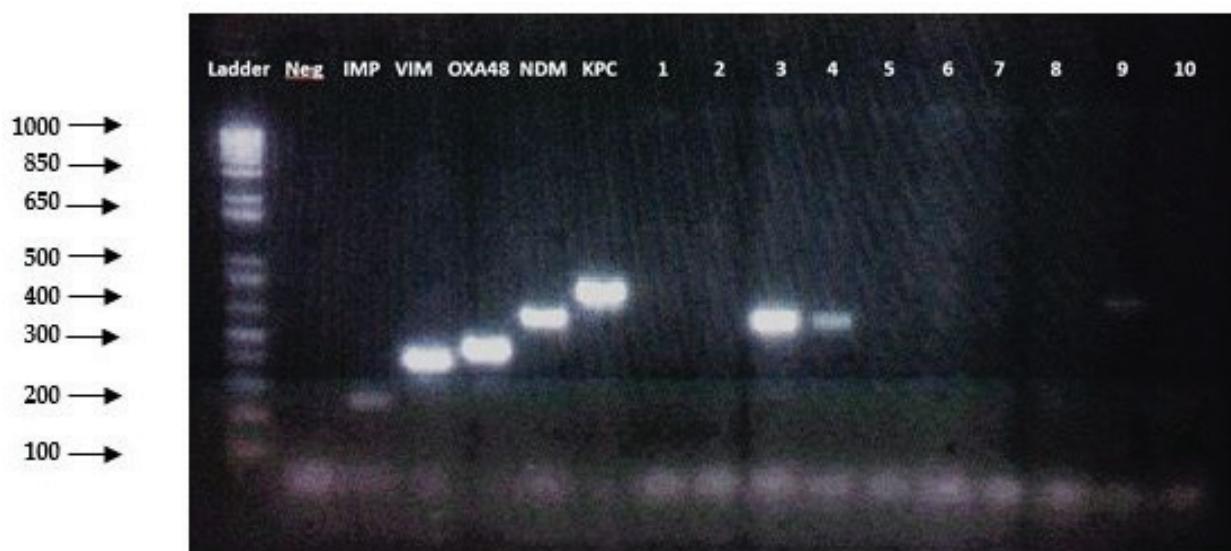
The detection of carbapenemase genes including *bla*_{IMP}, *bla*_{VIM}, *bla*_{KPC}, *bla*_{OXA48} and *bla*_{NDM} was performed, however, with multiplex PCR (Table 1). Amplification was carried out with the following thermal cycling conditions: at 94°C for 10 minutes and 36 cycles of amplification consisting of 30 seconds at 94°C, 40 seconds at 52°C, and 50 seconds at 72°C, with 5 minutes at 72°C for the final extension.¹¹

All amplicons were separated by agarose gel electrophoresis, stained with ethidium bromide, and compared with those of known carbapenemase genes. Finally, their identities were confirmed by nucleotide sequencing (Ward Medic, Ltd, Bangkok, Thailand) and were compared with known sequences in the GenBank database.

Ready Mix, California, USA) and 5.7 µl of DNAase-free water. A couple primer (REP-forward: 5'-IIIGC GCCGICATCAGGC-3' and REP-reverse: 5'-ACGTCTTATCAG-GCCTAC-3') was used to amplify the REP region under the following conditions, starting with heating at 94°C for 10 minutes, followed by 30 cycles of 94°C for 1 minute, 45°C for


1 minute, 72°C for 2 minutes and finally at 72°C for 16 minutes⁸. The REP-PCR products were performed using agarose gel electrophoresis and were stained with ethidium bromide. The criterion for classifying the different clones was a pattern that differed from the at least three bands or more of REP-PCR.¹²

Results


Over the nine-month study period, only the first CRAB strain isolated from each patient, for a total of 15 clinical isolates were determined. The 15 samples were isolated from sputum (n = 9), blood (n = 2), urine (n = 1), pus (n = 2) and tissue (n = 1) specimens. All CRAB strains resisted to

ceftazidime and were susceptible to ciprofloxacin, amikacin, and ampicillin/sulbactam at 6.7%, 26.7%, and 26.7%, respectively.

According to the clonal relationship study, the CRAB isolates were categorized by REP-PCR in 8 groups [A-H], with 53.3% belonging to group A, whereas the remaining 7 clones were in each member of B-H, respectively. (Figure 1). Of the OXA and MBL genes identified, most CRAB carried only *bla_{OXA23}* (86.7%) whereas only two isolates harbored both *bla_{NDM1}* and *bla_{OXA23}* (13.3%) (Figure 2). However, no *bla_{OXA40}*, *bla_{OXA48}*, *bla_{IMP}*, *bla_{VIM}* and *bla_{KPC}* were identified in the study.

