

Safety Culture Assessment in Three Automobile Assembly Plants in Thailand

Siriwan Naksawat¹, Densak Yogyorn¹, Dusit Sujirarat², Vorakamol Boonyayothin¹

¹ Occupational Health and Safety Department, Faculty of Public Health, Mahidol University. Address: 420/1 Ratchawithi Rd. Ratchathewi Bangkok Thailand 10400.

² Epidemiology Department, Faculty of Public Health, Mahidol University. Address: 420/1 Ratchawithi Rd. Ratchathewi Bangkok Thailand 10400. E-mail: dusit.suj@mahidol.ac.th

Correspondence: Densak Yogyorn, Occupational Health and Safety Department, Faculty of Public Health, Mahidol University. Address: 420/1 Ratchawithi Rd. Ratchathewi Bangkok Thailand 10400. E-mail: densak.yog@mahidol.ac.th Telephone number: 081 752 5143

Received: June 26 2022; Revised: June 27 2023; Accepted: August 17 2023

Abstract

The automotive industry in Thailand is at the turning point with digitalization, lean and advanced manufacturing technological development, transforming the structure and system that drive this industry. In the meantime, rapid change over assembly lines is forcing workers at risk of injury and illness from working with collaborative robots (cobots) and being exposed to dangerous machinery and chemicals. Objective: This study aimed to draw and compare the pictures of safety culture in three Japanese automobile assembly plants in Thailand, broadly recognized as a strong corporate safety culture. Method: This was a cross-sectional study conducted on three automobile assembly plants, with 719 respondents, mostly male 686 people (94.5 %). This study used the questionnaires which consist of two parts, personal data and the safety climate assessment developed by the UK Health and Safety Executive (HSE). Descriptive statistics were used to describe the safety climate score and the characteristics of the respondents. Inferential statistics were used to describe the comparison of personal factors, workplace location and find the correlation to the safety climate. Result: This study found that there was no shared vision of management commitment between the managers and subcontractors ($p=0.04$). The subcontractor perceived the safety rules and procedures differently compared to the manager ($p = 0.001$), supervisor, and operational staff ($p = 0.00$). In addition, the subcontractor's perception of the work environment was different between the supervisor ($p = 0.01$) and operational staff ($p = 0.04$). The older workers perceived the safety rules and procedures differently compared to the

younger generations ($p = 0.00$). The differences between Plant C compared with Plant A and B were communication, involvement, priority of safety, safety rules and procedures, supportive environment, and work environment ($p = 0.00$).

Conclusion: This study explored the differences factors that are embedded in these three plants by using the Safety Climate questionnaires. Recommendation: The method of this study can be applied to other corporates to perform multiple plants assessment to measure their safety climate periodically.

Keywords: Safety, Culture, Climate, Automobile assembly plant

What was Known

- Safety culture is the product of collective perceptions, beliefs, and values of safety that are shared within the organization.
- The safety culture can be influenced by organizational context.

What's New and Next

- The worker is willing to take risks in some circumstances.
- The specific local sub-culture groups' characteristics to be explore.

Introduction

The automotive industry in Thailand is very essential to the Thai economy, worth USD 27 billion in 2016 contributed to 12% of GDP, and employed more than 700,000 Thai workers¹. As of 2021, the automotive industry in Thailand was recognized as the fifth largest in Asia² and the tenth largest in the world³. Most of the vehicles built in this country are developed and licensed by foreign countries. On top of the list of automotive manufacturing countries in Asia were China followed by Japan, India, South Korea, and Thailand respectively. Japanese-car brands are the largest foreign investment in the automotive industry in Thailand, assembly production for local market and export base to around the world.

Although according to safety statistics, the accident rate of the automotive industry was very low compared to the rest of the industries in Thailand⁴. In the automotive industry, the assembly processes are congested and consist of separate functional compartments for programmable robots and automatic equipment. Not only containing moving machinery but also

thousands of workers, both machines and humans are working in collaboration⁵. In this complex workplace, the health and safety of workers are challenging, where workers are exposed to a variety of health and safety risks daily such as being hit or trapped between machines and exposure to noise and vibrating machines and also slip trips and falls. Furthermore, more serious incidents such as fire and explosions can also occur in the automotive industry as an explosion in Suzuka city, Mie Prefecture in Japan resulted in serious burns to two men. The blast occurred at the electrical power distribution board where the two men were checking the switchboard⁶.

The automotive industry is more and more complicated, involving new technologies such as 3D, Augmented Reality (AR) headsets, Artificial Intelligence (AI) algorithms, Welding Robots, and Lifting and Stacking Robots. While workers are becoming more stressed to deal with more complicated health and safety risks as part of the manufacturing process, incorporating new technologies and inherent electrical hazards, manual handling, chemical exposure, etc.^{3,5}.

Since, the safety climate is a product of shared perception and attitude among members at given time and place. Therefore, the safety climate assessment can be conducted to find the current state of safety culture or proxy indicators of an organizational safety culture. This study aimed to draw pictures of the safety culture in three automotive assembly plants in Thailand, owned by the same parent Japanese company which broadly recognized safety culture. The corporate safety philosophy cascades to the ground floor by training that helps build-up a group-wide safety culture from the grassroots-up. In the center of each plant, they have a cell dedicated to safety training, called a 'safety dojo'. It is lined with PPE, instructions, charts, and training gear which gives the opportunity for the trainees to feel how safety hazard can harm them. This regards safe work as the door to all works.

