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บทคัดย่อ
	 Sleep spindle เป็นคล่ืนสมองรูปแบบหน่ึงทีเ่กิดขึน้ในชว่งระยะที ่2 ของการนอนหลับแบบ NREM (Non-rapid 
eye movement) โดยมีหลักฐานบ่งชี้ว่าคล่ืนสมองประเภทน้ีมีบทบาทสำ�คัญในหลากหลายด้าน อาทิ มีความสำ�คัญ 
ในกระบวนการเปล่ียนความทรงจำ�ระยะส้ันเป็นความทรงจำ�ระยะยาวของสมอง และอาจมีความสัมพันธกั์บความเส่ือม
ของระบบประสาท เช่น โรคอัลไซเมอร ์โรคนอนไม่หลับ เป็นต้น การตรวจจับคล่ืนดังกล่าวในทางปฏิบัติทำ�ได้โดย
การประเมินจากแพทย์หรอืผู้เชี่ยวชาญ ซึ่งใชร้ะยะเวลานาน อีกทั้งมีโอกาสเกิดข้อผิดพลาดสูงจากความแปรปรวน
ของหลายปัจจยั ไม่วา่จะเป็นความชำ�นาญของผู้ประเมินหรอืลักษณะของคล่ืน Sleep spindle ในปัจจุบันมีการศึกษา   
การใชป้ระโยชน์จากการเรยีนรูข้องเคร ือ่ง (Machine learning) ในการตรวจจบัคล่ืนสมองประเภท Sleep spindle 
แบบอัตโนมัติ โดยคาดหวังให้สามารถทำ�งานได้เทยีบเทา่กับการประเมินของผู้เชีย่วชาญ และสามารถแก้ปญัหาข้างต้นได้ 
ทั้งน้ี การทบทวนบทความที่เก่ียวข้องยังคงมีจำ�นวนไม่มากนัก บทความน้ีศึกษาและเปรยีบเทียบวธิกีารที่นำ�มาใชใ้น 
การตรวจจับคล่ืนสมองประเภท Sleep spindle แบบอัตโนมัติ โดยสรุปขั้นตอนการทำ�งานของการศึกษาได้เป็น 
การรวบรวมข้อมูล การจดัการกับข้อมูลคล่ืนสมอง การเลือกคุณลักษณะ การสรา้งโมเดล และการประเมินประสิทธภิาพ
ของโมเดล โดยพบว่าการเรยีนรูข้องเคร ือ่ง (Machine learning) ถูกนำ�มาใช้อย่างหลากหลาย และการศึกษาที่ใช้
โมเดลในกลุ่มทีเ่รยีนรูแ้บบมีผู้สอนโดยส่วนใหญ่สามารถตรวจจบั Sleep spindle ได้ตรงกับทีผู้่เชีย่วชาญระบุ แต่ยังต้อง
มีการปรบัปรุงประสิทธภิาพของโมเดลให้เหมาะกับข้อมูลทีห่ลากหลายมากยิง่ขึน้ นอกจากน้ี ในบทวจิารณ์ยังประกอบ
ด้วยข้อเสนอแนะและความเป็นไปได้ในการศึกษาเพ่ือพัฒนาต่อยอดต่อไปอีกด้วย

คำ�สำ�คัญ: การตรวจวัดคล่ืนไฟฟ้าสมอง, การประมวลผลสัญญาณ, การเรยีนรูข้องเคร ือ่ง, คล่ืนสมอง Sleep spindle, 
วธิกีารตรวจจบัแบบอัตโนมัติ 

Abstracts 
	 Sleep spindle is a pattern of brainwave during non-rapid eye movement (NREM) in the sec-
ond stage of sleep. There are several indications that Sleep spindles might play an important 
role in memory consolidation, and neurodegenerative disorders such as Alzheimer’s disease and  
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insomnia. Sleep spindle is commonly annotated by visual inspection of experts which is time 
consuming, and the task has risk of high error due to over-reliance on the experts’ skill or  
variations in characteristics of Sleep spindle. Modern research aims to study machine learning 
to develop the efficient automatic Sleep spindle detectors, emulate human annotations,  
and solve the stated problems. However, there are few review articles on the subject. This article 
summarizes and compares the automatic detection methods of Sleep spindle. The workflow  
can be summarized into five steps: data collection, data preprocessing, feature extraction,  
modeling, and model evaluation. This article reveals the variation of Machine Learning  application  
and study on supervised model can detect Sleep spindle equivalent to experts. Nevertheless,  
the model need customization to suit data diversity. In addition, the discussion includes  
recommendation and possibility for further studies.
 
Keywords: Electroencephalography (EEG), Signal Processing, Machine Learning, Sleep Spindle, 
Automatic Detection

บทนำ�
	 การนอนหลับเปน็กระบวนการทีมี่ความสำ�คัญอย่างยิง่
ในส่ิงมีชวีติ การนอนหลับทีเ่พียงพอและมีประสิทธภิาพ
จะส่งผลให้การทำ�งานของระบบต่าง ๆ ในรา่งกายเจรญิ
เติบโต รวมไปถึงกระบวนการการเรยีนรูแ้ละการจดจำ�
ดำ�เนินไปอย่างมีประสิทธภิาพ1 ตามปกติรา่งกายมีกลไก 
ที่ เรยีกว่าวงจรการนอนหลับ (Sleep cycle) วงจร 
การนอนหลับจะเกิดขึ้นประมาณ 4–6 รอบ แต่ละรอบ 
จะใชเ้วลาเฉล่ียประมาณ 90 นาที ซึ่งวงจรน้ีสามารถ
แบ่งออกเป็น 2 ชว่ง คือ ชว่งการนอนหลับแบบ Rapid 
eye movement (REM) และชว่งการนอนหลับแบบ 
Non-rapid eye movement  (NREM)2 
	 เน่ืองจากมีหลักฐานว่าคุณภาพของการนอนหลับ 
ส่งผลกระทบต่อสุขภาพ3 จงึได้มีกระบวนการวนิิจฉัยหรอื 
การตรวจวัดสุขภาพการนอนหลับ เรยีกวา่ Sleep study 
หรอื Polysomnography (PSG) ใชเ้พ่ือตรวจหาอาการ
ผิดปกติทีเ่กิดขึน้ระหวา่งการนอนหลับ โดยหน่ึงในข้อมูล
ที่แพทย์ทำ�การตรวจวัดเพ่ือนำ�มาใชใ้นการวเิคราะห์ผล
คือ ข้อมูลคล่ืนสมอง หรอืทีเ่รยีกวา่คล่ืนกระแสประสาท 
(Neural oscillatory) ซึง่ข้อมูลคล่ืนสมองสามารถดูได้ 
จากการตรวจบันทึกคล่ืนสมอง (Electroencepha-
lography: EEG) ทีแ่สดงผลการทำ�งานของคล่ืนไฟฟ้า
ภายในสมอง โดยวเิคราะห์จากแรงกระตุ้นไฟฟ้า (Elec-
trical impulse) ผ่านการติดขั้วไฟฟ้า (Electrode) 
ไว้ที่บรเิวณหนังศีรษะซึง่จะมีระบบการวางตำ�แหน่งข้ัว
ไฟฟ้าทีนิ่ยมใชคื้อ ระบบ International 10–20 เป็น
ระบบมาตรฐานสากล4 โดยข้อมูลคล่ืนสมองจะถูกส่งต่อ
มายังคอมพิวเตอรเ์พ่ือทำ�การบันทึกผล ลักษณะและ 
รูปรา่งของคล่ืนสมองจาก EEG ที่เกิดขึ้นสามารถบ่งชี้
การทำ�งานทีผิ่ดปกติของสมองได้ 
	 ในชว่งการนอนหลับแบบ NREM ระยะที่ 2 จะมี
การเกิดคล่ืนสมองทีเ่รยีกวา่ Sleep spindle หรอืหรอื
คล่ืนซกิมา (Sigma wave) ซึง่เกิดจากการทำ�งานของ

คล่ืนกระแสประสาทที่สรา้งมาจากเยื่อหุ้มนิวเคลียสใน
ส่วนธาลามัส (Thalamic reticular nucleus: TRN)   
โดยมีหลักฐานว่า Sleep spindle มีความเก่ียวข้อง
ในกระบวนการที่หลากหลายในระบบประสาทและเป็น
ดัชนีชีว้ัดทางชวีภาพ (Biomarker) ทีมี่ความสำ�คัญใน
กระบวนการเปล่ียนความทรงจำ�ระยะส้ันเปน็ความทรงจำ� 
ระยะยาว5 ลักษณะความถ่ี ความหนาแน่น และระยะเวลา
ของการเกิดขึน้ของ Sleep spindle ยังสามารถบ่งชีถึ้ง 
สุขภาพสมอง กระบวนการทำ�งานของเซลล์ประสาทและ 
การเกิดขึน้ของกลุ่มโรคทีเ่กิดการเส่ือมของเซลล์ประสาท 
เชน่ ภาวะถดถอยทางสมอง หรอื โรคอัลไซเมอรไ์ด้6, 7 
โดยทัว่ไปตำ�แหน่งของ Sleep spindle ใน EEG จะถูกระบุ 
โดยผู้เชีย่วชาญตามวธิตีรวจมาตรฐาน (Gold standard) 
ที่กำ�หนดโดยสมาคมเวชศาสตร์การนอนหลับของ 
สหรฐัอเมรกิา (American Academy of Sleep 
Medicine: AASM)8 โดยการตรวจหา Sleep spindle 
ด้วยการใช้สายตาของผู้เชี่ยวชาญน้ันยังคงพบปัญหา
หลายประการ เชน่ ใชร้ะยะเวลานาน มีค่าใชจ้า่ยที่สูง 
จำ�นวนผู้เชีย่วชาญทีมี่อยู่อยา่งจำ�กัด รวมถึงความน่าเชือ่ถือ 
ของตัวผู้เชีย่วชาญ9, 10 นอกจากน้ี Sleep spindle ยังมี
ลักษณะเป็นข้อมูลทีมี่ความแปรปรวนสูง ซึง่เป็นผลจาก
ตัวแปรต่าง ๆ เชน่ บรเิวณต้นกำ�เนิดของคล่ืนในสมอง 
ความแตกต่างระหวา่งตัวบุคคล หรอือุปกรณ์ทีใ่ชใ้นการ
บันทกึผล EEG เป็นต้น ความแปรปรวนเหล่าน้ีจงึส่งผล
ให้การตรวจหา Sleep spindle เป็นไปได้ยากขึน้ 
	 ในปัจจุบัน มีการศึกษาเพ่ือพัฒนาเทคโนโลยีหรอื
โมเดลทางคณิตศาสตรโ์ดยวธิกีารใชก้ฎ  (Rule-based 
approach) วธิกีารเรยีนรูข้องเคร ือ่ง หรอืวธิกีารเรยีนรู ้
เชงิลึก เพ่ือตรวจจบั Sleep spindle แบบอัตโนมัติ โดยมี 
หลักฐานวา่การใชก้ารเรยีนรูเ้ชงิลึก ซึง่เป็นโมเดลแบบ 
โครงข่ายประสาทเทยีมแบบ Levenberg-Marquardt 
(Levenberg-Marquardt artificial neural network: 
LM-ANN)  สามารถตรวจจบั Sleep spindle ได้โดยมี 
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ความแม่นยำ� (Accuracy) ที่ดีที่สุดถึง 100% เทียบ
เทา่กับความสามารถในการตรวจพบ Sleep spindle 
โดยผู้เชีย่วชาญ11