Figure 1A-B: Pattern obtained with Repetitive Extragenic Palindromic-Polymerase Chain Reaction (REP-PCR). The letters above each lane indicate the strain (No 1-15); Ladder, DNA molecular weight marker in kilobase unit (kb); Neg, Negative control. Using the REP-PCR method, there were 8 groups divided into patterns A-E (1A) and patterns F-H (1B).

Figure 2: PCR detection of presence of NDM-1 gene in *Acinetobacter baumannii* isolate No 3 and 4. Ladder, molecular size markers (size (bp) is indicated in the left margin); Neg, negative control; IMP positive control; VIM positive control; OXA-48 positive control; NDM positive control; KPC positive control; 1-10, test samples.

Discussion

Currently, with the mechanisms of resistance in *A. baumannii* especially, carbapenemases has been reported from various parts of the world. Although six studies detected carbapenemase genes in Thailand only five were from the clinical isolates in the university hospitals and the remaining were from a general hospital.^{6-9,13,14} Actually, the diversity of resistant mechanisms among *A. baumannii* clones might be possible in different hospitals.¹⁵ Moreover, at the same hospital but in different wards, the distribution of clones and mechanism of resistance also varied in different clinical departments.¹⁶ Thus, our study, performed in a private hospital, revealed the same *bla_{OX423}* as related studies but reported two patients carrying two carbapenemase genes (*bla_{OX423}* and *bla_{NDM1}*) simultaneously.

With the NDM-1, the Amber class B, MBL group, is one of the most commonly reported among *Enterobacteriaceae*, being firstly identified in a patient who had returned from New Delhi.¹⁷ *Bla_{NDM1}*-carrying *Enterobacteriaceae* remains on the Indian subcontinent, but to date, has been found in various parts of the world.¹⁷ Of *bla_{NDM1}*-*bla_{OX423}* carrying *A. baumannii*, the co-carbapenemase genes found in our study, this phenomena was similar to a related study showing the coexistence of *bla_{OX4}*-*bla_{NDM1}* among three isolates of CRAB in India and two isolates of CRAB in Thailand.^{18,19} However, we could not explain how these genes coexisted. However, we hypothesize that the co-genes might have been transferred by mobile genetic elements within *ISAbal1*.¹⁸

However, no other carbapenemase genes (*bla_{OX448}*, *bla_{KPC2}*, *bla_{IMP}*, or *bla_{VIM}*) were detected in the present study. This might be due to the small sample size, limited period of sample collection, or their extremely low prevalence in the hospital setting. This limitation should be corrected by further studies with a larger sample size and a longer study period.

References

- Lin MF, Lan CY. Antimicrobial resistance in *Acinetobacter baumannii*: From bench to bedside. *World J Clin Cases* 2014;2:787-814.
- Result of antimicrobial resistance surveillance [Internet]. National Antimicrobial Resistance Surveillance Center, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Thailand. 2018 (Accessed December 1, 2018, at <http://narst.dmsc.moph.go.th/>).
- Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. *Clin Microbiol Infect* 2012;18:268-81.
- Bedenic B, Beader N, Godic-Torkar K, et al. Postantibiotic effect of colistin alone and combined with vancomycin or meropenem against *Acinetobacter* spp. with well defined resistance mechanisms. *J Chemother* 2015;28:375-82.
- Zasowski EJ, Rybak JM, Rybak MJ. The beta-Lactams Strike Back: Ceftazidime-Avibactam. *Pharmacotherapy* 2015;35: 755-70.
- Santimaleeworagun W, Wongpoowarak P, Chayakul P, et al. In vitro activity of colistin or sulbactam in combination with fosfomycin or imipenem against clinical isolates of carbapenem-resistant *Acinetobacter baumannii* producing OXA-23 carbapenemases. *Southeast Asian J Trop Med Public Health* 2011;42:890-900.
- Thapa B, Tribuddharat C, Srisuengfung S, et al. High prevalence of *bla(OXA)-23* in oligoclonal carbapenem-resistant *Acinetobacter baumannii* from Siriraj Hospital, Mahidol University, Bangkok, Thailand. *Southeast Asian J Trop Med Public Health* 2010;41:625-35.
- Santimaleeworagun W, Thatthong A, Samret W, et al. Identification and characterization of carbapenemase genes in clinical isolates of carbapenem-resistant *Acinetobacter baumannii* from general hospital in Thailand. *Southeast Asian J Trop Med Public Health* 2014;45:874-80.
- Boonkerd N, Pibalpakdi P, Tiloclurs M, et al. Class 1 integron containing metallo beta-lactamase gene *blaIMP-1* in carbapenem-resistant *Pseudomonas aeruginosa* in Thailand. *J Infect Chemother* 2009;15:257-61.