Materials and Methods

Data

This study was a cross-sectional study that utilized UK Health and Safety Executive (HSE)'s safety climate assessment tools, developed by Loughborough University⁷ to draw the safety culture in each automotive assembly plant. This study involves three automotive assembly plants, the first plant (plant A) is in the Bangkok suburb area, the second plant (plant B) is located

around 40 km away from plant A and the third plant (plant C) is located around 100 km away from plant A.

The participants include permanent and contract employees who work daily. There were 4,414 people in Plant A and 4,081 people in Plant B, and 5,151 people in Plant C, a total of 13,646 people.

The sample size was calculated based on the following formula⁸.

$$n_{\mu} = \frac{N Z^2 \sigma^2}{Ne^2 + Z^2 \sigma^2}$$

$$n = \frac{13646 \times (1.96)^2 \times (0.59)^2}{13646 \times (0.05)^2 + (1.96)^2 \times (0.59)^2}$$

$$n = 400$$

n = Sample size

N = Population size (plant A = 4,414, plant B = 4,081, plant C = 5,151)

e = Error tolerance level of sample size that acceptable 5% at confidence level 95%

Z² = Confidence level 95% (Z = 1.96)

σ = Standard deviation of the sample by reference the related research⁸ was 0.59

By reserving the samples for an error of 10% (40), a total including 440 samples calculated, by simple stratified type which breaking the interest population into strata. Thus, samples were selected from all strata in all three plants (plant A = 140, plant B = 140, and plant C = 160). The researcher decided to distribute 750 questionnaires to all 3 plants because the population proportion was unknown and made sure that enough completed questionnaires returned. However, 718 questionnaires were returned from all three plants and since the researcher is also one of the employees in this firm, the researcher known that was no

questionnaire without a representative returned. Thus, all 719 returned questionnaires are accepted as true representations.

The Questionnaire

An anonymous confidential questionnaire distributed to the permanent employees and the sub-contractors who work on shift and daytime basis during 07.30 – 16.30, 19.30 – 04.30 and 08.00 – 17.00 in three manufacturing plants from October to December 2016.

The questionnaires were divided into 2 sections.

Part 1: The data on personal factors consisted of information on sex, status, age, position, department, function, education, work experience, and experience related to the accident.

Part 2: The UK HSE's questionnaires⁷

There was a preliminary study set up to test the validity of the items in the questionnaire with the appropriate group. The pilot questionnaire developed to include 47 items covering the areas of management commitment (MC), communication (CO), priority of safety (PS), safety rules and procedures (SRP), supportive environment (SE), involvement (IN), personal priorities and need for safety (PPS), personal appreciation of risk (PAR) and work environment (WE). This pilot questionnaire applied to offshore platforms in two locations where the offshore personnel were asked to complete the questionnaire and provide feedback on the content. Sixty questionnaires returned from offshore personnel with comments on specific items which finally four items deleted, and two items reworded. The revised version of the questionnaire includes 43 items and was consequently tested on a larger pilot population of 350 employees on three offshore platforms. Two hundred twenty one questionnaires returned (63% response rate) without any evidence showing that this sample was unrepresentative of the total population. The statistical test of confirmatory factor analysis (CFA), internal-scale consistency and alternate forms reliability tests were applied to this data⁹.

To ensure the reliability of the questionnaires to be used in this study, testing in the same sample size conducted and then calculating by Alpha Coefficient Reliability. The result of the questionnaires was secured by the Cronbach Alpha Coefficient of 0.694.

The UK HSE's questionnaires consisted of 43 questions consisting of four factors as follows.

1. Organizational Context (Cronbach Alpha=0.754)

- Management commitment: 7 questions (0.845)
- Communication: 5 questions (0.722)
- Priority of Safety: 4 questions (0.715)
- Safety Rules & Procedures: 3 questions (0.734)

2. Social Environment (Cronbach Alpha=0.655)

- Supportive Environment: 6 questions (0.606)
- Involvement: 3 questions (0.705)

3. Individual Appreciation (Cronbach Alpha=0.569)

- Personal Priorities & Need for Safety: 5 questions (0.607)
- Personal Appreciation of Risk: 4 questions (0.531)

4. Work Environment (Cronbach Alpha=0.779)

- Physical Work Environment: 6 questions (0.779)

The questionnaire was answered on a 5-point Likert scale, rating value of 5 in the “strongly agree” category, 4 in the agree category, 3 in the neither agree nor disagree category, 2 in the “disagree” category, and 1 in the strongly disagree response. The formatted questionnaire items are in random order.

Scores need to be averaged for each dimension and there were two types of questionnaire items, positive and negative. For the negative words type of question, the score needs to be reversed by subtracting the item score from 6 to reverse the scoring as follows.