	 จากความสำ�คัญของ Sleep spindle ทีมี่ความ
เก่ียวข้องกับโรคทางระบบประสาท รวมถึงความยากใน
การตรวจจบัคล่ืนจากข้อมูล EEG ทำ�ให้มีการศึกษาด้าน
การตรวจจบั Sleep spindle แบบอัตโนมัติเพ่ิมขึน้
เป็นจำ�นวนมาก เพ่ือค้นหาเทคโนโลยีทีมี่ความสามารถ 
ทั้งด้านความแม่นยำ�และความรวดเรว็ที่เทียบเท่ากับ
การประเมินของผู้เชีย่วชาญ บทความน้ีจงึได้ทำ�การรวบรวม 
สรุป และเปรยีบเทยีบองค์ความรูจ้ากผลการศึกษาเก่ียวกับ 
การตรวจจบั Sleep spindle แบบอัตโนมัติ และเพ่ือ
ศึกษาวธิกีารทีช่ว่ยในการตรวจจบั Sleep spindle แบบ 
อัตโนมัติในรูปแบบใหม่ ๆ  ทีจ่ะสามารถอำ�นวยความสะดวก 
ในการตรวจหา Sleep spindle ได้อย่างรวดเรว็และ
แม่นยำ�มากยิง่ขึน้

ลกัษณะพ้ืนฐานของคลืน่ Sleep spindle 
	 Sleep spindle ถูกค้นพบในชว่งปี 1935–1940  
ซึง่กล่าวถึงการศึกษาเก่ียวกับคล่ืน EEG ในการนอนหลับ
ของมนษุย ์และหลังจากน้ันผู้วจิยัก็ได้พยายามทำ�การศึกษา 
ค้นควา้ในองค์ความรูดั้งกล่าวเร ือ่ยมา อาท ิ Loomis 
et al. กล่าวถึงข้อมูลเก่ียวกับชว่งการนอนหลับทีส่ามารถ 
พบ Sleep spindle โดยค้นพบครัง้แรกในปี 193512 

และในปี 2003 Gennero และ Ferrara ได้กำ�หนด
คำ�นิยามเร ือ่งความถ่ีและชว่งระยะการเกิดของ Sleep 
spindle13 อย่างไรก็ตาม ในปัจจุบัน คล่ืนสมอง Sleep 
spindle ยังคงไม่มีข้อกำ�หนดเก่ียวกับลักษณะทีต่ายตัว 
	 Sleep spindle สามารถพบได้ในการนอนหลับ 
ช่วง NREM ระยะที่  2 ซึ่งอาจพบรว่มกับคล่ืนสมอง 
K-complex ได้14 คล่ืนของ Sleep spindle มีรูปรา่ง
เหมือนกระสวย มีความสมมาตร โดยค่าพลังงานของคล่ืน 
หรอืแอมพลิจูด (Amplitude) จะมีชว่งทีเ่พ่ิมขึน้เร ือ่ย ๆ 
(Waxing) และตามด้วยชว่งทีค่่อย ๆ ลดลง (Waning) 
รูปรา่งดังกล่าวเกิดจากการที่ระดับพลังงานพุ่งสูงขึ้น

ฉับพลันแล้วหายไปในชัว่ขณะหน่ึง (Transient wave 
หรอื Oscillation)15 โดยสามารถพบคล่ืนดังกล่าวได้ 
ในหลายบรเิวณของสมอง แต่ละบรเิวณจะให้ลักษณะของ 
คล่ืนที่ มีความแตกต่างกันออกไป บรเิวณที่พบเป็น
ส่วนใหญ ่ คือ TC loop (Thalamocortical loop) ซึง่
ประกอบด้วยสมองบรเิวณทาลามัส (Thalamus) เยื่อ
หุ้มสมอง (Cortex) และสมองชัน้นอก (Neocortex)16 

คล่ืนสมอง Sleep spindle เป็นคล่ืนที่ มีลักษณะ
ความถ่ีสูง มีชว่งความถ่ีอยู่ที ่ 10–15 Hz17-19 และอาจ
เปล่ียนแปลงได้ โดยมีค่าคลาดเคล่ือน ±1 Hz สามารถพบได้ 
ในคล่ืนสมองชว่งที่มีความต่างศักย์ทางไฟฟ้าน้อยกว่า 
20 ไมโครโวลต์ (μV)20 ระยะเวลาการเกิด Sleep 
spindle จะเกิดขึน้อย่างน้อย 0.5 วนิาท ีมากไปจนถึง 
3 วนิาท ีอย่างไรก็ตาม ชว่งระยะเวลาดังกล่าวอาจมีความ
ไม่แน่นอน21 ทั้งน้ีอาจขึ้นอยู่กับความแตกต่างระหว่าง
กลุ่มตัวอย่าง22 คล่ืนสมอง Sleep spindle สามารถ 
แบง่ออกเปน็ 2 ประเภทตามความถ่ีและลักษณะของคล่ืน 
ได้แก่ Slow spindle ที่มีความถ่ีระหว่าง 9–12 Hz 
เกิดขึน้ทีบ่รเิวณสมองส่วนหน้า (Frontal) และ Fast 
spindle ทีมี่ความถ่ีระหวา่ง 13–15 Hz เกิดขึน้บรเิวณ
สมองส่วน Centroparietal ซึง่มีความแตกต่างกันใน
ด้านของเวลาทีเ่ร ิม่เกิด ความถ่ีและบรเิวณทีพ่บ Sleep 
spindle อีกทั้งยังสัมพันธ์กับเฟสที่แตกต่างกันและ
การส่ันของคล่ืนที่ ส่งผลกระทบกับการเปล่ียนแปลง
ความความทรงจำ�ระยะส้ันเป็นความทรงจำ�ระยะยาว23

การตรวจจับคลื่นสมอง Sleep spindle แบบ
อัตโนมัติ
	 ขัน้ตอนพ้ืนฐานทีใ่ชใ้นการตรวจจบั Sleep spindle 
แบบอัตโนมัติประกอบด้วยขั้นตอนหลัก 5 ขั้นตอน คือ 
การรวบรวมข้อมูล (Data collection) การจดัการข้อมูล 
(Data preprocessing) การดึงคุณลักษณะสำ�คัญจาก 
ข้อมูล (Feature extraction) และการสรา้งแบบจำ�ลอง 
การตรวจจบัคล่ืนสมอง Sleep spindle (Sleep Spindle 
detection modeling) (รูปที ่1)

รูปท่ี 1 แผนภาพแสดงข้ันตอนในการตรวจจบัคล่ืนสมอง Sleep spindle แบบอัตโนมัติ
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	 การรวบรวมข้อมูล (Data Collection)
	 ข้อมูลทีน่ำ�มาใชใ้นการวเิคราะห์เพ่ือตรวจจบั Sleep 
spindle ได้มาจากการผลการบันทกึ EEG ในการตรวจ 
PSG หรอืการทดลองทีเ่ก่ียวขอ้งกับการศึกษาพฤติกรรม
การนอนหลับอ่ืน ๆ ในการศึกษาจะมีการเลือกใชต้ำ�แหน่ง
ของ EEG node ของกลุ่มตัวอยา่งแตกต่างกันไป ซึง่อาจ 
มีผลต่อการเกิดขึน้ของ Sleep spindle และลักษณะ
พ้ืนฐานของ Sleep spindle ได้ โดยหน่ึงในส่ิงที่ 
ผู้ทำ�การทดลองต้องคำ�นึงถึงในการใชข้้อมูล EEG คือ 
การพิจารณาตำ�แหน่งขั้วไฟฟ้าที่จะทำ�การทดลอง หรอื 
การพิจารณาตำ�แหน่งข้ัวไฟฟ้าที่จะทำ�การดึงข้อมูลมาใช ้
ซึง่ตำ�แหน่งขั้วไฟฟ้าที ่ AASM แนะนำ�ให้ใชคื้อ F4, C4  
และ O2 เน่ืองจากมีความครอบคลุมเพียงพอแล้วต่อ 
การวเิคราะห์รูปแบบคล่ืนสมอง8 แต่ก็สามารถใชข้้อมูล 
จากตำ�แหน่งขั้วไฟฟ้าอ่ืน ๆ เพ่ือศึกษาเพ่ิมเติมได้ทำ�ให้ 
การศึกษาต่าง ๆ  น้ันมีการใชต้ำ�แหน่งขัว้ไฟฟ้าทีแ่ตกต่างกัน 
โดยจะนิยมนำ�ข้อมูล EEG จากตำ�แหน่งขั้วไฟฟ้าคู่ 
C3–C4, Fp1–Fp2, F3–F4, O1–O2 และ P3–P4  
มาใชใ้นการตรวจจบั Sleep spindle มากกวา่ตำ�แหน่ง 
ขั้วไฟฟ้าคู่อ่ืน ๆ จากการศึกษาพบว่ามีทั้งการวเิคราะห์ 
คล่ืนสมอง Sleep spindle แบบใชข้้อมูล EEG เพียง 
ตำ�แหน่งเดียว (Single channel EEG) หรอืการวเิคราะห์ 
โดยใชข้้อมูล EEG จากหลายตำ�แหน่งพรอ้ม ๆ กัน 
(Multichannel EEG) ในขณะที่แพทย์มักใช้การทำ� 
Multichannel EEG เพ่ือเพ่ิมประสิทธภิาพในการตรวจจบั 
คล่ืนต่าง ๆ จากลักษณะรว่มกันของข้อมูล EEG ในทกุ
ตำ�แหน่ง (Global information) โดยข้อมูลทีถู่กนำ�มา
ใชใ้นการสรา้งแบบจำ�ลอง สามารถแบง่ออกเปน็ 2 แหล่ง 
ดังน้ี
	 1.	 ขอ้มูลทีม่าจากการทดลอง (Experimental data) 
คือ ข้อมูลทีผู้่วจิยัได้ทำ�การทดลองเพ่ือนำ�ข้อมูลมาใชกั้บ 
การศึกษาโดยตรง ทั้งน้ี อาจทำ�เพ่ือความสะดวกใน
การกำ�หนดลักษณะของกลุ่มตัวอย่างหรอืการควบคุม
ตัวแปรต่าง ๆ 
	 2.	 ข้อมูลที่มาจากฐานข้อมูลสาธารณะ (Public 
database) คือ การดึงข้อมูลจากฐานข้อมูลกลางทีเ่ก็บ
ข้อมูลเก่ียวกับพฤติกรรมการนอนหลับ ซึง่ในบางองค์กร
ได้เปิดให้ผู้วจิยัทา่นอ่ืน ๆ สามารถเข้าถึงข้อมูลส่วนน้ีได้ 
อย่างเสร ีและสามารถนำ�ข้อมูลน้ัน ๆ ไปใช้ศึกษาเป็น 
ขอ้มูลสำ�หรบัการสอนให้โมเดลเรยีนรูแ้ละใชใ้นวเิคราะห์
หา Sleep spindle โดยไม่จำ�เปน็ต้องทำ�การทดลองด้วย 
ตัวเอง ฐานข้อมูลสาธารณะทีนิ่ยมใช ้มีรายละเอียด ดังน้ี 
	 ฐานข้อมูล DREAMS16 เป็นฐานข้อมูลทีร่วบรวมข้อมูล
จากการทำ� PSG จำ�นวนมากเพ่ือใชส้ำ�หรบัการทดสอบ 
กับอัลกอรทิึมตรวจจับคล่ืนสมองแบบอัตโนมัติ (Au-
tomatic detection algorithm) น่ันรวมถึง Sleep 
spindle ด้วย พบวา่ในหลาย ๆ งานวจิยัได้มีการนำ�ข้อมูล 
บางส่วนจากฐานข้อมูล DREAMS มาใช้ทดสอบใน
การศึกษาด้วย24-28

