

Research article

Short-Term Outcomes of Patients Undergoing Transcatheter Aortic Valve Replacement: Early Experience at Chulabhorn Cardiac Center

Chatree Wongsinkongman^{1,*}, Wongsakorn Luangphiphat¹, Viroj Muangsillapasart¹,
Anuruck Jeamanukoolkit², Piyanart Preeyanont³, Worawut Tassanawiwat⁴,
Pichej Lerdpunnapongse¹, Komen Senngam¹, Damrong Sukitpunyaroj¹,
Chaval Srisakvarakul¹, Chanokpon Piempring¹, Chanwit Wuttichaipradit⁵,
Tanyarat Aramsereewong⁶

¹Cardiology Center, Chulabhorn Hospital, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand

²Cardiology Unit, Police General Hospital, Bangkok, Thailand

³Perfect Heart Institute, Piyavate Hospital, Bangkok, Thailand

⁴Cardiology Unit, Sanpasitprasong Hospital, Ubonratchathani, Thailand

⁵Cardiovascular Center, Bangkok Heart Hospital, Bangkok, Thailand

⁶Cardiology Unit, Department of Internal Medicine, Phramongkutklao Hospital, Bangkok, Thailand

*Corresponding author Email: chatree.wong@cra.ac.th

Received: 31 March 2021; Revised: 1 August 2021; Accepted: 3 September 2021

Abstract

Background: Transcatheter aortic valve replacement (TAVR) has emerged as an alternative treatment for severe aortic stenosis in the past few decades. Chulabhorn Cardiac Center initiated a TAVR program in 2019. We herein report the initial 30-day outcomes and complications of the first 60 patients who underwent TAVR in Chulabhorn Cardiac Center. **Methods:** This study involved the analysis of descriptive data for the first 60 patients who underwent TAVR from 2019 to 2021. The inclusion criteria were symptomatic severe aortic stenosis or asymptomatic severe aortic stenosis with an indication for valvular intervention according to current standard guidelines. The reported outcomes were retrospectively analyzed, including clinical outcomes, complications, and echocardiographic and hemodynamic changes pre- and post-TAVR. **Results:** Sixty patients (47% female) were enrolled in this cohort. Their median Society of Thoracic Surgeons score was 3.7. The procedural success rate was 100%. The median in-hospital and 30-day follow-up mean pressure gradient was 9.9 and 11.2 mmHg, respectively, with 46 (93.4%) patients reportedly developing no to mild paravalvular leakage after the procedure. No patients died within the first 30 days after the procedure. With regard to periprocedural complications, 13 (21.7%) patients underwent permanent pacemaker implantation after the TAVR procedure because of new-onset high-grade or complete atrioventricular block. Four (6.6%) patients developed ischemic stroke after the TAVR procedure. Three (5.0%) patients developed a major vascular complication according to the VARC definition, among whom only one (1.7%) patient required surgical correction. **Conclusion:** The immediate and 30-day outcomes in our initial 60 patients undergoing TAVR were favorable with a low complication rate.

Keywords: transcatheter aortic valve replacement (TAVR), transcatheter aortic valve implantation (TAVI), aortic stenosis, bioprosthetic heart valve, echocardiography, hemodynamics, treatment outcome, complication

Background

Aortic stenosis is the most common valvular heart disease worldwide, with a prevalence of 1% to 2% among people aged >65 years and 12% among those aged >75 years.^{1,2} Among people with aortic stenosis, 3.4% have severe aortic stenosis.² The gold standard treatment for severe aortic stenosis is surgical aortic valve replacement.^{3,4} However, the risks of post-operative complications in high-risk populations can prevent these patients from proceeding to surgery. During the past decade, trans-catheter aortic valve replacement (TAVR) has emerged as an alternative treatment for severe aortic stenosis in high-risk populations,⁵⁻⁷ and its indications may now extend to low-risk populations.^{8,9} The standard treatment of severe aortic stenosis has shifted from surgical aortic valve replacement to TAVR, which is currently considered a standard treatment in high-risk populations.^{3,4}

The Cardiology Center at Chulabhorn Hospital initiated a TAVR program in 2019, and more than 60 patients have been enrolled in the program to date. We herein report the 30-day outcomes and complications of our first 60 patients.