- Positive Question, from score 1 – 5 (respond score) = Actual score
- Negative question can calculate the score by (6 – respond score) = Actual score

These averaged scores of each dimension, which have different numbers of items, can be achieved by dividing the actual score by the total possible score of each dimension. The dimension scores need to be standardized before plotting to compare all nine dimensions, by

converting the scores to a 1 to 10 scale by multiplying the average score by 10 as follows. Then the score of all nine dimensions can be presented graphically on the radar diagram.

$$\text{Dimension score} = [\text{Summation of average score}] \times 10$$

$$\text{Total of the full score}$$

After collect the data, the researcher was analyzed the data by using statics Package for Social Science program (SPSS) on PC windows, the data were analyzed by using the descriptive analysis statistics including the personal factor by percentage, mean, median, min-max and standard variation and the safety climate score by percentage, mean, and min-max. Inferential statistics to find the correlation between factor and safety climate score by using the ANOVA test for compare personal factor and safety climate score, Pearson Product Moment Correlation Coefficient for correlation between safety climate factor and Multiple Regression analysis by using the confidence was 95 %.

Results

Personal factors

Seven hundred fifty questionnaires were distributed with Seven hundred nineteen questionnaires returned from three locations (95.8%). Most respondents were male (95.4%) and age range of 26 – 35 years old. More than half of them were married (67.3%) and working at the operation staff level (G1 – G4) (60.5%) in the production line (27.3%). The most of education levels of employees were high school (48.5%) with work experience of 1.1 – 5 years (29.5%) and 5.1 – 10 years (28.8%) (Table 1).

The safety climate score

Table 2 shows the safety climate score of three automotive plants. The highest score in the nine dimensions was personal priorities and the need for safety. The results in plants A and B were similar, 7.77 and 7.6 respectively, while plant C was the highest at 9.25. On the other hand, the lowest score was a personal appreciation of risk. The results in plants A and B were similar, 5.06 and 5.00 respectively, while plant C was the highest at 6.05.

This study found similar characteristics in Plant A and B. In the management commitment dimension, the score was found similar in Plant A and B, 6.58 and 6.72, respectively while the result of Plant C was the highest at 7.96.

The communication dimension score was similar in Plant A and B, 5.92 and 5.94, respectively while the result of Plant C was the highest at 7.22.

The result of the priority of safety dimension was similar in Plant A and B, 7.17 and 6.91, respectively while the result of Plant C was the highest at 8.41.

The result of the safety rules and procedures dimension was similar in Plant A and B, 6.11 and 5.99, respectively while the result of Plant C was the highest at 6.67.

The result of the supportive environment dimension was similar in Plant A and B, 6.42 and 6.48, respectively while the result of Plant C was the highest at 7.77.

The result of the involvement dimension was similar in Plant A and B, 6.29 and 6.49, respectively while the result of Plant C was the highest at 7.18.

The result of the work environment dimension was similar in Plant A and B, 6.58 and 6.55, respectively while the result of Plant C was the highest at 7.33.

The relationship between safety climate score and position

Table 3 shows the result of the safety climate score that the difference in means between the group of management, supervisor, operational staff, and sub-contractor is not statistically significant.

The relationship between safety climate score and age

Table 4 shows the result of the safety climate score that the difference in means between the age group of 18-25 (A), 26-35 (B), 36-45 (C), 46-55 (D), 56-year-old and older (E) is not statistically significant.

The relationship between safety climate score and workplace factors

Table 5 shows the result of the safety climate score that the difference in means between the plan A, B, and C is not statistically significant.

Table 1: Participants' Characteristics

	Characteristics	Number (%)
Sex		
	Male	686(95.40)
	Female	33(04.60)
Age		
	18-25	46(06.40)
	26-35	382(53.10)
	36-45	222(30.90)
	46-55	60(08.30)
	55 years or more	6(00.80)
	Not specified	3(00.40)
	Mean (S.D.) = 34.85 (6.82)	
Marital Status		
	Single	200(27.80)
	Married	484(67.30)
	Windowed	3(00.40)
	Divorced	21(02.90)
	Separated	4(00.60)
	Not specified	7(01.00)
Position		
	Management (G6 up)	10(01.40)
	Operation staff (G1 - G4)	435(60.50)
	Supervisory/Group Leader (G5)	135(18.80)
	Sub-Contract	127(17.70)
	Not specified	12(01.70)
Department		
	Manufacturing Operation Management	1(00.10)
	Export Parts Packing	34(04.70)
	Part Logistics	2(00.30)
	Quality Assurance	7(01.00)
	Vehicle Logistics	16(02.20)
	Stamping & Parts	37(05.10)

Quality Control	66(09.20)
Plant Administration	52(07.20)
Production 1	170(23.60)
Production 2	120(16.70)
Production 3	196(27.30)
Safety & Environment Office	3(00.40)
Corporate Administration	8(01.10)
Human Resources	7(01.00)

Education

Primary school	1(00.10)
High school	349(48.50)
Diploma	242(33.70)
Bachelor's degree	110(15.30)
High bachelor's degree	13(01.80)
Not specified	4(00.60)

Work Experience (Year)

0.6-1	26(03.60)
1.1-5	212(29.50)
5.1-10	207(28.80)
10.1-15	146(20.30)
15.1-20	38(05.30)
20.1-25	57(07.90)
25.1-30	22(03.10)
more than 30	11(01.50)

Automobile Assembly Plants

Plant A	226(31.40)
Plant B	225(31.30)
Plant C	268(37.30)