	 ฐานข้อมูล Montreal archive of sleep studies 
(MASS)29 เปน็ฐานข้อมูลทีส่รา้งขึน้ด้วยจุดประสงค์เดียวกัน
กับฐานข้อมูล DREAM โดยเป็นฐานข้อมูลที่มาจาก
การศึกษา PSG ในกลุ่มตัวอย่างจำ�นวน 200 คน เชน่กัน 
ผู้วจิยัหลายทา่นได้มีการนำ�ข้อมูลบางส่วนจากฐานข้อมูล 
MASS มาใชท้ดสอบในการศึกษา24, 26-28, 30 
	 ฐานข้อมูล SIESTA31 ซึ่งถูกใช้ในการศึกษาของ 
Adamczyk et al.32 และฐานข้อมูล WSC1950  
(Wisconsin Sleep Cohort)33 Lacourse et al.34 
	 ซึง่ชุดข้อมูลจากฐานข้อมูลสาธารณะเหล่าน้ีมีขนาด
ของกลุ่มตัวอย่างที่ใหญ่กว่าและมีความหลากหลาย
มากกวา่ข้อมูลทีม่าจากการทดลอง จงึเหมาะสมกับผู้ที่
ต้องการใช้ข้อมูลขนาดใหญ่เพ่ือสรา้งแบบจำ�ลองการ
ตรวจจบัคล่ืนสมอง Sleep spindle 

	 การจัดการข้อมูล (Data Preprocessing)
	 ในการวเิคราะห์ข้อมูล จำ�เปน็ต้องใชข้อ้มูลทีอ่ยูใ่นชว่ง
ที่ถูกต้อง เหมาะสม และลดความผิดพลาดที่เกิดขึ้น
ในข้อมูลให้น้อยที่สุดเพ่ือให้ขั้นตอนการวเิคราะห์เกิด
ประสิทธภิาพสูงสุด จากข้ันตอนการรวบรวมขอ้มูลทีก่ล่าว
มาแล้วในข้างต้น ข้อมูลทีร่วบรวมมาไม่สามารถนำ�ไปใช ้
ในการวเิคราะห์ข้อมูลได้ในทนัท ีต้องผ่านขัน้ตอนการจดัการ
ข้อมูลด้วยกระบวนการต่าง ๆ ให้ข้อมูลอยู่ในรูปแบบที่
เหมาะสมกับการวเิคราะห์ข้อมูล โดยวธิกีารจดัการกับ
ข้อมูล EEG มีดังน้ี
	 การสุ่มตัวอย่าง คือ การแปลงสัญญาณประเภททีมี่ 
การเปล่ียนแปลงต่อเน่ืองเทยีบกับเวลา (Continuous 
signal) ให้อยูใ่นรูปสัญญาณประเภทไม่ต่อเน่ืองทางเวลา 
(Discrete signal) ด้วยการสุ่มเลือกตัวอย่างของ
สัญญาณน้ัน ๆ ในชว่งเวลาทีเ่ทา่กัน (Time resolution) 
มีหน่วยเป็นวนิาท ี และเรยีกค่าดังกล่าววา่ ค่าอัตราสุ่ม 
สัญญาณ (Sampling rate) เชน่ ค่าอัตราสุ่มสัญญาณ 
1000 Hz หมายถึง การแบง่สัญญาณในชว่งเวลา 1 วนิาท ี
ออกเป็น 1000 จุด ซึง่เม่ือค่าอัตราสุ่มสัญญาณยิง่สูง 
สัญญาณจะยิ่งมีความละเอียดมากขึ้นโดยจากการศึกษา
พบวา่ค่าอัตราสุ่มสัญญาณทีนิ่ยมใชใ้นงานน้ีคือ 100 Hz, 
128 Hz, 200 Hz และ 500 Hz โดยค่าอัตราสุ่มสัญญาณ 
ที่ นิยมใช้มากที่ สุด คือ 200 Hz11,28,35 นอกจากน้ี 
อาจมีการใชว้ธิลีดอัตราการสุ่มตัวอย่าง (Downsampling) 
เพ่ือลดจำ�นวนข้อมูลทีมี่ความละเอียดมากเกินไปใน 
การสุ่มตัวอย่างเดิม โดยจากการศึกษาของ Mei et al.28 
มีการลดอัตราการสุ่มตัวอย่างจาก 1000 Hz ไปเป็น 
500 Hz ในขณะทีก่ารศึกษาของ Duman et al.35 และ 
Güneş et al.11 ลดอัตราการสุ่มตัวอยา่งจาก 200 Hz  
ไปเป็น 128 Hz และได้มีการสุ่มตัวอย่างตามทฤษฎี 
ไนควสิต์ (Nyquist theorem) ซึง่กล่าววา่การสุ่มตัวอย่าง
อาจไม่จำ�เป็นต้องใชค่้าอัตราสุ่มสัญญาณที่สูงเสมอไป 
แต่สามารถทำ�ได้ด้วยการใชค่้าอัตราสุ่มสัญญาณที่มีค่า
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เป็น 2 เท่าของความถ่ีที่ต้องการ และจะทำ�ให้สามารถ
รกัษาข้อมูลความถ่ีของสัญญาณไวไ้ด้ วธิกีารดังกล่าวถูก
ใชใ้นการศึกษาของ Duman et al.35 เชน่กัน
	 การแบ่งช่วงสัญญาณ (Windowing) คือ วธิีการที่ 
แบ่งสัญญาณทัง้หมดออกเป็นชว่งสัญญาณย่อย ๆ ทีมี่ 
ความยาวเท่ากันด้วยฟังก์ชันทางคณิตศาสตรเ์พ่ือให้
สะดวกต่อการนำ�มาวเิคราะห์ อีกทัง้ยังใชท้รพัยากรใน 
การคำ�นวณน้อยการวเิคราะห์สัญญาณทัง้หมดในครัง้เดียว 
การทำ� Windowing ที่พบในการศึกษาส่วนใหญ่ คือ 
Rectangular windowing คือ การแบ่งชว่งสัญญาณโดย 
ขอ้มูลของสัญญาณในชว่งดังกล่าวจะไม่ถูกเปล่ียนแปลง 

ซึง่พบในการศึกษาของ Huupponen  et al.36, Babadi 
et al.37, และ Güneş et al.11 และการทำ� Hamming 
windowing ซึง่ถูกใชเ้พ่ือลดการเกิดรอยหยักของสัญญาณ 
(Ripple) ทำ�ให้สามารถระบุความถ่ีและแอมพลิจูดของ 
ความถ่ีน้ัน ๆ  ได้แม่นยำ�ยิง่ขึน้ ซึง่ถูกนำ�มาใชใ้นการศึกษา
ของ Mei et al.28, การศึกษาของ Duman et al.35  
และการศึกษาของ Shimada et al.38 ส่วนขนาดของ
การทำ� Windowing (Window size) อาจมีขนาดเพียง
ไม่ก่ีมิลลิวนิาท ี(millisecond: ms) ไปจนถึงหน่วยวนิาท ี
(second: s) หากใช ้Window ทีมี่ขนาดใหญ่ขึน้ จะได้
ความละเอียดของขอ้มูลทางความถ่ีเพ่ิมมากขึน้ แต่แลกมา 
กับความละเอียดของข้อมูลทางเวลาที่ น้อยลง โดย 
Window ทีใ่ชใ้นการศึกษาของ Nonclercq et al.25, 
Shimada et al.38 และ Patti et al.27 มีขนาดเทา่กับ  
0.5, 0.64 และ 1 วนิาท ีตามลำ�ดับ และในขั้นตอนการ 
แบ่งชว่งสัญญาณ อาจอนุญาตให้มีการซอ้นทบักันของ 
Window (Overlap) ซึ่งจะช่วยแก้ปัญหาการรัว่ไหล
ของสัญญาณได้ ตัวอยา่งการอนญุาตให้มีการซอ้นทบักัน 
ของ Window เชน่ การศึกษาของ Nonclercq et al.25 

ทีใ่ชข้นาดของ Window เทา่กับ 0.5 วนิาท ีมีการอนญุาต
ให้เล่ือน Window ซอ้นทบักันได้ 120 มิลลิวนิาท ีหรอื
ในการศึกษาของ Shimada et al.38 อนญุาตให้มีการ
ซอ้นทบักัน 50% ของขนาด Window เดิม เปน็ต้น
	 การกรองความถี ่ของสัญญาณ (Signal filtering) 
คือ กระบวนการกรองความถ่ี หรอืช่วงของความถ่ี  
(Frequency band) ในบางชว่งทีไ่ม่ต้องการออกจาก
สัญญาณ ซึง่ก่อนทำ�การกรองสัญญาณจะต้องทำ�การแปลง
สัญญาณจากโดเมนเวลา (Time domain) เป็นโดเมน
ความถ่ี (Frequency domain) โดยมีวัตถุประสงค์
เพ่ือกรองสัญญาณให้อยู่ในเฉพาะชว่งทีส่นใจ ซึง่ในการ
ศึกษาน้ีคือชว่งของคล่ืน Sleep spindle ในการศึกษา
หน่ึง ๆ ผู้วจิยัอาจมีการนำ�ตัวกรองประเภทต่าง ๆ มาใช้
มากกวา่ 1 ประเภทตามความเหมาะสม โดยประเภทของ
ตัวกรองความถ่ีของสัญญาณสามารถแบ่งได้ ดังน้ี 
	 Low-pass filter เป็นการกรองสัญญาณทีมี่ความถ่ี
ต่ำ�กวา่ค่าทีก่ำ�หนดไว ้ โดยพบวา่ค่าตัวกรองทีใ่ชใ้นการ
ศึกษาของ Adamczyk et al.32 และ Babadi et al.37 มี
ค่าเทา่กับ 70 Hz 