At the time of writing, avibactam and vaborbactam are diazabicyclo-octane and cyclic boronic acid respectively, having an inhibitor activity against class A, class C and some enzymes in class D beta-lactamases. Whereas class B metallo-beta lactamases (such as NDM, IMP, VIM) have proven to have less inhibition by avibactam and vaborbactam. Thus, the presence of a pathogen carrying co-carbapenemase gene (*bla_{OX423}* and *bla_{NDM1}*) is challenging treatment for finding a novel beta-lactamase inhibitor with high affinity to all classes of beta-lactamases.²⁰

Regarding the clonal relationships in this study, clone A (53.3%) was predominant. This prevalence of the majority clone was less than that reported in a related study (93.0%).⁸ The lower prevalence of the predominant clone and the numerous types of clone might have stemmed from well-controlled multiple factors including strict infection control guidelines, appropriate use of antibiotics and notification of infected patients.²¹ However, as clone A exhibited the highest prevalence, we suggested that the infectious control program could continue minimizing the reservoir for bacterial transmission in the hospital.²²

Conclusion

This research comprised a study to confirm the most common type of *bla_{OX423}* found in Thailand beyond academic medical centers. Additionally, this study firmly showed *bla_{NDM1}* coexisted with *bla_{OX423}* in clinical CRAB isolates in Thailand.

Conflict of Interests

The authors declare no conflict of interest.

10. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing : twenty-fifth informational supplement. CLSI document M100S; Wayne: PA; 2015.
11. Poirel L, Walsh TR, Cuvillier V, et al. Multiplex PCR for detection of acquired carbapenemase genes. *Diagn Microbiol Infect Dis* 2011;70:119-23.
12. Bou G, Cervero G, Dominguez MA, et al. PCR-based DNA fingerprinting (REP-PCR, AP-PCR) and pulsed-field gel electrophoresis characterization of a nosocomial outbreak caused by imipenem- and meropenem-resistant *Acinetobacter baumannii*. *Clin Microbiol Infect* 2000;6:635-43.
13. Yamamoto N, Hamaguchi S, Akeda Y, et al. Clinical Specimen-Direct LAMP: A Useful Tool for the Surveillance of *blaOXA-23*-Positive Carbapenem-Resistant *Acinetobacter baumannii*. *PLoS One* 2015;10:e0133204.
14. Teo J, Lim TP, Hsu LY, et al. Extensively drug-resistant *Acinetobacter baumannii* in a Thai hospital: a molecular epidemiologic analysis and identification of bactericidal Polymyxin B-based combinations. *Antimicrob Resist Infect Control* 2015;4:2 doi: 10.1186/s13756-015-0043-x.
15. Provaci Cardoso J, Cayo R, Girardello R, et al. Diversity of mechanisms conferring resistance to beta-lactams among OXA-23-producing *Acinetobacter baumannii* clones. *Diagn Microbiol Infect Dis* 2016;85:90-7.
16. Qian Y, Dong X, Wang Z, et al. Distributions and Types of Multidrug-Resistant *Acinetobacter baumannii* in Different Departments of a General Hospital. *Jundishapur J Microbiol* 2015;8:e22935.
17. Nordmann P. Carbapenemase-producing Enterobacteriaceae: overview of a major public health challenge. *Med Mal Infect* 2014;44:51-6.
18. Karthikeyan K, Thirunarayanan MA, Krishnan P. Coexistence of *blaOXA-23* with *blaNDM-1* and *armA* in clinical isolates of *Acinetobacter baumannii* from India. *J Antimicrob Chemother* 2010;65:2253-4.
19. Santimaleeworagun W, Preechachuwong P, Kerdsin A, et al. Emergence of co-carbapenemase genes, *blaOXA23*, *blaVIM*, and *blaNDM* in carbapenem resistant *Acinetobacter baumannii* clinical isolates. *Southeast Asian J Trop Med Public Health* 2016;47:1001-7.
20. Wright H, Bonomo RA, Paterson DL. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? *Clin Microbiol Infect* 2017;23: 704-12.
21. Moultrie D, Hawker J, Cole S. Factors associated with multidrug-resistant *Acinetobacter* transmission: an integrative review of the literature. *AORN J* 2011;94:27-36.
22. Choi WS, Kim SH, Jeon EG, et al. Nosocomial outbreak of carbapenem-resistant *Acinetobacter baumannii* in intensive care units and successful outbreak control program. *J Korean Med Sci* 2010;25:999-1004.