Table 2: Safety climate score of three automotive plants

Dimensions	LOCATION					
	Plant A (N=226)		Plant B (N=225)		Plant C (N=268)	
	\bar{X}	SD	\bar{X}	SD	\bar{X}	SD
MC	6.58	0.64	6.69	0.75	6.71	0.67
CO	5.92	0.68	5.91	0.70	6.09	0.63
PS	7.17	1.02	6.88	1.05	7.09	0.93
SRP	6.11	1.32	5.96	1.47	5.62	1.71
SE	6.42	0.58	6.45	0.53	6.55	0.52
IN	6.29	1.01	6.46	1.04	6.05	1.70
PPS	7.77	1.03	7.64	0.94	7.80	0.88
PAR	5.06	1.16	4.98	1.21	5.10	1.25
WE	6.58	0.74	6.52	0.85	6.18	0.94

MC: Management Commitment, CO: Communication, PS: Priority of safety, SRP: Safety Rules and Procedures, SE: Supportive Environment, IN: Involvement, PPS: Personal Priorities and Need for safety, PAR: Personal Appreciation of Risk, WE: Work Environment, M: Mean, SD: Standard Deviation

Table 3: Safety climate score categorized by position.

Dimensions	Management		Supervisor		Operational staff		Sub-contractor	
	\bar{X}	SD	\bar{X}	SD	\bar{X}	SD	\bar{X}	SD
MC	6.29	0.45	6.65	0.69	6.63	0.69	6.81	0.67
CO	5.64	0.48	5.97	5.91	0.62	0.67	6.09	0.77
PS	6.75	0.86	7.04	1.04	7.12	0.93	7.08	0.96
SRP	7.13	1.14	5.89	1.49	6.36	1.24	5.30	1.79
SE	6.30	0.53	6.48	0.54	6.43	0.55	6.53	0.58
IN	6.40	1.14	6.26	1.29	6.32	1.35	6.17	1.49
PPS	8.00	0.78	7.76	0.89	7.79	0.98	7.63	1.12
PAR	4.70	1.30	4.96	1.23	5.11	1.15	5.28	1.21
WE	7.20	0.77	6.44	0.83	6.53	0.85	6.20	0.98

MC: Management Commitment, CO: Communication, PS: Priority of safety, SRP: Safety Rules and Procedures, SE: Supportive Environment, IN: Involvement, PPS: Personal Priorities and Need for safety, PAR: Personal Appreciation of Risk, WE: Work Environment, M: Mean, SD: Standard Deviation

Table 4: Safety climate score categorized by age group

Dimensions	18-25		26-35		36-45		46-55		56+	
	\bar{X}	SD								
MC	6.29	0.45	6.65	0.69	6.63	0.69	6.81	0.67	6.29	0.45
CO	5.64	0.48	5.97	5.91	0.62	0.67	6.09	0.77	5.64	0.48
PS	6.75	0.86	7.04	1.04	7.12	0.93	7.08	0.96	6.75	0.86
SRP	7.13	1.14	5.89	1.49	6.36	1.24	5.30	1.79	7.13	1.14
SE	6.30	0.53	6.48	0.54	6.43	0.55	6.53	0.58	6.30	0.53
IN	6.40	1.14	6.26	1.29	6.32	1.35	6.17	1.49	6.40	1.14
PPS	8.00	0.78	7.76	0.89	7.79	0.98	7.63	1.12	8.00	0.78
PAR	4.70	1.30	4.96	1.23	5.11	1.15	5.28	1.21	4.70	1.30
WE	7.20	0.77	6.44	0.83	6.53	0.85	6.20	0.98	7.20	0.77

MC: Management Commitment, CO: Communication, PS: Priority of safety, SRP: Safety Rules and Procedures, SE: Supportive Environment, IN: Involvement, PPS: Personal Priorities and Need for safety, PAR: Personal Appreciation of Risk, WE: Work Environment, M: Mean, SD: Standard Deviation

Table 5: The relationship between safety climate factors and positions

Dimensions	Source of Variation	SS	df	MS	F	p-value
MC	Between Groups	4.93	3	1.64	3.52	0.01*
	Within Groups	333.50	715	0.47		
	Total	338.43	718			
CO	Between Groups	2.40	3	0.80	1.79	0.15
	Within Groups	319.98	715	0.45		
	Total	322.38	718			
PS	Between Groups	3.97	3	1.32	1.32	0.27
	Within Groups	718.42	715	1.00		
	Total	722.40	718			
SRP	Between Groups	80.34	3	26.78	11.93	0.00*
	Within Groups	1604.82	715	2.24		
	Total	1685.16	718			

SE	Between Groups	0.80	3	0.27	0.89	0.45
	Within Groups	214.81	715	0.30		
	Total	215.62	718			
IN	Between Groups	1.62	3	0.54	0.31	0.82
	Within Groups	1260.22	715	1.76		
	Total	1261.84	718			
PPS	Between Groups	2.35	3	0.78	0.87	0.46
	Within Groups	644.46	715	0.90		
	Total	646.81	718			
PAR	Between Groups	10.55	3	3.52	2.41	0.07
	Within Groups	1043.84	715	1.46		
	Total	1054.40	718			
WE	Between Groups	8.43	3	2.81	3.73	0.01*
	Within Groups	538.12	715	0.75		
	Total	546.55	718			

*The mean difference is significant at the 0.05 level.

MC: Management Commitment, CO: Communication, PS: Priority of safety, SRP: Safety Rules and Procedures, SE: Supportive Environment, IN: Involvement, PPS: Personal Priorities and Need for safety, PAR: Personal Appreciation of Risk, WE: Work Environment, M: Mean, SD: Standard Deviation

Post-hoc Tukey Test: Multiple Comparisons

CO	Management (A)	Operational staff (B)	Supervisor (C)	Sub-contractor (D)
Management (A)	-	0.27	0.36	0.04*
Operational staff (B)	0.27	-	0.99	0.07
Supervisor (C)	0.36	0.99	-	0.13
Sub-contractor (D)	0.04*	0.07	0.13	-

*The mean difference is significant at the 0.05 level.