	 High-pass filter ในการกรองสัญญาณทีมี่ความถ่ี
สูงกวา่ค่าทีก่ำ�หนดไว ้โดยพบวา่ค่าตัวกรองทีใ่ชใ้นการศึกษา 
ของ Babadi et al.37 และ Adamczyk et al.32 เทา่กับ 
0.3 Hz และ 0.53 Hz ตามลำ�ดับ การศึกษาของ 
Mei et al.28 ใชค่้าตัวกรองเทา่กับ 6 Hz เพ่ือกรองคล่ืน
เดลต้าและคล่ืน K-complex และ Nonclercq et al.25 
ใชค่้าตัวกรองเทา่กับ 12.5 Hz เพ่ือกรองคล่ืนแอลฟ่า 
	 Band-pass filter อนุญาตให้สัญญาณที่มีความถ่ี
ภายในชว่งทีก่ำ�หนดเทา่น้ันสามารถผ่านไปได้ ซึง่ American 
Association of Sleep Technologists ได้กำ�หนด
ค่าตัวกรองมาตรฐานของ EEG ไว้ที่ 0.3–35 Hz39 โดย 
พบวา่ในการศึกษามีการใชค่้าตัวกรองสำ�หรบัการตรวจจบั 
EEG ทีห่ลากหลาย เชน่ 0.5–35 Hz ในการศึกษาของ 
Duman et al.35 0.1–50 Hz, 0.1–200 Hz ในการศึกษา 
ของ Mei et al.28 และ 0.3–300 Hz ในการศึกษา
ของ Kulkarni et al.30 ส่วนค่าตัวกรองทีใ่ชใ้นการศึกษา
เพ่ือเลือกความถ่ี เฉพาะช่วงคล่ืน Sleep spindle 
มักพบวา่อยู่ในชว่งความถ่ี 9-17 Hz24,26,28,30,32,34,36 
	 Finite impulse response (FIR) filter เปน็ตัวกรองที่
ผลลัพธจ์ะขึน้อยู่กับสัญญาณต้ังต้น ค่าตัวกรองทีใ่ช ้เชน่ 
8.7–18.5 Hz ได้ถูกใชใ้นการศึกษาของ Adamczyk et al.32 
	 Butterworth filter เป็นตัวกรองทีเ่ลือกเฉพาะชว่ง 
ความถ่ีต่ำ�เชน่เดียวกันกับการทำ�งานของ Low-pass filter 
แต่จะให้ความราบร ืน่ของความถ่ีมากกว่า พบการใช้
ตัวกรองดังกล่าวแบบ second order ในการศึกษา
ของ Mei et al.28, fourth order ในการศึกษาของ 
Parekh et al.24 และ eight order ที ่ 10.5–16 Hz, 
4–10 Hz และ 20–40 Hz ที่อยู่ในการศึกษาของ 
Patti et al.27 
	 Band-stop filter จะทำ�ให้สัญญาณที่ มีความถ่ี
ภายในชว่งทีก่ำ�หนดน้ันไม่สามารถผ่านไปได้ แต่สัญญาณ
ทีมี่ความถ่ีอยู่นอกเหนือชว่งดังกล่าวจะสามารถผ่านไปได้ 
เชน่ การกำ�จดัสัญญาณทีช่ว่งความถ่ี 9–16 Hz บน EEG 
ในการศึกษาของ Kulkarni et al.30 
	 Notch filter ทีมี่ลักษณะการทำ�งานเหมือน Band-
stop filter แต่เป็น Band-stop filter ทีมี่ชว่งแคบ
มาก ๆ กล่าวคือ จะไม่อนุญาตให้สัญญาณทีค่วามถ่ีใด
ความถ่ีหน่ึงผ่านได้ หรอืสามารถเรยีกได้วา่เปน็ extreme 
band-stop filter ค่าตัวกรองที่ใช้ในการศึกษา เช่น 
50 Hz สำ�หรบัการกำ�จดัสัญญาณรบกวน ในการศึกษา
ของ Wei et al.40 หรอื การกำ�จดัสัญญาณรบกวนที่
ความถ่ี 60 Hz, 120 Hz และ 180 Hz ในการศึกษาของ 
Mei et al.28

	 การดึงคุณลักษณะสำ�คัญจากข้อมูล (Feature Extraction) 
	 ก่อนที่จะสามารถดึงคุณลักษณะสำ�คัญของข้อมูล
ออกมา ในบางครัง้จะต้องมีการแปลงข้อมูลสัญญาณ
ให้อยูใ่นโดเมนทีต้่องการเพ่ือให้ได้ลักษณะสำ�คัญของขอ้มูล
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มาใชง้าน ซึง่วธิกีารแปลงมีหลายรูปแบบ เชน่ การแปลง
จากโดเมนเวลาเป็นโดเมนความถ่ี มีจุดประสงค์เพ่ือ 
เพ่ิมขอ้มูลในเชงิความถ่ีประกอบการวเิคราะห์ เน่ืองด้วย 
ขอ้มูลความถ่ีน้ีเปน็หน่ึงในลักษณะสำ�คัญทีจ่ะชว่ยบง่ชีถึ้ง 
Sleep spindle ได้ โดยวธิกีารแปลงทีใ่ชใ้นการตรวจจบั 
Sleep spindle ได้แก่ การแปลงแบบฟูเรยีร ์(Fourier 
Transform: FT) เป็นการวเิคราะห์องค์ประกอบของ
สัญญาณในเชงิความถ่ี ได้ผลลัพธเ์ป็นข้อมูลความถ่ีและ
ข้อมูลแอมพลิจูดของความถ่ีน้ัน ๆ และเน่ืองด้วยข้อมูล 
EEG เป็นข้อมูลทีผ่่านการสุ่มตัวอย่างมา ประเภทของ 
FT ทีใ่ชใ้นงานน้ีจงึมีพ้ืนฐานมาจาก Discrete Fourier 
Transform (DFT) ซึง่เป็นการแปลงทีใ่ชกั้บสัญญาณ
แบบไม่ต่อเน่ือง (Discrete) โดยการแปลงที่นิยมใช ้
คือ Fast Fourier Transform (FFT)11,25,27,32,36,38 
และ Short-time Fourier Transform (STFT)35,41 
นอกจากน้ี ยังมีการแปลงสัญญาณทีเ่กิดจากการรวมกัน 
ของสัญญาณเฉพาะหลาย ๆ สัญญาณให้อยู่ในรูปของ
คล่ืนสัญญาณเล็ก ๆ ทีเ่รยีกวา่ “เวฟเล็ต” (Wavelet)32 

โดยวธิกีาร Wavelet transform (WT) เปน็การแปลง
ทางคณิตศาสตรท์ีใ่ห้ผลลัพธค์ล้ายกับ STFT คือ สามารถ
ดึงข้อมูลเวลาและความถ่ี ซึง่ต่างจาก FT ทีส่ามารถดึง
ได้เพียงข้อมูลแอมพลิจูดและความถ่ีเทา่น้ัน 
	 หลังจากแปลงข้อมูลให้อยู่ในโดเมนที่ต้องการแล้ว 
จึงจะสามารถนำ�ข้อมูลมาใช้ในข้ันตอนการดึงเฉพาะ
คุณลักษณะ (Feature) ที่ มี ความโดดเด่ นหร อืมี 
ความสำ�คัญออกมาจากข้อมูลเพ่ือนำ�ไปใชใ้นการเรยีนรู ้
ของโมเดลต่อไป ข้อมูลที่มีคุณลักษณะเฉพาะที่ได้จาก
การดึงคุณลักษณะออกมาจากคล่ืน EEG สามารถแบ่ง
ออกเป็น 2 ประเภท ดังน้ี
	 1.	 โดเมนเวลา (Time domain) เปน็ขอ้มูลการแสดง 
การเปล่ียนแปลงของแอมพลิจูดเทยีบกับเวลา กล่าวคือ 
เป็นการบันทึกค่าแอมพลิจูดที่เกิดขึ้นในระบบเม่ือ 
เวลาผ่านไป ข้อมูลโดเมนเวลาเกิดจากการวเิคราะห์ด้วย 
ความ รู ้ทางคณิตศาสตร์ควบ คู่ กับการว เิคราะ ห์
ลักษณะของสัญญาณ ซึง่ในหลายการศึกษาได้ทำ�การดึง
คุณลักษณะจากข้อมูลโดเมนเวลาดังกล่าวเพ่ือนำ�ค่าทีไ่ด้ 
ไปใชเ้ปน็เกณฑใ์นการบง่ชีถึ้ง Sleep spindle ทีเ่กิดขึน้ 
หรอืบ่งชีข้อ้มูลอ่ืน ๆ ทีมี่ความสำ�คัญสำ�หรบัการวเิคราะห์ 
ขอ้มูลโดเมนเวลาทีมั่กนำ�มาใชใ้นการวเิคราะห์ คือ ค่าทาง
สถิติที่คำ�นวณมาจากค่าแรงดันไฟฟ้าในสมองที่เกิดขึ้น
ในช่วงเวลาหน่ึง ๆ โดยค่าแรงดันไฟฟ้าในสมองมักมี 
หน่วยเป็นไมโครโวลต์ (Microvolts: µV)” และชว่งเวลา
ทีพิ่จารณามักใชห้น่วยเป็นวนิาท ี การศึกษาของ Huup-
ponen et al. มีการสรา้งแผนภาพการกระจายตัวของ 
ค่าแอมพลิจูดของ Sleep spindle เพ่ือนำ�ไปหาค่าเกณฑ ์
ทีเ่หมาะสม36 ส่วนในการศึกษาของ Güneş  et al. คำ�นวณ
ค่าเฉล่ีย ค่าเบี่ยงเบนมาตรฐาน ค่าแอมพลิจูดสูงสุด  
ค่าความเบ้ (Skewness) ค่าความโด่ง (Kurtosis)และ 

ค่ารูปรา่งของสัญญาณ (Shape factor) เป็นคุณลักษณะ
ในโดเมนเวลา11 และในการศึกษาของ Wei et al. มี
การใชค่้าเฉล่ีย ค่าสัมบูรณ์ ค่าเบี่ยงเบนมาตรฐาน และ
ค่าเฉล่ียกำ�ลังสอง (Root Mean Square: RMS) ของ
แอมพลิจูดเป็นคุณลักษณะของโมเดล40

	 2.	 โดเมนความถ่ี (Frequency domain) เป็น 
การวเิคราะห์องค์ประกอบของสัญญาณในเชงิความถ่ี 
โดยจะแสดงความสัมพันธร์ะหวา่งแอมพลิจูด ตำ�แหน่ง
บนคล่ืน (Phase) และความถ่ี โดย 1 Hz คือความถ่ีที่
เทา่กับ 1 ครัง้ต่อวนิาท ี (1/s) ผู้วจิยัมักใชข้้อมูลโดเมน
ความถ่ีซึง่แปลงมาจากโดเมนเวลาควบคู่กันไป เน่ืองด้วย
ค่าความถ่ีคือลักษณะสำ�คัญที่สามารถบ่งชี้ความเป็น 
Sleep spindle ได้ สัญญาณในโดเมนความถ่ีชว่ยทำ�ให้
เข้าใจคุณสมบัติต่าง ๆ ของสัญญาณได้ง่ายมากยิ่งขึ้น 
โดยข้อมูลโดเมนความถ่ีทีพ่บได้บ่อยครัง้ มีดังน้ี
	 สเปกตรัมความถ่ี (Frequency spectrum) เปน็ผลลัพธ์
ทีไ่ด้จากแปลงโดเมนเวลาให้เป็นโดเมนความถ่ี จะแสดง 
ผลลัพธเ์ปน็แอมพลิจูด เฟส และความถ่ี ในการศึกษาของ 
Patti et al. ใชข้้อมูลจากสเปกตรมัในการแยก Sleep 
spindle แบบชา้และ Sleep spindle แบบเรว็27 และ
ในการศึกษาของ Nonclercq et al. มีการใชข้้อมูลจาก
สเปกตรมัเป็นคุณลักษณะของโมเดล25