Patients and Methods

All patients who underwent TAVR from 2019 to 2021 at Chulabhorn Cardiac Center were recruited for inclusion in the study analysis. The patients' data were reviewed by the TAVR conference committee, which comprised cardiovascular imaging specialists, interventionists, and cardiothoracic surgeons, to evaluate the feasibility of performing the procedure. All patients had either symptomatic severe aortic stenosis or asymptomatic aortic stenosis with an indication for aortic valve replacement according to current standard guidelines.^{3,4} Routine left cardiac catheterization was performed prior to full evaluation by the TAVR conference committee to identify and properly treat significantly diseased coronary arteries. Computed tomography of the whole

aorta and lower extremity vessels was also routinely performed to evaluate entry sites, intraoperative techniques, and optimal deployment views. Routine pre- and post-TAVR transthoracic or transesophageal echocardiography was performed and reviewed by cardiothoracic imaging specialists. If the TAVR conference committee reached a consensus on performing TAVR, the patients' preoperative, intraoperative, and postoperative data were collected. If the patients were lost to follow-up for any reason, the data were identified as "missing data" and excluded from the primary analysis. The missing data were later included in the sensitivity analysis after completion of the study and reported as supplementary data.

The study protocol was approved by the Committee for Medical Research Ethics, and all patients provided written informed consent in accordance with the revised Declaration of Helsinki.

The procedures were performed by one team comprising at least three operators (either interventionists or cardiothoracic surgeons). All patients underwent general anesthesia. A temporary pacemaker was placed in the right ventricular apex or wire pacing was placed in the left ventricular apex, and balloon valvuloplasty was then performed under rapid ventricular pacing followed by implantation of the valve. If the femoral artery was used as the access site, it was closed using a large-bore closure device (either ProGlide; Abbott Laboratories, Abbott Park, IL, USA or Angio-Seal; Terumo Corporation, Tokyo, Japan).

Definition of complications

Ischemic stroke, transient ischemic accident, major vascular complications, and major bleeding were defined according to the consensus report of the Valve Academic Research Consortium (VARC-2).¹⁰

Statistical analysis

Continuous variables are presented as mean \pm standard deviation for parametric data and

as median and interquartile range for non-parametric data. Continuous variables were compared using the paired *t* test or the Mann–Whitney *U* test. All analyses were performed with Stata/MP 14.0 software (StataCorp, College Station, TX, USA).

Results

Sixty patients, 29 (48.3%) of whom were female, were included in the analysis. Their mean age was 80 ± 5.7 years. The patients' baseline clinical characteristics are shown in

Table 1. Of the 60 TAVR procedures, 59 were performed via the transfemoral approach and 1 was performed via the transaortic approach. The CoreValve system (Medtronic, Minneapolis, MN, USA) was used in 38 patients, and the Edwards Sapien system (Edwards Lifesciences, Irvine, CA, USA) was

used in 22 patients. The procedural characteristics are shown in **Table 2**. Thirty-day follow-up data were completed for 52% of the 60 patients in our cohort.

The valve system most commonly used in our cohort was a self-expandable valve system (68.4%). The procedural success rate was 100%. This rate was later confirmed by intraprocedural pressure gradient measurement and echocardiographic two-dimensional/three-dimensional imaging, including Doppler measurement of the transvalvular gradient, which declined rapidly following valve deployment. The pre- and post-TAVR hemodynamic indices are presented in Table 2, and the baseline, in-hospital, and 30-day post-procedure echocardiographic parameters are shown in **Table 3**.

Table 1. Baseline Characteristics

Characteristics	N = 60
Female sex	29 (48.3)
Age, years	80 ± 5.7
Body mass index, kg/m ²	22.5 ± 4.0
Hypertension	47 (78.3)
Diabetes mellitus	18 (30.0)
Hyperlipidemia	38 (63.3)
PAD	2 (3.3)
CAD	27 (45.0)
Previous TIA/stroke	3 (5.0)
Estimated GFR, mL/min/1.73 m ²	41 ± 14.9
Chronic kidney disease	
Stage 3a	19 (31.7)
Stage 3b	27 (45)
Stage 4	7 (11.7)
Stage 5	2 (3.3)
Previous CABG	3 (5.0)
Previous aortic valve surgery	1 (1.7)
COPD	2 (3.3)
Atrial fibrillation	8 (13.3)
STS score, points	3.7 (3.1–5.8)

Data are presented as n (%), mean \pm standard deviation, or median (interquartile range).