SRP	Management (A)	Operational staff (B)	Supervisor (C)	Sub-contractor (D)
Management (A)	-	0.38	0.99	0.01*
Operational staff (B)	0.38	-	0.01*	0.00*
Supervisor (C)	0.99	0.01*	-	0.00*
Sub-contractor (D)	0.01*	0.00*	0.00*	-

*The mean difference is significant at the 0.05 level.

WE	Management (A)	Operational staff (B)	Supervisor (C)	Sub-contractor (D)
Management (A)	-	0.79	0.97	0.23
Operational staff (B)	0.79	-	0.66	0.04*
Supervisor (C)	0.97	0.66	-	0.01*
Sub-contractor (D)	0.23	0.04*	0.01*	-

*The mean difference is significant at the 0.05 level.

Table 6: The relationship between safety climate factors and age groups

Dimensions	Source of Variation	SS	df	MS	F	p-value
MC	Between Groups	2.39	4	0.60	1.27	0.28
	Within Groups	336.03	714	0.47		
	Total	338.43	718			
CO	Between Groups	2.13	4	0.53	1.18	0.32
	Within Groups	320.26	714	0.45		
	Total	322.38	718			
PS	Between Groups	2.26	4	0.57	0.56	0.69
	Within Groups	720.14	714	1.01		
	Total	722.40	718			
SRP	Between Groups	53.94	4	13.49	5.90	0.00*
	Within Groups	1631.22	714	2.28		

		Total	1685.16	718			
SE	Between Groups	2.89	4	0.72	2.43	0.05	
	Within Groups	212.72	714	0.30			
	Total	215.62	718				
IN	Between Groups	9.29	4	2.32	1.32	0.26	
	Within Groups	1252.55	714	1.75			
	Total	1261.84	718				
PPS	Between Groups	5.42	4	1.35	1.51	0.20	
	Within Groups	641.39	714	0.90			
	Total	646.81	718				
PAR	Between Groups	14.42	4	3.60	2.47	0.04*	
	Within Groups	1039.98	714	1.46			
	Total	1054.40	718				
WE	Between Groups	4.16	4	1.04	1.37	0.24	
	Within Groups	542.39	714	0.76			
	Total	546.55	718				

*The mean difference is significant at the 0.05 level.

MC: Management Commitment, CO: Communication, PS: Priority of safety, SRP: Safety Rules and Procedures, SE: Supportive Environment, IN: Involvement, PPS: Personal Priorities and Need for safety, PAR: Personal Appreciation of Risk, WE: Work Environment, M: Mean, SD: Standard Deviation

Post-hoc Turkey Test: Multiple Comparisons

SRP	18 – 25 Year-old (A)	26 – 35 Year-old (B)	36 – 45 Year-old (C)	46 – 55 Year-old (D)	>55 Year-old (E)
18 – 25-year-old (A)	-	0.99	0.19	0.02*	0.58
26 – 35-Year-old (B)	0.99	-	0.01*	0.00*	0.65
36 – 45-Year-old (C)	0.19	0.01*	-	0.48	0.97
46 – 55-Year-old (D)	0.02*	0.00*	0.48	-	1.00
>55-Year-old (E)	0.58	0.65	0.97	1.00	-

*The mean difference is significant at the 0.05 level.

PAR	18 – 25 Year-old (A)	26 – 35 Year-old (B)	36 – 45 Year-old (C)	46 – 55 Year-old (D)	>55 Year-old (E)
18 – 25-year-old (A)	-	0.53	0.92	0.99	0.85
26 – 35-Year-old (B)	0.53	-	0.71	0.12	0.42
36 – 45-Year-old (C)	0.92	0.71	-	0.56	0.60
46 – 55-Year-old (D)	0.99	0.12	0.55	-	0.92
>55-Year-old (E)	0.85	0.42	0.60	0.92	-

* The mean difference is significant at the 0.05 level.

Table 7: The relationship between safety climate factors and locations

Dimensions	Source of Variation	SS	df	MS	F	p-value
MC	Between Groups	2.288	2	1.144	2.436	0.088
	Within Groups	336.138	716	0.469		
	Total	338.426	718			
CO	Between Groups	4.884	2	2.442	5.508	0.004*
	Within Groups	317.497	716	0.443		
	Total	322.382	718			
PS	Between Groups	10.067	2	5.033	5.059	0.007*
	Within Groups	712.331	716	0.995		
	Total	722.397	718			
SRP	Between Groups	31.586	2	15.793	6.838	0.001*
	Within Groups	1653.574	716	2.309		
	Total	1685.160	718			
SE	Between Groups	2.625	2	1.313	4.412	0.012*
	Within Groups	212.990	716	0.297		
	Total	215.616	718			
IN	Between Groups	20.419	2	10.209	5.888	0.003*
	Within Groups	1241.423	716	1.734		
	Total	1261.842	718			
PPS	Between Groups	3.448	2	1.724	1.919	0.148
	Within Groups	643.362	716	0.899		
	Total	646.810	718			
PAR	Between Groups	1.745	2	0.872	0.593	0.553
	Within Groups	1052.652	716	1.470		
	Total	1054.397	718			

WE	<i>Between Groups</i>	23.216	2	11.608	15.881	0.000*
	<i>Within Groups</i>	523.332	716	0.731		
	<i>Total</i>	546.547	718			

*The mean difference is significant at the 0.05 level.