	 ค่าความถ่ี เปน็ปรมิาณทีบ่ง่บอกจำ�นวนครัง้ทีเ่หตุการณ์
เกิดขึ้นในเวลาหน่ึงของสัญญาณ                มีหน่วยเป็นเฮิรตซ ์
(Hertz: Hz) ในการศึกษาของ Güneş et al. ได้คำ�นวณ
ค่าต่ำ�สุด ค่าสูงสุด ค่าเบี่ยงเบนมาตรฐาน และค่าเฉล่ีย
ของความถ่ีสัญญาณทัง้หมดทีใ่ชใ้นการศึกษา11

	 ค่า Sigma index เป็นคุณลักษณะทีส่ามารถบ่ง
บอกถึงโอกาสทีจ่ะมี Sleep spindle ได้ โดยคำ�นวณ
มาจากสูตรทีป่ระกอบด้วยค่าความถ่ี เชน่ การที ่Sigma 
index มีค่าสูงจะบ่งชีไ้ด้วา่มีความเป็นไปได้ทีจ่ะมี Sleep 
spindle สูง36 
	 การสร้างแบบจำ�ลองการตรวจจับคลื่นสมอง Sleep 
spindle (Sleep Spindle Detection Models) 
	 วธิกีารใชก้ฎ หรอื Rule-based approach เป็น
วธิทีีใ่ชใ้นการตรวจจบั Sleep spindle ด้ังเดิม โดยจะ 
คำ�นวณค่าที่นำ�มาใชเ้ป็นเกณฑ์ในการแบ่งประเภทของ
ข้อมูล (Thresholding) วธิีน้ีเป็นวธิีพ้ืนฐานที่นำ�ไปสู่
การพัฒนาโมเดลทีใ่ชส้ำ�หรบัการตรวจจบั Sleep spindle 
อัตโนมัติ ในการศึกษาของ Huupponen et al. ใช้
การคำ�นวณค่า Sigma index จากข้อมูลความถ่ี และ 
ค่าแอมพลิจูดของ Spindle เพ่ือสรา้งเป็นค่าในการแบ่ง 
เกณฑ์ว่ามีการพบ Sleep spindle ใน EEG หรอืไม่  
ซึง่ให้ความจำ�เพาะของการทดสอบ (Specificity) เทา่กับ 
97.7%36 ในการศึกษาของ Adamczyk  et al. ตรวจจบั 
Sleep spindle โดยใชค่้าจากการคำ�นวณ Continuous 
wavelet transform ทีมี่ค่ามากกวา่ค่าการเกิด Sleep 
spindle และค่า Sleep spindle peak ทีน้่อยทีสุ่ด  
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ซึง่ได้ผลค่าความไวของการทดสอบ (Sensitivity) เทา่กับ 
72% และความจำ�เพาะของการทดสอบเทา่กับ 90%32  
ในการศึกษาของ LaRocco et al. ใช้โมเดลที่มีชื่อว่า 
Spindler ซึ่งเป็นวธิีการที่ประกอบด้วย 3 ข้ันตอน
คือ (1) การแสดงสัญญาณโดย Matching pursuit 
ด้วย Gabor atom (2) การสรา้งพ้ืนผิวพารามิเตอร์
เพ่ือตรวจจบัการมีอยู่ของ Sleep spindle ในสัญญาณ
ทีส่รา้งขึน้ใหม่ และ (3) เลือกพารามิเตอรท์ีดี่ทีสุ่ดทำ� 
การวเิคราะห์ออกมาเพ่ือตรวจจับ Sleep spindle 
ซึ่งได้ค่า F1 เทา่กับ 0.67–0.7326 ส่วนในการศึกษา
ของ Parekh et al. ใชว้ธิกีาร Teager-Kaiser energy 
operator (TKEO) เพ่ือตรวจจบั Sleep spindle โดย
สรา้งเกณฑจ์ากวธิ ี Singular value thresholding 
(SVT) ทีค่ำ�นวณค่าคงทีห่น่ึง ๆ ด้วย Soft-threshold 
function หากค่าทีไ่ด้จากการคำ�นวณของ TKEO มีค่า 
มากกวา่ค่าทีไ่ด้จากการทำ� SVT จะบ่งชีถึ้งการพบ Sleep 
spindle ในคล่ืนสัญญาณน้ัน ๆ วธิกีารดังกล่าวสามารถ
ใชใ้นการวเิคราะห์ข้อมูล EEG จากทัง้ Single channel 
หรอื Multichannel ได้ และได้ค่า F1 เฉล่ียอยู่ที ่0.66 
ในชุดข้อมูล DREAMS และ 0.62 ในชุดข้อมูล MASS24 
การศึกษาของ Nonclercq et al. สรา้งการแจกแจง
ปรกติแบบ 2 ตัวแปร (Bivariate normal distribu-
tion) เพ่ืออธบิายถึงลักษณะของแอมพลิจูดและความถ่ี
ของ Sleep spindle ด้วยการประมาณเกณฑท์ีใ่ชจ้าก
วธิ ีMaximum likelihood estimation (MLE) กล่าว
คือ ทำ�ให้ทราบได้วา่ข้อมูลควรมีการกระจายตัวอย่างไร
และควรมีการกำ�หนดเกณฑท์ีเ่หมาะสมกับชุดขอ้มูลน้ัน ๆ 
จากความน่าจะเป็นสูงสุดอย่างไร ซึง่ให้ความจำ�เพาะของ
การทดสอบเทา่กับ 94.2%25 การศึกษาของ Babadi et al. 
ใช้หลักความน่าจะเป็นคำ�นวณจากทฤษฎีของเบย์ 
(Bayes’ theorem) โดยนำ� EEG ในแต่ละชว่งย่อย ๆ 
มาคำ�นวณ Eigenfunction และเอามาแปลงเป็นค่า 
Transform coefficient เพ่ือนำ�มาคำ�นวณความน่าจะเปน็ 
ที่ช่วงย่อยของ EEG จะมี Sleep spindle ซึ่งให้ 
ความจำ�เพาะของการทดสอบอยู่ในช่วงระหว่าง  
95.54%–97.2%37 และในการศึกษาของ Lacourse et al. 
ใชห้ลักการคำ�นวณเกณฑแ์บบ A7 ซึง่ประกอบด้วยค่า 
ที่ คำ �นวณมาจากการว เิคราะห์สเปกตรัมกำ �ลังให้
ความแม่นยำ� 74%34 
	 วธิกีารตรวจจบั Sleep spindle โดยวธิกีารใชก้ฎ
เป็นวธิกีารด้ังเดิมที่อาศัยสมการทางคณิตศาสตรแ์ละ
เกณฑก์ารคำ�นวณทีห่ลากหลาย โดยค่าทีน่ำ�มาใชใ้นการ
คำ�นวณขึ้นอยู่กับความเหมาะสมของแต่ละข้อมูลและ
ดุลยพินิจของผู้วจิยัในงานน้ัน ๆ แต่เน่ืองจากการตรวจจบั 
Sleep spindle ด้วยวธิีการใช้กฎน้ัน ไม่เหมาะกับ
การนำ�มาใชใ้นงานปจัจุบัน เน่ืองด้วยการพัฒนาของระบบ
อัตโนมัติ ระบบออนไลน์ หรอืระบบเรยีลไทม์ เพ่ือตอบสนอง
ต่อการใชง้านดังกล่าว การเรยีนรูข้องเคร ือ่ง (Machine 

learning) จงึได้เข้ามามีบทบาทสำ�คัญในการชว่ยลดเวลา 
ในการคำ�นวณ เรยีนรูก้ารทำ�งานทีซ่บัซอ้น และชว่ยลด 
ข้อผิดพลาดที่เกิดขึ้น การเรยีนรู ้ของเคร ื่องน้ันมีอยู่
หลายประเภท โดยในการตรวจจบั Sleep spindle 
สามารถแบ่งประเภทของโมเดลได้ ดังน้ี 
	 โมเดลประเภทจำ�แนกข้อมูล (Classification) 
หลักการทำ�งานคือการสรา้งตัวจำ�แนกข้อมูล (Classifier) 
เพ่ือทำ�นายประเภทหรอืหมวดหมู่ของขอ้มูล (Class) โดย 
ในการเรยีนรู ้ โมเดลต้องประมวลผลข้อมูลทีถู่กกำ�หนด
หมวดหมู่ไว้ก่อนแล้วหรอืเรยีกว่าการเรยีนรู ้แบบมี 
ผู้สอน (Supervised learning) เป้าหมายการทำ�นาย
ของโมเดลในงานน้ีคือคล่ืน EEG ทีถู่กพิจารณาจดัอยู่ใน
หมวดหมู่ “พบ Sleep spindle” หรอื หมวดหมู่ “ไม่พบ 
Sleep spindle” ในการศึกษาของ  Duman et al. ใช้
โมเดล Decision tree สรา้งกฎเพ่ือจำ�แนกข้อมูลด้วย
ผลการประเมินจาก 3 อัลกอรทิมึ ได้แก่ STFT, Multiple 
Signal Classification (MUSIC) และ Teager Energy 
Operator (TEO) หากทัง้ 3 อัลกอรทิมึสามารถตรวจจบั 
Sleep spindle ได้ จะสามารถสรุปได้วา่ใน EEG น้ันมี 
Sleep spindle อยู่จรงิ ซึง่ให้ผลลัพธค์วามไว 96.17%35 
การศึกษาของ Görür et al. ใชโ้มเดล Support vector 
machine (SVM) ในการแบง่หมวดหมู่ขอ้มูลออกจากกัน
ด้วยสมการแบบเชิงเส้น (Linear) หรอื สมการแบบ
ไม่เชิงเส้น (Nonlinear) โดยในการศึกษาได้เลือกใช ้
Radial basis function (RBF) kernel เพ่ือเปล่ียน 
มิติ (Space) ของขอ้มูลให้สามารถแบง่แยกหมวดหมู่ออก 
จากกันได้งา่ยขึน้ ให้ผลลัพธค์วามแม่นยำ� 94.9%–96%41 
เชน่เดียวกันกับการศึกษาของ Wei et al. ทีใ่ชโ้มเดล 
SVM เปรยีบเทยีบผลลัพธกั์บโมเดล Random forest 
ซึ่งเป็นโมเดลที่ประกอบด้วยโมเดล Decision tree 
หลาย ๆ  โมเดลรวมกัน ให้ผลลัพธค์วามแม่นยำ� 94.8%40 
ในการศึกษาของ Mei et al. ใช้โมเดลการถดถอย 
โลจสิติกส์ (Logistic regression) มีหลักการคือการคำ�นวณ
ค่าความน่าจะเป็นของแต่ละหมวดหมู่จากสมการ
ถดถอย (Regression) โดยคำ�นวณเกณฑต้ั์งต้น ต่อมา
นำ�ค่าดังกล่าวไปเป็นตัวจำ�แนกข้อมูลในโมเดลที่มาจาก
ไลบรารขีอง Python ทีมี่ชือ่วา่ Tree-based Pipeline 
Optimization Tool (TPOT) ซึง่ไลบรารดัีงกล่าวจะ
ทำ�การเลือกโมเดลที่ดีที่สุดโดยอัตโนมัติ ไม่ว่าจะเป็น 
Decision tree, Random forest, eXtreme  
gradient boosting classifier, Logistic regression 
หรอื K-Nearest neighbor classifier โดยแต่ละโมเดล 
จะทำ�งานได้ดีขึน้ตามขนาดของชุดข้อมูล ยิง่ข้อมูลมากขึน้
โมเดลจะสามารถทำ�งานได้ดีขึน้28