PAD, peripheral artery disease; CAD, coronary artery disease; TIA, transient ischemic attack; GFR, glomerular filtration rate; CABG, coronary artery bypass grafting; COPD, chronic obstructive pulmonary disease; STS, Society of Thoracic Surgeons

Table 2. Procedural Characteristics

Characteristics	N = 60
Approach	
Transfemoral	59 (98.3)
Transaortic	1 (1.7)
Total dose of heparin, IU	5000 (4000–5000)
Valve type	
Sapien 3, Edwards Lifesciences	22 (36.7)
CoreValve Evolut R, Medtronic	31 (51.7)
CoreValve Evolut Pro, Medtronic	7 (11.7)
Valve size, mm	
20	5 (8.3)
23	6 (10.0)
26	27 (45.0)
29	17 (28.3)
34	5 (8.3)
Predilatation	44 (73.3)
Postdilatation	13 (21.7)
Vascular closure of device site	
ProGlide, Abbott	58 (96.7)
Angio-Seal VIP, Terumo	26 (43.3)
Surgical repair	1 (1.7)
Contrast dose, mL	200 (170–300)
Hemodynamics before TAVR	
Systolic blood pressure, mmHg	103 (93–116)
Diastolic blood pressure, mmHg	46 (38–55)
LVEDP, mmHg	14.5 (12–22)
Peak-to-peak pressure gradient, mmHg	60.5 (42–81)
Mean pressure gradient, mmHg	55.9 (44.1–75.7)
Hemodynamics after TAVR	
Systolic blood pressure, mmHg	120 (103–131)
Diastolic blood pressure, mmHg	49 (44–56)
LVEDP, mmHg	16.5 (12–23)
Peak-to-peak pressure gradient, mmHg	2 (2–6)
Mean pressure gradient, mmHg	7.8 (3.3–12.9)

Data are presented as n (%) or median (interquartile range).

TAVR, transcatheter aortic valve replacement; LVEDP, left ventricular end-diastolic pressure

The 30-day postprocedural in-hospital complications are listed in Table 4. According to the VARC-2 definition,¹⁰ the composite endpoint of device success was 100%, the 30-day early safety event rate was 11.7%, and the 30-day clinical efficacy rate was 6.7%.

In terms of complications after TAVR, no

periprocedural death occurred in our cohort. The most common periprocedural complication was high-grade/complete atrioventricular block, which was found in 13 (21.7%) patients and led to permanent pacemaker implantation; however, no patients had fatal events. Four (6.6%) patients developed ischemic stroke during the

periprocedural period. Three (4.9%) patients developed new-onset atrial fibrillation during the periprocedural period, mostly within 3 days; the latest onset was 5 days after the procedure. Three (5.1%) patients developed major vascular complications during the procedure; these complications were mostly non-fatal and could be corrected nonsurgically. Only two patients developed vascular complications requiring surgical correction. With

regard to paravalvular leakage, most of the patients had trace to mild leakage. Only four (7.3%) patients had moderate regurgitation, and no severe regurgitation was reported in our cohort. Bleeding after the procedure was reported in 12 (20.0%) patients, and most of these cases were minor access site bleeding. Only one patient developed life-threatening bleeding at the vascular access site.

Table 3. Echocardiographic Parameters

Echocardiography	Baseline (n = 60)	In-hospital (n = 60)	30-day post-procedure (n = 31)
LVEF, %	63.25 (55–70)	63 (55.5–70.1)	66.9 (57.4–70.8)
LVEF category			
Normal	48 (80.0)	50 (83.3)	27 (87.1)
Mildly impaired	4 (6.7)	5 (8.3)	3 (9.7)
Moderately impaired	7 (11.7)	3 (5.0)	1 (3.2)
Severely impaired	1 (1.7)	2 (3.3)	0 (0.0)
Diastolic dysfunction			
No diastolic dysfunction	1 (1.7)	0 (0.0)	0 (0.0)
Grade 1	35 (58.3)	42 (70.0)	13 (41.9)
Grade 2	14 (23.3)	10 (16.7)	14 (45.1)
Grade 3	6 (10.0)	2 (3.3)	0 (0.0)
Undetermined	4 (6.7)	5 (8.3)	2 (6.4)
Anatomy of aortic valve			
Tricuspid	53 (88.3)	-	-
Bicuspid	7 (11.7)	-	-
Peak aortic valve gradient, mmHg	91.1 (73.5–108.8)	19.4 (15.4–25.4)	20.4 (13.9–23.3)
Mean aortic valve gradient, mmHg	55.8 (45.2–69.8)	9.9 (7.5–13.4)	11.2 (7.9–12.7)
Aortic valve area, cm ²	0.6 ± 0.2	-	
Effective orifice area, cm ²	-	1.8 ± 0.8	1.9 ± 0.7
Effective orifice area index, cm ² /m ²	-	0.9 ± 0.4	0.8 ± 0.7
Doppler velocity index		0.6 ± 0.2	0.6 ± 0.2
Paravalvular leakage	-		
None or trace		28 (46.7)	14 (45.2)
Mild		28 (46.7)	12 (38.7)
Moderate		4 (6.7)	4 (12.9)
Severe		0 (0.0)	1 (3.2)