MC: Management Commitment, CO: Communication, PS: Priority of safety, SRP: Safety Rules and Procedures, SE: Supportive Environment, IN: Involvement, PPS: Personal Priorities and Need for safety, PAR: Personal Appreciation of Risk, WE: Work Environment, M: Mean, SD: Standard Deviation

Post-hoc Tukey Test: Multiple Comparisons

CO	Plant A	Plant B	Plant C
Plant A	-	0.98	0.02*
Plant B	0.98	-	0.01*
Plant C	0.02*	0.01*	-
PS	Plant A	Plant B	Plant C
Plant A		0.01*	0.66
Plant B	0.01*		0.05
Plant C	0.66	0.05	
SRP	Plant A	Plant B	Plant C
Plant A		0.54	0.00*
Plant B	0.54		0.04*
Plant C	0.00*	0.04*	
SE	Plant A	Plant B	Plant C
Plant A		0.80	0.01*
Plant B	0.80		0.08
Plant C	0.01*	0.08	
IN	Plant A	Plant B	Plant C
Plant A		0.34	0.13
Plant B	0.34		0.00*
Plant C	0.13	0.00*	
WE	Plant A	Plant B	Plant C
Plant A		0.69	0.00*
Plant B	0.69		0.00*
Plant C	0.00*	0.00*	

*The mean difference is significant at the 0.05 level.

Discussion

The shape of the safety climate dimensions was similar in Plant A and B, while Plant C showed the enlarged shape of the low scores. The highest score in three plant is same item that is personal priority and need for safety. So employees of three plant had need for safety is high intention. The lowest score in three plant is same item too, that is personal appreciation of risk. The result of each item in three plant had similar ranking score (Highest – lowest score) in plant A and B but Plant C had different ranking since forth. Plant C is in the industrial estate area which is close to the authority, whilst plant A and B are located on their land outside of the industrial estate authority control. Additionally, the factories located in the industrial estate which highly competitive in the labor market. Thus, those factories need to make themselves more attractive to be the most preferred employer in that area.

The highest score was personal priorities and need for safety, which corresponds to the organization's culture and workers' perception of safety as fundamental for human needs same as the second and third highest, the priority of safety and the management commitment¹⁰.

The personal appreciation of the risk dimension was the lowest in all three plants. This implies the group climate¹¹ characteristic which is the strongest norm regardless of geographical difference. The strength of the worker's attitude confirms the management's commitment to the well-established safety culture. Thus, the local arrangement seems to reflect the score of this dimension which is a tangible output of an organization's safety culture. Although the workers perceived the importance of their own safety, deep in their minds, they would be willing to take risks in some circumstances. Each of these factors that affect their mindset does not act on its own, but they act within the context of the other.

95.8% of the respondents in this study were male, indicating that females were underutilized in the automotive industry as same as reported by ILO³. This result implied that there were barriers for women to participate in this industry due to manpower supply for this industry mainly graduated from the technical high school which male students vastly outnumber females¹² and males take more risks under pressure than females when they need to make decisions.

The relationship between safety climate score and positions

Table 5. Within the four groups of difference position, manager, supervisor, operator, and sub-contractor, there was difference among means of the following dimensions:

Management Commitment (MC)

There was no shared vision of management commitment between the managers and subcontractors ($p=0.04$). This implied the gaps within the two groups, the ways the subcontract workers interpreted differently compared to the manager^{15,16}. This should be regarded as a room for improvement for senior managers to visibly demonstrate their commitment to the subcontractors by Top down communication to share Mission and Vision of Top management.

Safety Rules and Procedures (SRP)

The result indicates that the subcontractor perceived the safety rules and procedures differently compared to manager ($p=0.01$), Supervisor and operational staff ($p =0.01$), Subcontractor and operational staff ($p=0.00$), Subcontractor and Supervisor ($p=0.00$), there was also a difference, so when deploy safety rules and procedures should to closely and two-way communication in order to have an understanding in the same direction in every position.

Work Environment (WE)

The subcontractor's perception of the work environment^{13,14} was difference between the supervisor ($p=0.01$) and operational staff ($p=0.04$), indicate the ways they live, and work affects their attitudes towards the work environment^{15,16}.

The relationship between safety climate dimensions and age groups

Table 6. within the five groups of different age-groups, 18-25, 26-35, 36-45, and 46-55 year-old, there was difference in the safety rules and procedures (SRP) factor. The result indicates that the age group of 46-55-year-old perceived the safety rules and procedures differently compared to the younger generations, 18-25 ($p=0.02$), 26-35 ($p=0.00$). In addition, there was also a difference between the age group of 36-45 and 26-35 ($p=0.01$). These indicate that the level of compliance with safety rules and procedures was different between younger and older staff. For the element of personal appreciation of risk (PAR), there was a difference

perception within the five groups ($p=0.04$) but there was not significant difference when compare group by group of age.