	 โมเดลประเภทการเรยีนรูเ้ชงิลกึ (Deep neural 
network) เป็นโมเดลทีเ่ลียนแบบการทำ�งานของระบบ
โครงขา่ยประสาท (Neural network) ทีซ่อ้นกันหลายชัน้ 
(Layer) ของมนษุย์ โมเดลสามารถเรยีนรูก้ารตรวจจบั 
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รูปแบบหรอืจัดหมวดหมู่ข้อมูลด้วยการพยายามหา 
จุดเด่นจากข้อมูลตัวอยา่งอัตโนมัติ การศึกษาของ Görür 
et al. ใชโ้มเดล Multilayer perceptron (MLP) เพ่ือ
ทำ�การจดัหมู่ โดยโมเดลมีลักษณะเป็นระบบโครงข่าย
ประสาททีส่่งขอ้มูลจากทกุเซลล์ประสาทเทยีม (Neuron) 
ใน Layer ก่อนหน้าไปยังทกุ Neuron ใน Layer ถัดไป 
โดยทำ�นายผลออกมาเปน็หมวดหมู่ทีพ่บ Sleep spindle 
หรอืหมวดหมู่ทีไ่ม่พบ Sleep spindle ให้ความแม่นยำ�
อยู่ ที่  91.7%–93.1%41 เช่นเดียวกับการศึกษาของ 
Güneş et al. ทีใ่ชโ้มเดลโครงข่ายประสาทเทยีมแบบ 
Levenberg-Marquardt (LM-ANN) แต่สามารถให้ 
ความแม่นยำ�ทีดี่ทีสุ่ดถึง 100%11 อย่างไรก็ตาม พบวา่ใน
การศึกษาได้กล่าววา่การใช ้ LM-ANN กับคุณลักษณะที่
เป็นข้อมูลของโดเมนความถ่ีเพียงอย่างเดียวให้ผลลัพธ์
ไม่ดีเทา่ทีค่วรโดยมีความแม่นยำ�อยูท่ี ่56.86%11 การศึกษา
ของ Shimada et al. มีการใชโ้มเดล Sleep electro-
encephalogram recognition neural network 
(SRNN) เป็นโมเดลโครงข่ายประสาทเทียมสำ �หรับ
การตรวจจบัคล่ืนทีมี่ลักษณะพิเศษใน Sleep EEG โดย
เฉพาะ ซึง่ถูกพัฒนามาจากโมเดล Time-delay neural 
network (TDNN) ทีมี่หลักการคือการค้นหารูปแบบ
จากการวเิคราะห์ข้อมูลความถ่ีต่อเวลาแบบไม่มีลำ�ดับ 
ซึง่ให้ค่า Recall ทีสู่งทีสุ่ดเม่ือเทยีบกับโมเดล CNN 
และโมเดล TDNN38 การศึกษาของ Kulkarni et al. มี
การใช ้2 โมเดลรว่มกันคือ โมเดลโครงข่ายประสาทแบบ
คอนโวลูชนั (Convolutional neural network: CNN)  
มีหลักการคือการทีใ่ชช้ัน้ประมวลผล (Layer) ชนิดพิเศษ 
ที่เรยีกว่า Convolution layer ซึ่งทำ�หน้าที่สกัดเอา 
องค์ประกอบที่ ต้องการจาก EEG และโมเดล Long 
short-term memory (LSTM) เพ่ือเรยีนรูล้ำ�ดับและ 
ค้นหารูปแบบในองค์ประกอบเหล่าน้ัน ซึง่มีประสิทธภิาพ
ของโมเดลเทา่กับ 96.08%30

	 โมเดลประเภทแบ่งกลุ่มข้อมูล (Clustering) เปน็โมเดล
ที่สามารถประมวลผลได้โดยไม่จำ�เป็นต้องใช้ข้อมูลที่
ถูกกำ�หนดหมวดหมู่ไวก่้อนแล้ว หรอืเรยีกวา่การเรยีนรู ้
แบบไม่มีผู้สอน (Unsupervised learning) โดยโมเดล
จะสามารถแบ่งข้อมูลออกเป็นกลุ่มตามลักษณะบาง
ประการทีโ่มเดลจะเปน็ผู้เรยีนรูเ้อง โดยการศึกษาของ Patti 
et al. ได้ใช ้Multivariate gaussian mixture model 
(MGMM) เป็นโมเดลทีส่ามารถเรยีนรูไ้ด้เองโดยไม่ต้อง 
กำ�หนดเกณฑ์ต้น เน่ืองจากตัวโมเดลใช้วธิีการหาค่า 
คาดหมายสูงสุด (Expectation maximization: EM) 
เพ่ือกำ�หนดความน่าจะเป็นไปยังกลุ่มข้อมูล 2 กลุ่ม 
(Cluster)  โดยให้ความไวของการทดสอบอยู่ที ่65.1%–
74.1% และมีสัดส่วนผลบวกลวงต่อจำ�นวนบรเิวณ EEG  
ทีผู้่เชีย่วชาญระบุมาทัง้หมดเทา่กับ 59.55%–119.7%27 
	 บางการศึกษามีการเปรยีบเทียบประสิทธิภาพ
ระหว่างโมเดล โดยการศึกษาของ Kulkarni et al. 

มีการเปรยีบเทยีบระหวา่งโมเดล SpindleNet, โมเดล 
Mcsleep30 จากการศึกษาของ Parekh et al. และ 
Spindler การศึกษาของ LaRocco et al. ทดสอบกับขอ้มูล 
จากฐานขอ้มูล MASS พบวา่ SpindleNet มีประสิทธภิาพ
โดยรวมดีกวา่ McSleep ส่วนการเปรยีบเทยีบกับโมเดล 
Spindler พบว่ามีประสิทธิภาพใกล้เคียงกัน และใน 
การศึกษาของ Parekh et al. พบวา่โมเดล McSleep ให้
ผลทีดี่กวา่โมเดล DETOKS24 ในบางค่าสามารถตรวจจบั 
Spindle ได้เรว็กว่า แต่มีความแม่นยำ�ที่ใกล้เคียงกัน 
นอกจากน้ี มีการเปรยีบเทียบกับโมเดลที่ ต่างกันและ 
ชุดข้อมูลต่างกัน โดยในการศึกษาของ Wei et al. 
น้ันเป็นงานที่ใชก้ลุ่มตัวอย่างจำ�นวนทารกมากที่สุดและ 
ได้มีความไวของการทดสอบสูงสุด40 นอกจากน้ีการศึกษา 
ของ Mei et al. มีการสรา้งแนวทางการเรยีนรูข้อง
เคร ือ่งแบบอัตโนมัติที่ให้ผลการประเมินเหมือนกับ
การประเมินของผู้เชี่ยวชาญท่านหน่ึงจากฐานข้อมูล 
DREAM28

	 การประเมินประสิทธิภาพของโมเดล (Data 
Evaluation)
	 สำ�หรบัวธิกีารทีน่ำ�มาใชใ้นการประเมินประสิทธภิาพ
ของโมเดลน้ัน ขึน้อยู่กับประเภทของโมเดลทีน่ำ�มาใชใ้น
การทำ�นาย หากเป็นโมเดลทีเ่รยีนรูแ้บบมีผู้สอน ได้แก่ 
โมเดลในกลุ่มประเภทจำ�แนกขอ้มูลและโมเดลการเรยีนรู ้
เชงิลึก จะวัดประสิทธภิาพจากการเปรยีบเทียบผลลัพธ์
จรงิกับผลลัพธ์ที่โมเดลทำ�นายว่ามีความแตกต่างกัน
อยา่งไร โดยค่าทีนิ่ยมใชใ้นการประเมินประสิทธภิาพของ
โมเดล มีดังน้ี
	 ผลบวกจรงิ (True positive: TP) คือ จำ�นวนบรเิวณ
บนคล่ืน EEG ทีผู้่เชีย่วชาญและโมเดลระบุตรงกันวา่เป็น 
Sleep spindle
	 ผลบวกลวง (True negative: TN) คือ จำ�นวนบรเิวณ
บนคล่ืน EEG ที่ ผู้เชี่ยวชาญและโมเดลระบุตรงกันว่า
ไม่เป็น Sleep spindle
	 ผลลบจรงิ (False positive: FP) คือ จำ�นวนบรเิวณ
บนคล่ืน EEG ที่โมเดลระบุว่าเป็น Sleep spindle แต่
ผู้เชีย่วชาญกลับระบุไวว้า่ไม่เป็น Sleep spindle
	 ผลลบลวง (False negative: FN) คือ จำ�นวนบรเิวณ
บนคล่ืน EEG ทีโ่มเดลระบุวา่ไม่เป็น Sleep spindle 
แต่ผู้เชีย่วชาญกลับระบุไวว้า่เป็น Sleep spindle
	 ความแม่น (Precision) คือ ค่าประเมินประสิทธภิาพ
ว่าโมเดลทำ�นายผลลัพธท์ี่เป็น Sleep spindle (True 
positive) ได้ถูกต้องมากเพียงใด เม่ือเปรยีบเทียบกับ
ผลลัพธท์ี่โมเดลระบุว่าเป็น Sleep spindle ทั้งหมด 
(True positive + False positive)
	 ความไว (Recall หรอื Sensitivity) คือ ค่าประเมิน
ประสิทธิภาพว่าโมเดลทำ�นายผลลัพธ์ที่ เป็น Sleep 
spindle (True positive) ได้ถูกต้องมากเพียงใด เม่ือ
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เปรยีบเทยีบกับผลลัพธท์ีผู้่เชีย่วชาญระบุวา่เป็น Sleep 
spindle ทัง้หมด (True positive + False negative)
	 ความจำ�เพาะ (Specificity) คือ ค่าประเมินประสิทธภิาพ
วา่โมเดลทำ�นายผลลัพธท์ีไ่ม่เป็น Sleep spindle (True 
negative) ได้ถูกต้องมากเพียงใด เม่ือเปรยีบเทยีบกับ 
ผลลัพธ์ที่ ผู้เชี่ยวชาญระบุว่าไม่เป็น Sleep spindle 
ทัง้หมด (True negative + False positive)
	 F1-score คือ ค่าประเมินประสิทธิภาพโดยเฉล่ีย
แบบฮารม์อนิก (Harmonic mean) ของค่าความแม่น 
(Precision) และค่าความไว (Recall) 
	 ความถูกต้อง (Accuracy) คือ ค่าประเมินประสิทธภิาพ
โดยรวมของโมเดล โดยจะประเมินวา่โมเดลให้ผลลัพธท์ี่