Data are presented as n (%), mean ± standard deviation, or median (interquartile range).

LVEF, left ventricular ejection fraction

Table 4. Thirty-day Post-procedural In-hospital Complications

Complications	N = 60
In-hospital mortality	0 (0.0)
Cardiac arrest	1 (1.7)
Valve dislodgement	2 (3.3)
Myocardial infarction	2 (3.3)
Coronary occlusion	2 (3.3)
Respiratory failure	5 (8.3)
Cardiogenic shock	4 (6.7)
Major vascular complication	
False aneurysm	1 (1.7)
Vessel perforation	1 (1.7)
Vessel occlusion	1 (1.7)
Acute kidney injury	5 (8.2)
Ischemic stroke	4 (6.6)
Infection	10 (16.7)
Permanent pacemaker implantation	13 (21.7)
New atrial fibrillation	3 (5.0)
Major bleeding	
Access site	1 (1.7)
False aneurysm	1 (1.7)
Retroperitoneal	1 (1.7)
Minor bleeding	
Access site	7 (11.7)
Gastrointestinal	2 (3.3)

Data are presented as n (%).

Discussion

We have herein reported favorable outcomes but quite low complication rates in our first 60 patients who underwent TAVR as part of the TAVR program at Chulabhorn Cardiac Center. The procedural success rate was 100%, and no patients died within the first 30 days. Seven patients in our cohort had a bicuspid aortic valve, for which TAVR is not recommended according to the current guidelines.^{3,4} However, these seven patients developed no adverse clinical events, and echocardiography showed no signs of bioprosthetic valve dysfunction within 30 days after performing TAVR. Therefore, a bicuspid aortic valve may not be a contraindication for TAVR in appropriately selected patients.

In the PARTNER study,^{6,7} which involved patients who had severe aortic stenosis with high and prohibitive risks, the 30-day mortality rate was 5%, the 30-day major stroke rate was 5%, the major vascular complication rate was 16%, and the major bleeding rate was 16%. In the PARTNER-2 study,¹¹ which involved patients who had severe aortic stenosis with intermediate risks, the 30-day mortality rate was 3.9%, the major stroke rate was 3.2%, the major vascular complication rate was 7.9%, and the major bleeding rate was 10.4%. In the PARTNER-3⁸ and Evolut-Low Risk⁹ studies, which involved patients with low-risk severe aortic stenosis, the 30-day mortality rate was 0.4% and 0.5%, the major stroke rate was 0.7% and 0.6%, the major vascular complication rate was 2.2% and 3.8%, and the major bleeding

rate was 3.6% and 2.4%, respectively. In the French transcatheter aortic valve implantation (FRANCE-TAVI) registry¹² of 3195 patients, the 30-day mortality rate was 9.7% and the 30-day stroke rate was 3.4%. Additionally, 5.0% of patients developed major vascular complications, 4.5% had major bleeding, and 15.6% required permanent pacemaker implantation.

Because our patient population mainly involved patients with low to intermediate risk as assessed by the Society of Thoracic Surgeons score, the 30-day in-hospital mortality and major complication rates were not inferior to, and some parameters were better than, the previous low- and intermediate-risk TAVR clinical trials and registries mentioned above.

Notably, this study involved only pilot data from a small population of patients with low to moderate risk as reflected by the baseline Society of Thoracic Surgeons score, and the procedures were performed by the same team at a single medical center. This might not reflect the situation of other medical centers in other parts of the world. The 30-day follow-up data in this initial report were largely missing because the data were acquired only from the patients who were followed up at Chulabhorn Cardiac Center; some of the patients were followed up in other hospitals. However, the clinical and echocardiographic data in other hospitals are being pursued and will be further analyzed in our final report.