The relationship between safety climate score and locations

Table 7. within the three groups of different locations, plant A, plant B, and plant C, there was difference in the following safety climate dimensions:

Communication (CO)

The vital roles and consistency of communication were different between Plant C compared with Plant A ($p=0.02$) and B ($p=0.01$) implying that the communication among these three plants on safety issues were differently^{16,17}.

Priority of Safety (PS)

The difference of priority of safety between Plant A compared with Plant B ($p=0.01$) implying that the management just culture of the safety performance interacted and influenced the individual perception¹⁸ in these plants. Thus, affect the individual's priority of safety.

Safety Rules and Procedures (SRP)

The difference of safety rules and procedures between Plant C compared with Plant A ($p=0.00$) and B ($p=0.04$) implies that the level of compliance with safety rules and procedures differently among these three plants were not the same.

Supportive Environment (SE)

The difference of supportive environment between Plant A compared with Plant C ($p=0.01$) implies that the ways the management demonstrated care and concern toward employees in two plants were difference^{19,20,21}.

Involvement (IN)

The difference of involvement between Plant B compared with Plant C ($p=0.00$) implies that the opportunity for safety issue or concern to be raised^{19,20,21} was totally difference. Since, the more involvement in safety activities the more enable all levels to share their concerns and allow all employees to proactively contribute their idea for improvement²².

Work Environment (WE)

The difference of work environment between Plant C compared with Plant A ($p=0.00$) and B ($p=0.00$) implying that the perception of the work environment^{13,14} was totally difference, indicate the ways the employees live and work in these plants affects their attitudes towards the work environment^{15,16}.

Limitation

This cross-sectional study could be involved in the systematic error of the instrumental questionnaire consisting of simple questions, depending on the respondent's judgment to cross on the rating scale, these answers could be contrary to the truth²³.

The group of respondents in the same location may answer the questions together where they may choose the answer as same as their colleagues, for the sake of just completing these questionnaires. This may cause bias errors.

Since there were more males than females on each plant and the sampling was not separated between two genders. Therefore, this study depicted risk appreciation dominantly because most respondents were males and males take more risks under pressure than females²⁴. Additionally, the questionnaire may be distributed to the production departments first, which they mostly occupied by operational staff positions. This may also cause biased errors.

This error could have occurred from the selection of the respondents as well, missing some departments such as administrative staff working in the office or only supervisor-level employees selected to answer the questionnaires.

Conclusion

Three automobile assembly plants in this study owned by Japanese corporate which broadly recognized of Basic Philosophy for safety that builds up its safety culture and resulted in very low injury rate. This study explored the differences factors that embedded in these three plants by using the questionnaires developed by the UK HSE, Safety Climate Measurement User Guide and Toolkit.

Furthermore, this study used descriptive statistics to describe the safety climate score and the characteristics of the respondents. Additionally, inferential statistics were used to

describe the comparison of personal factors, workplace location and find the correlation between safety climate dimensions.

Among the nine dimensions of the safety climate, the highest score was personal priorities and the need for safety. The lowest was a personal appreciation of risks.

It was found that the sub-contract employee has a different perception of commitment, safety rules and procedures, and work environment compared to the operational staff, supervisor, and manager level.

This result showed that the age groups had a significantly different perception of the safety rules and procedures between older and younger generations.

On the contrary, in comparison among three workplace locations, Plant C different from Plant A and B. This result would enlighten the corporate headquarters to investigate local cultural circumstances that can be adapted to Plant A and B²².

For safety management point of view, this study fulfills the need for a proactive or leading indicator where the corporate cannot rely only on the lacking indicators such as safety audit reports and injury rates. This study can be applied to other corporates to perform multiple plants assessment to measure their safety climate periodically.

Limitation of the study

Most of the participants in this study were operational employees in an automobile production line. Only a few managements were involved in this study due to unavailability and the hierarchy of classes in the management structure.

Since very few managers were involved in the study, most of the contribution drew by shopfloor level workers.

Recommendation for the further study

The questionnaires should be distributed to the management level and shop floor level in each automobile assembly plant equally to see the difference between the two. The socio-ecological community-based participatory research should be conducted in plant C to find the

influencing factors that support safety culture and shape the safety climate in this plant. The results could be used for developing proper interventions that create reciprocal nature of influences that produce a preferred safety climate in other plants²³.

Ethical Approval Statement

The study has been reviewed and approved by the ethical committee for the human research faculty of public health Mahidol University, COA. No. MUPH 2016-129

Author Contributions

SN and DY designed the study and formulated the content of the safety culture questionnaire. DS provided guidance for statistical analysis. SN conducted the study under the supervision of DY. SN conducted reliability testing and the initial statistical analysis of data by following a piece of advice from DS and VB. DY re-analyzed the data and wrote the manuscript and the abstract. All authors read and approved the manuscript prior to submission for publication.

Acknowledgements

This study was successfully accomplished because of the support from the management of the Automobile Assembly plants including Mr. Mana Chukhanthong, Mr. Watsachai Sittibutsaya, and Mr. Adisak Hirunrattanakorn. Sincerely thanks to all of them.

Source of Funding

The authors did not receive funding to carry out the work presented in this article.

Conflicts of Interest

The authors did not have any conflicts of interest.

References

1. Thailand Board of Investment. Thailand's Automotive Industry, The Next-generation. BOI Brochure, 2017. Available from: https://www.boi.go.th/index.php?page=business_opportunities_detail&topic_id=117517, accessed 10 July, 2021.