ถูกต้อง (True positive + True negative) คิดเป็น
สัดส่วนเท่าไหรจ่ากผลลัพธท์ั้งหมด (True positive + 
True negative + False positive + False negative)
	 ส่วนโมเดลประเภทแบ่งกลุ่มข้อมูลซึ่งเป็นโมเดล 
ทีเ่รยีนรูแ้บบไม่มีผู้สอนน้ัน จะใชก้ารประเมินประสิทธภิาพ
ของโมเดลที่แตกต่างจากโมเดลที่เรยีนรูแ้บบมีผู้สอน 
แต่จากการศึกษาของ Patti et al. ที่แม้จะใช้โมเดล 
Multivariate gaussian mixture model ในการแบ่ง 
กลุ่มข้อมูล27 แต่ทางผู้วจิยัได้เลือกใชว้ธิปีระเมินเดียวกับ
โมเดลทีเ่รยีนรูแ้บบมีผู้สอน โดยนำ�ผลลัพธก์ารทำ�นาย
ที่ ได้จากโมเดลไปเปรยีบเทียบกับผลลัพธ์ที่ ได้จาก 
ผู้เชีย่วชาญ

ตารางท่ี 1 แสดงตัวอย่างผลการวจิยัทีไ่ด้จากการศึกษาการตรวจจบั Sleep spindle

โมเดล ประสิทธภิาพของโมเดล อ้างอิง

วธิกีารใชก้ฎ (Rule-based approach)

Sigma index ความจำ�เพาะ 97.7% 36

Sleep spindle peak ความจำ�เพาะ 90% 32

โมเดลประเภทจำ�แนกข้อมูล (Classification)

Decision tree ความไว 96.17% 35

Random forest ความแม่นยำ� 94.8% 40

Support vector machine ความแม่นยำ� 94.9%–96% 41

โมเดลประเภทการเรยีนรูเ้ชงิลกึ (Deep neural network)

Multilayer perceptron ความแม่นยำ� 91.7%–93.1% 41

Convolutional neural network และ  
Long short-term memory ความแม่นยำ� 96.08% 30

โครงข่ายประสาทเทยีมแบบ Levenberg-Marquardt ความแม่นยำ� 100%  11

โมเดลประเภทแบ่งกลุม่ข้อมูล (Clustering)

Multivariate gaussian mixture model ความไว 65.1%–74.1% 27
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อภิปรายผล (Discussion)
	 จากการทบทวนวรรณกรรมที่เก่ียวข้องกับการใช้
การเรยีนรูข้องเคร ือ่งเพ่ือตรวจจับ Sleep spindle  
แบบอัตโนมัติพบว่าในแต่ละข้ันตอนของการทำ�งาน
สามารถใชโ้มเดลได้หลากหลายและสามารถแบ่งกลุ่ม 
โมเดลได้เปน็ Rule-based approach, Classification, 
Deep Neural Network, และ Clustering11,27,30,32,35,36,40,41 

ซึ่งการเลือกใช้โมเดลควรเลือกใช้ตามคุณลักษณะ
พ้ืนฐานของคล่ืน Sleep spindle ของกลุ่มตัวอย่าง 
ว่ามีแนวโน้มหรอืมีความแตกต่างจากคุณลักษณะ 
พ้ืนฐานโดยทั่วไปอย่างไร ซึ่งถ้าหากมีความแตกต่าง
อยา่งมีนัยยะสำ�คัญ ผู้วจิยัอาจพิจารณาปรบัปรุงขัน้ตอน
ในการวเิคราะห์ให้เหมาะสมกับกลุ่มตัวอย่างมากขึ้น 
และในส่วนของข้อมูลรบกวนที่อาจเป็นปัจจัยสำ�คัญ 
ที่ทำ�ให้ประสิทธิภาพของโมเดลลดลง จึงมีการศึกษา
เก่ียวกับวธิีการคำ�นวณต่าง ๆ ที่สามารถนำ�มาช่วยใน 
การตัดสัญญาณรบกวนออกได้ โดยเฉพาะสัญญาณ 
ทีไ่ม่ใชค่ล่ืนสมอง เชน่ Independent component 
analysis (ICA) เป็นต้น42, 43 อย่างไรก็ตามหากสามารถ
สร้างโมเดลที่ มีประสิทธิภาพที่ น่ าพึงพอใจได้แล้ว 
อาจพิจารณานำ�ข้อมูลรบกวนเหล่าน้ีมาให้โมเดลเรยีนรู ้
รว่มกับขอ้มูลชุดเดิมอีกครัง้ เพ่ือให้โมเดลสามารถเรยีนรู ้
ที่จะแบ่งแยกระหว่างสัญญาณจรงิกับสัญญาณรบกวน
ได้ดียิง่ขึน้ หรอืกล่าวคือ เป็นการทำ�ให้โมเดลสามารถนำ�
ไปใชกั้บข้อมูลทีห่ลากหลายมากขึน้ (Generalization) 
	 ต่อมาคือการทดลองให้โมเดลเร ิม่เรยีนรูจ้ากคุณลักษณะ 
จำ�นวนน้อย ๆ แล้วค่อย ๆ เพ่ิมจำ�นวนคุณลักษณะทีใ่ช ้
และทดลองเลือกจับคู่คุณลักษณะที่แตกต่างกันเพ่ือ 
ทดสอบว่าโมเดลจะให้ประสิทธิภาพที่แตกต่างกัน 
หรอืไม่ โดยพยายามเลือกคุณลักษณะทีมี่ความเป็นอิสระ 
ต่อกันหรอืมีความซ้ำ�ซอ้นกันน้อย กล่าวคือ ไม่เลือก 
คุณลักษณะใดคุณลักษณะหน่ึงที่เป็นค่าที่สามารถ
คำ�นวณได้จากอีกคุณลักษณะหน่ึง ซึง่การลดคุณลักษณะ
เหล่าน้ีจะช่วยเพ่ิมประสิทธภิาพในการทำ�นายและลด 
ระยะเวลาในการคำ�นวณลงไปได้44 และถ้าหากผู้วจิัย 
ต้องการวเิคราะห์วา่คุณลักษณะใดสามารถบ่งชีถึ้ง Sleep 
spindle ได้ดีทีสุ่ด ผู้วจิยัควรวเิคราะห์เก่ียวกับความสำ�คัญ
ทีคุ่ณลักษณะหน่ึง ๆ  ส่งผลต่อโมเดล (Feature importance) 
รว่มด้วย จากน้ัน อาจทดลองนำ�คุณลักษณะดังกล่าวไป
ใชใ้นการแบ่งกลุ่มข้อมูลด้วยโมเดลประเภทไม่มีผู้สอน 
เพ่ือเปน็การตรวจสอบวา่คุณลักษณะดังกล่าวสามารถใช้
ในการบ่งชีไ้ด้จรงิ 
	 ทัง้น้ี ถึงแม้วา่จากการทบทวนวรรณกรรมจะพบวา่ 
ค่าความไว ความจำ�เพาะและความแม่นยำ�มีค่าค่อนข้าง 
สูงถึง 90% แต่ก็ยังมีโอกาสในการทำ�นายตรวจจับ 
ทีผิ่ดพลาดได้ ดังน้ัน เม่ือได้ผลการทำ�นายจากโมเดลแล้ว 
นอกจากจะประเมินประสิทธิภาพว่าโมเดลสามารถ
เรยีนรูแ้ละตรวจจบับรเิวณทีเ่ป็น Sleep spindle ได้ดี 

เพียงใดแล้ว ควรจะพิจารณาควบคู่ไปด้วยวา่เหตุใดโมเดล
จึงตอบผิด ทั้งผลบวกลวงและผลลบลวง ให้ทดลอง
วเิคราะห์ว่าข้อมูลลักษณะใดที่โมเดลมักจะตอบผิด 
หรอืหากคาดการณ์ว่าไม่ได้มีสาเหตุมาจากลักษณะของ
ข้อมูล อาจจะวเิคราะห์ในมุมมองของโมเดลวา่ การทำ�งาน
ของโมเดลส่วนใดที่เป็นสาเหตุหลักในการทำ�นายที่ผิด
พลาด เป็นต้น ซึง่การดำ�เนินงานดังกล่าวจะทำ�ให้เข้าใจ
รูปแบบของผลลัพธท์ีไ่ด้มากขึน้ 