Conclusions

Compared with previous studies, our pilot study showed favorable outcomes and low complication rates among our first 60 patients undergoing TAVR. We attained a procedural success rate of 100% with no 30-day mortality in the first 60 patients undergoing TAVR at Chulabhorn Cardiac Center.

Acknowledgment

We thank Angela Morben, DVM, ELS, from Edanz (<https://www.edanz.com/ac>), for editing a draft of this manuscript.

References

1. d'Arcy JL, Coffey S, Loudon MA, et al. Large-scale community echocardiographic screening reveals a major burden of undiagnosed valvular heart disease in older people: the OxVALVE Population Cohort Study†. *Eur Heart J.* 2016;37(47):3515-3522. doi:[10.1093/eurheartj/ehw229](https://doi.org/10.1093/eurheartj/ehw229)
2. Osnabrugge RLJ, Mylotte D, Head SJ, et al. Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. *J Am Coll Cardiol.* 2013;62(11):1002-1012. doi:[10.1016/j.jacc.2013.05.015](https://doi.org/10.1016/j.jacc.2013.05.015)
3. Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. *Circulation.* 2021;143(5):e72-e227. doi:[10.1161/CIR.0000000000000923](https://doi.org/10.1161/CIR.0000000000000923)
4. Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. *Eur Heart J.* 2017;38(36):2739-2791. doi:[10.1093/eurheartj/ehx391](https://doi.org/10.1093/eurheartj/ehx391)
5. Mack MJ, Leon MB, Smith CR, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. *Lancet Lond Engl.* 2015;385(9986):2477-2484. doi:[10.1016/S0140-6736\(15\)60308-7](https://doi.org/10.1016/S0140-6736(15)60308-7)
6. Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. *N Engl J Med.* 2011;364(23):2187-2198. doi:[10.1056/NEJMoa1103510](https://doi.org/10.1056/NEJMoa1103510)
7. Leon MB, Smith CR, Mack MJ, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. *N Engl J Med.* 2010;363(17):1597-1607. doi:[10.1056/NEJMoa1008232](https://doi.org/10.1056/NEJMoa1008232)
8. Mack MJ, Leon MB, Thourani VH, et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. *N Engl J Med.* 2019;380(18):1695-1705. doi:[10.1056/NEJMoa1814052](https://doi.org/10.1056/NEJMoa1814052)
9. Popma JJ, Deeb GM, Yakubov SJ, et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. *N Engl J Med.* 2019;380(18):1706-1715. doi:[10.1056/NEJMoa1816885](https://doi.org/10.1056/NEJMoa1816885)
10. Kappetein AP, Head SJ, Généreux P, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus

document (VARC-2). *Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg.* 2012;42(5):S45-60. doi:[10.1093/ejcts/ezs533](https://doi.org/10.1093/ejcts/ezs533)

11. Leon MB, Smith CR, Mack MJ, et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. *N Engl J Med.* 2016;374(17):1609-1620. doi:[10.1056/NEJMoa1514616](https://doi.org/10.1056/NEJMoa1514616)

12. Gilard M, Eltchaninoff H, Iung B, et al. Registry of transcatheter aortic-valve implantation in high-risk patients. *N Engl J Med.* 2012;366(18):1705-1715. doi:[10.1056/NEJMoa1114705](https://doi.org/10.1056/NEJMoa1114705)

License, Supplementary Material and Copyright

This is an open-access article distributed under the terms of the [Creative Commons Attribution \(CC BY NC ND 4.0\) License](#). You may share the material, but must give appropriate credit to the source, provide a link to the license and indicate if changes were made. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material

Any supplementary material referenced in the article can be found in the online version.

This article is copyright of the [Chulabhorn Royal Academy](#), 2021.

Citation

Wongsinkongman C, Luangphiphat W, Muangsillapasart V, Jeamanukoolkit A, Preeyanont P, Tassanawiwat W, Lerdpunnapongse P, Senngam K, Sukitpunyaroj D, Srisakvarakul C, Piempring C, Wuttichaipradit C, Aramsereewong T. Short-Term Outcomes of Patients Undergoing Transcatheter Aortic Valve Replacement: Early Experience at Chulabhorn Cardiac Center. *J Chulabhorn Royal Acad.* 2021;3(4):246-253. <https://he02.tci-thaijo.org/index.php/jcra/article/view/250285>

Online Access

<https://he02.tci-thaijo.org/index.php/jcra/article/view/250285>