2. International Organization of Motor Vehicle Manufacturers (OICA). Production statistics. OICA statistics 2021, 2022. Available from: <https://www.oica.net/category/production-statistics/2021-statistics/>, accessed 20 May, 2022.
3. International Labor Organization. The future of work in the automotive industry: The need to invest in people's capabilities and decent and sustainable work. 2021. Available from: https://www.ilo.org/sector/Resources/publications/WCMS_741659/lang--en/index.htm, accessed 9 June, 2022.
4. Social Security Office, Ministry of labor. Worker's compensation fund annual report 2020. 2022. Available from:
https://www.sso.go.th/wpr/main/privilege/%E0%B8%A3%E0%B8%B2%E0%B8%A2%E0%B8%87%E0%B8%B2%E0%B8%99_sub_category_list-label_1_130_717, accessed August, 2021. (In Thai).
5. Health and Safety Executive. Health and safety in automotive repair and associated industries. 2009. Available from: <https://www.hse.gov.uk/pubns/priced/hsg261.pdf>, accessed 10 June, 2019.
6. Reuters (Tokyo). Explosion hits Honda's plant in central Japan, 2 workers hospitalized. Available from: <https://www.reuters.com/article/us-honda-blast-idUSKBN23L07Q> , accessed 5 May, 2022.
7. Daniel WW. Biostatistics: Basic concepts and methodology for the health. 2010. Available from: <https://vdoc.pub/documents/biostatistics-a-methodology-for-the-health-sciences-747j10iugoe0>, accessed 10 February, 2019.
8. Health and Safety Executive (HSE). Safety climate measurement user guide and toolkit. Available from: http://plataforma.respondable.net/sites/default/files/safety-climate-assessment-toolkit_1.pdf, accessed 10 May, 2021.
9. Gao Y, Bruce PJ, Rajendran N. Safety Climate of a commercial airline: A cross-sectional comparison of four occupational groups. *Journal of Air Transport Management* 2015; 47: 162-71. Available from: <https://doi.org/10.1016/j.jairtraman.2015.05.010>, accessed 10 February, 2019.
10. Cox S, Cheyne A. Assessing safety culture in offshore environments. *Saf Sci*. 2000; 34(1-3): 111- 29. DOI: 10.1016/S0925-7535(00)00009-6
11. O' Toole M. Relationship between employee's perception of safety and organization culture. *Safety Research*. 2002; 33(2): 231-43. DOI: 10.1016/S0022-4375(02)00014-2

12. Christopoulou A, Kouenenou K. General and technical high school: Demographic characteristics of student who choose either type of school. *Procedia Soc Behav Sci.* 2001; 30: 2235-40. DOI: 10.1016/j.sbspro.2011.10.436
13. Neal A, Griffin M. Safety climate and safety behavior. *Australian Journal of Management* 2002; 27: 67-5. DOI: 10.1177/031289620202701S08
14. Reiman T, Rollenhagen C. Does the concept of safety culture help or hinder systems thinking in safety?. *Accid Ana Prev.* 2014 Jul; 68: 5-15. DOI: 10.1016/j.aap.2013.10.033
15. Christian M, Bradley-Geist J, Wallace C, Burk M. Workplace safety: A meta-analysis of the roles of person and situation factor. *Journal of Applied Phycology.* 2009; 94(5): 1103-27. DOI: 10.1037/a0016172
16. Kouabenan D, Ngueutsa R, Mbaye S. Safety climate, perceived risk, and involvement in safety management. *Saf Sci.* 2015; 77: 72-9. DOI: 10.1016/j.ssci.2015.03.009
17. Guldenmund F. The Nature of safety culture: A review of theory and research. *Saf Sci.* 2000; 34(1): 215-57. DOI: 10.1016/S0925-7535(00)00014-X
18. Australia's offshore energy regulator – National offshore safety and environmental authority. Human factors – safety culture. 2020. Available from: <https://www.nopsema.gov.au/sites/default/files/documents/2021-03/A396120.pdf>, accessed 2 February, 2022.
19. UK Health and Safety Executive – Research Report 367. A Review of safety culture and safety climate literature for the development of the safety culture inspection toolkit. 2005. Available from: <https://www.hse.gov.uk/research/rrpdf/rr367.pdf>, accessed 13 June, 2019.
20. Smith A, Wadsworth E. Safety culture, advice, and performance. *IOSH Research Report* 09.1. 2009. Available from: <https://iosh.com/media/1547/safety-culture-advice-and-performance-full-research-report.pdf>, accessed 2 June, 2021.
21. Grecco C, Vidal M, Cosenza C, Santos I, Carvalho P. Safety culture assessment: A fuzzy model for improving safety performance in a radioactive installation. *progress in nuclear energy* 2014; 70: 71-83. DOI: 10.1016/j.pnucene.2013.08.001
22. Riekert K, Ockene J, Pbert L. The handbook of health behavior change. Fourth Edition. 2014. Springer Publishing Company, New York.
23. Filho A, Waterson P. Maturity models and safety culture: A critical review. *Saf Sci* 2018; 105: 192-211. DOI: 0.1016/j.ssci.2018.02.017

24. Mather M, Lighthall N. Both risk and reward are processed differently in decisions made under stress. *Curr Dir Psychol Sci.* 2012 Feb; 21(2): 36-41. DOI: 10.1177/0963721411429452