สรุปผล (Conclusion)
	 คล่ืนสมอง Sleep spindle เป็นคล่ืนสมองที่มี 
บทบาทสำ�คัญในกระบวนทางระบบประสาท วธิีการ
ตรวจจบั Sleep spindle ได้มีการพัฒนาเพ่ือให้เหมาะสม 
ต่อการใชง้านระบบอัตโนมัติในปจัจุบัน โดยมีจุดประสงค์
ของการใชง้าน คือ การประมวลผลอัตโนมัติทีมี่ความสามารถ
เทยีบเทา่กับผู้เชีย่วชาญ แต่ทำ�ได้ในระยะเวลาทีส้ั่นกวา่
และชว่ยลดข้อผิดพลาดที่อาจเกินขึ้นได้ การตรวจจบั 
Sleep spindle แบบอัตโนมัติทีใ่ห้ประสิทธภิาพสูงทีสุ่ด 
ไม่ได้ขึน้อยู่กับวธิกีารทีใ่ชเ้ทา่น้ัน ขั้นตอนอ่ืน ๆ ทัง้ก่อน
และหลังการตรวจจับก็ถือเป็นปัจจัยสำ�คัญที่ช่วยเพ่ิม
ประสิทธภิาพการในทำ�งานได้ ขั้นตอนในการตรวจจบั 
Sleep spindle ประกอบด้วยการเก็บข้อมูลซึ่งเป็น
ขั้นตอนทีมี่ความสำ�คัญเป็นอย่างมาก โดยผู้วจิยัควรดึง
ข้อมูลมาจากแหล่งข้อมูลที่ตอบโจทย์ในการศึกษาและ
ดึงเฉพาะข้อมูลที่ต้องการในปรมิาณที่เหมาะสม ทั้งน้ี 
ในทางปฏิบัติการรวบรวมข้อมูลให้อยู่ในช่วงที่กำ�หนด
โดยปราศจากข้อมูลรบกวนเป็นส่ิงทีเ่ป็นไปได้ยาก ดังน้ัน 
จึงต้องมีขั้นตอนการจัดการข้อมูล โดยการตรวจหา 
Sleep spindle มักใชค่้าตัวกรองความถ่ีของสัญญาณ
ในการกรองช่วงสัญญาณที่มีข้อมูลรบกวนน้อยที่สุด 
ทัง้น้ี ค่าตัวกรองสัญญาณมีความแตกต่างกันตามดุลยพินิจ
ของผู้วจิยั ซึง่ประเด็นเหล่าน้ีอาจนำ�ไปศึกษาต่อยอดได้วา่ 
ค่าตัวกรองความถ่ีของสัญญาณหรอืศึกษาว่าค่าอ่ืน ๆ 
ที่ใช้ในข้ันตอนการจัดการข้อมูลมีผลต่อการตรวจจับ 
Sleep spindle หรอืไม่ เม่ือได้ข้อมูลในชว่งทีต้่องการ 
ขั้นตอนต่อมาเป็นการแปลงข้อมูลให้อยู่ในรูปแบบที่
โมเดลสามารถเรยีนรู ้ได้ ซึ่ งก็คือการดึงคุณลักษณะ 
ที่สำ�คัญของข้อมูล โดยผลลัพธข์องคุณลักษณะที่ได้จะ 
ขึน้อยูกั่บวธิกีารในการตรวจจบั Sleep spindle ทีผู้่วจิยั 
เลือกใช ้ จากผลการศึกษาพบวา่ข้อมูลทัง้โดเมนความถ่ี
และโดเมนเวลาสามารถใชใ้นการแบง่แยก Sleep spindle 
ได้ไม่ต่างกัน โดยประสิทธิภาพของโมเดลอาจลดหล่ัน 
ตามความเหมาะสมระหว่ า งความสามารถของ
คุณลักษณะน้ัน ๆ ในการบ่งชีถึ้ง Sleep spindle กับ
ลักษณะของโมเดลทีใ่ช ้และเน่ืองด้วยประเภทของโมเดล
หรอืค่าควบคุมที่แตกต่างกัน ทำ�ให้ไม่สามารถสรุปได้
อย่างชัดเจนว่าวธิีการใดให้ผลดีที่ สุด โดยปกติแล้ว
สามารถคาดหวังผลลัพธท์ี่ดีกว่าจากการเลือกใชโ้มเดล
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ที่ความซบัซอ้นมากกว่า แต่อาจต้องแลกกับระยะเวลา
ที่ใชใ้นการคำ�นวณและความสามารถในการอธบิายการ
ทำ�งานของโมเดลวา่สามารถแบ่งแยก Sleep spindle 
ออกจาก EEG ได้อย่างไร ในทางกลับกันการศึกษาอาจ
ต้องยอมลดความซบัซอ้นของโมเดลเพ่ือให้เข้าใจในการ
ทำ�งานของโมเดลมากขึน้ นอกจากน้ี Sleep spindle 
ถือเป็นข้อมูลทีมี่ความแปรปรวนสูง การเลือกใชโ้มเดล
ที่สามารถรบัมือกับข้อมูลที่มีความแปรปรวนสูงได้ดีจงึ
เป็นอีกทางเลือกหน่ึง 
	 โดยโมเดลประเภทต้นไม้อย่าง Decision tree น้ัน 
จะถือเป็นโมเดลขั้นพ้ืนฐานที่สามารถเข้าใจได้ง่าย  
แต่มีข้อเสียคือในข้ันตอนการเรยีนรู ้ โมเดลอาจให้ 
ประสิทธภิาพทีดี่ แต่โมเดลกลับให้ประสิทธภิาพทีแ่ย่ลง 
เม่ือเจอกับชุดข้อมูลทดสอบประสิทธิภาพที่ไม่เคย 
เรยีนรูม้าก่อน ซึ่งเกิดจากการที่โมเดลไม่ได้เรยีนรูจ้าก 
คุณลักษณะทีใ่ส่เขา้ไป แต่กลับใชว้ธิจีำ�คำ�ตอบไปตอบแทน 
(Overfitting) อีกทัง้ตัวโมเดลประกอบด้วยค่าพารามิเตอร์
ที่ ต้องปรับให้เหมาะสมสำ�หรับการเรยีนรู ้ครั้งน้ัน ๆ 
จำ�นวนมาก เพ่ือให้ได้ประสิทธภิาพทีดี่ทีสุ่ด ผู้วจิยัอาจต้อง 
ให้คำ�นึงถึงประเด็นเหล่าน้ีรว่มด้วย อยา่งไรก็ตาม อีกหน่ึง
โมเดลประเภทต้นไม้ทีส่ามารถคาดหวงัประสิทธภิาพทีดี่
ได้คือ Random forest อีกทัง้ยังเป็นโมเดลทีเ่หมาะ
สำ�หรับการศึกษาที่ประกอบด้วยคุณลักษณะหลาย
คุณลักษณะทีแ่ตกต่างกัน และมีโอกาสรบัมือกับปัญหา 
Overfitting ได้ดีกว่า Decision tree แต่ผลลัพธ ์
ที่ น่าพึงพอใจเหล่าน้ี  มีสาเหตุมาจากการที่ โมเดลมี 
ความซ้ำ�ซ้อนมากขึ้นและอาจทำ�ความเข้าใจได้ยากขึ้น 
ส่วนโมเดลประเภทแบ่งกลุ่มที่ยังคงคาดหวังผลลัพธท์ี่
ดีได้เชน่กันคือ SVM ซึง่เหมาะกับการศึกษาทีป่ระกอบ
ด้วยหลายคุณลักษณะเชน่กัน แต่ต้องระมัดระวังเร ือ่ง
ขอ้มูลทีมี่หน่วยแตกต่างกันมาก ๆ เพราะอาจทำ�ให้โมเดล 
เรยีนรูไ้ด้แยล่งได้ และหากข้อมูลไม่ได้กระจายตัวในลักษณะ 
ที่ เหมาะสม การปรบัค่าพารามิเตอรท์ี่ ใช้ในการเรยีนรู ้
ของโมเดล SVM ก็จะยิ่ งเป็นข้อที่ ต้องคำ�นึงเช่นกัน 
แต่หากเป้าหมายของผู้วจิัยคือการสรา้งโมเดลที่เน้น 
ความถูกต้องหรอืความแม่นยำ� โดยไม่ได้เน้นวเิคราะห์
ว่าโมเดลมีการตัดสินใจอย่างไร ผนวกกับทางผู้วจิัยมี
ชุดข้อมูลต้ังต้นขนาดใหญ่มากเพียงพอ โมเดลประเภท
การเรยีนรูเ้ชงิลึกคือโมเดลทีเ่หมาะสมกับงานลักษณะน้ี 
โดยเฉพาะโมเดลโครงข่ายประสาทเทียมแบบวนกลับ 
(Recurrent Neural Network: RNN) เป็นโมเดลที่
ทำ�นายข้อมูลประเภทสัญญาณซึง่มีลักษณะเป็นลำ�ดับ 
(Sequential data) ได้ดี คาดวา่การใชโ้มเดลดังกล่าว
ในหัวข้อการศึกษาน้ีจะได้รบัความนิยมเพ่ิมมากขึ้นใน
อนาคต ส่วนโมเดลทีเ่รยีนรูแ้บบไม่มีผู้สอนน้ันจะเหมาะ
สำ�หรบังานทีต้่องการค้นหาคุณลักษณะใหม่ ๆ  ทีส่ามารถ
บ่งชี ้ Sleep spindle นอกเหนือจากคุณลักษณะทีมั่ก
นิยมใชกั้น

สุดทา้ยคือการวัดค่าประสิทธภิาพของโมเดล ซึง่สามารถ
เลือกประเมินได้หลายวธิ ี แม้ในการประเมินโดยภาพรวม 
มักจะใชค้วามแม่นยำ�เปน็หลัก แต่หากผู้วจิยัมีจุดประสงค์
ที่ต่างกันออกไป การประเมินที่ใชก็้ควรจะแตกต่างกัน 
จากค่าประสิทธภิาพในตารางที ่1 แสดงให้เห็นวา่ โมเดล
สามารถตรวจจับ Sleep spindle ได้เทียบเท่ากับ 
ผู้เชีย่วชาญในระดับหน่ึง โดยเฉพาะโมเดลในกลุ่มเรยีนรู ้
แบบมีผู้สอน จะให้ค่าความแม่นยำ� 90% ขึน้ไป ซึง่มี
ความเป็นไปได้ที่จะนำ�โมเดลเหล่าน้ีไปพัฒนาให้มีความ
แม่นยำ�มากขึ้นและนำ�ไปใชเ้พ่ือประโยชน์ทางการแพทย์
ต่อไป และในบางครัง้ การประเมินผลเปรยีบเทียบว่า
โมเดลหน่ึงได้ค่าดังกล่าวน้อยกวา่อีกโมเดลหน่ึงเล็กน้อย 
ไม่ได้หมายความว่าโมเดลมีประสิทธภิาพต่ำ�กว่าเสมอไป 
เน่ืองจากการประเมินเหล่าน้ีคือการเปรยีบเทียบกับ 
การประเมินของผู้เชีย่วชาญ ดังเชน่ใน Kulkarni et al.30 
พบวา่ค่าประสิทธภิาพทีล่ดลง เหตุผลหน่ึงคือมีผลมาจาก
การทีโ่มเดลสามารถตรวจจบั Sleep spindle ในส่วนที่
ผู้เชีย่วชาญได้ทำ�การประเมินพลาดไป ซึง่ประเด็นเหล่าน้ี
จะเป็นอีกทางเลือกในการวเิคราะห์รว่มกับการพิจารณา
ของผู้เชี่ยวชาญในการตรวจจบั Sleep spindle ได้ 
อยา่งไรก็ตาม ผลลัพธท์ีโ่มเดลทำ�นายผิดไปวา่เป็น Sleep 
spindle อาจมีจำ�นวนมากกวา่ผลลัพธ ์Sleep spindle 
ทัง้หมดทีผู้่เชีย่วชาญระบุไว2้7 

	 วธิกีารที่ให้ผลลัพธท์ี่ดีที่สุดในการตรวจจบัและแยก
ความแตกต่างของ Sleep spindle กับ EEG ขึน้อยู่กับ 
จุดประสงค์และความรูค้วามเขา้ใจพ้ืนฐานของผู้ใชง้านวา่ 
ต้องการศึกษาเน้นทีผ่ลลัพธใ์นการทำ�นาย หรอืเน้นศึกษาใน 
ลักษณะทีส่ามารถชว่ยในการแบ่งแยก Sleep spindle ได้ 
ซึ่งการนำ�การเรยีนรู ้ของเคร ื่องมาใช้ในการพัฒนา
ความสามารถการตรวจจบั Sleep spindle ให้เทยีบ
เท่ากับผู้เชีย่วชาญในระยะเวลาที่ส้ันลงอาจสามารถนำ�
ไปใชใ้นการสนับสนุนการตัดสินใจของผู้เชีย่วชาญ เพ่ือ
สนับสนุนและเพ่ิมคุณภาพในการวนิิจฉัยโรคให้กับ 
ผู้ป่วยได้ต่อไปในอนาคต
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