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Objectives: The alveolar antral artery (AAA) supplies the posterior maxillary region. Detecting this artery using 
radiographs is essential before oral and maxillofacial surgeries to prevent bleeding complications. However, 
manual radiograph interpretation is time-consuming and requires expert experience. This study aims to develop 
and evaluate a ResNet-18 deep learning model that applies varying thresholds for multi-label classification of 
the AAA canal positions categorized as intraosseous, superficial, or intrasinus in coronal cone-beam computed 
tomography (CBCT) images.
Materials and Methods: Coronal CBCT images of 60 patients were selected and categorized into training data 
and testing data. Annotation of the AAA canal positions was done by experts via the Computer Vision Annotation 
Tool. Image transformation and augmentation techniques were applied to optimize a model training. A ResNet-18 
model was trained with five-fold cross-validation. The best-performing model for each fold was determined 
based on the F1- score of the validation and tested on the test set.
Results: The model achieved a micro F1-score of 0.8206 when applying class-specific thresholds of 0.411, 
0.452, and 0.515 for the superficial, intrasinus, and intraosseous positions, respectively. A single threshold of 
0.452 and 0.500 marginally decreased the micro F1-scores to 0.8193 and 0.8157, respectively. The class-specific 
thresholds strategy yielded the highest per-class F1-scores, with values of 0.8153 for intraosseous, 0.6470 for 
intrasinus, and 0.0164 for the superficial class. 
Conclusions: The implementation of deep learning for the AAA canal classification aids dentists and oral surgeons 
in preoperative planning, minimizing iatrogenic injury of the artery during surgery. Additionally, knowing the 
artery’s position beforehand enhances perioperative and postoperative management, allowing for better handling 
of complications in the event of vascular injury, potentially improving surgical outcomes and reducing procedural 
complications, benefiting both clinicians and patients.
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Introduction 

	 Dental implant placement is an oral surgical 
procedure utilized to replace the edentulous 
region. A significant challenge in dental implant 
placement in the posterior maxilla is insufficient 
alveolar bone height, often presenting as an atrophic 
condition [1]. Currently, the sinus lift procedure is 
among the most commonly employed surgical 
interventions to address this issue. The fundamental 
approach involves creating an osteotomy to 
establish a window in the lateral wall of the maxillary 
sinus. The sinus membrane is then elevated to 
create a space beneath it, which is subsequently 
filled with grafting materials. This technique ensures 
the augmentation of bone height, facilitating the 
placement of osseointegrated implants [2].
	 The alveolar antral artery (AAA) is a significant 
vascular structure that courses through the 
anterolateral wall of the maxillary sinus, providing 
essential blood supply to the lateral wall of the 
maxil lary sinus, Schneiderian membrane, 
periosteal tissues, and posterior maxillary teeth 
[3]. It is formed by anastomosis between the 
posterior superior alveolar artery (PSAA) and the 
infraorbital artery (IOA) [4]. The AAA canal is 
anatomically located in three mediolateral 
positions, including intraosseous (within the  
lateral sinus wall), intrasinus (beneath the sinus 
membrane), and superficial (under the periosteum). 
Among these, the intrasinus and intraosseous 
positions are the most prevalent [5, 6].
	 Iatrogenic injury to the AAA canal during 
sinus lift procedures can result in significant 
intraoperative and postoperative bleeding and 
subsequent complications. The study of Zijderveld 
et al [7] in 2008 reported that 2% of the cases 
experienced intraoperative bleeding from this 
artery during sinus lift. The presence of bleeding 
impaired visualization and made the surgical 
procedure more challenging. Another case report 

also found that bleeding can persist in the 
immediate postoperative period or be delayed for 
up to seven hours after surgery representing 
ongoing bleeding and progressive swelling a few 
hours after a transcrestal sinus lift, presumably 
from a lacerated of the AAA canal by an osteotomy 
path close to the lateral sinus wall [8]. While 
hemorrhage from this vessel rarely presents life-
threatening scenarios, it introduces critical surgical 
challenges, including impaired field visualization, 
extended operative time, loss of graft materials, 
and sinus membrane perforation, potentially leading 
to hemosinus and sinus dysfunction [9, 10].
	 Since each positional variation of the AAA 
canal significantly influences surgical planning 
and requires different technique selection, precise 
preoperative classification and evaluation of the 
artery canal positions enable surgeons to tailor 
their interventions, ensuring optimal procedural 
outcomes while minimizing the risk of vascular 
injury and associated adverse events [11]. For 
instance, if the artery is located superficially, 
surgeons can carefully detach the vessel from the 
bone and reflect with the buccal flap without 
damaging it. However, if it is intraosseous, the 
recommendation is to avoid its course by modifying 
the size and position of the osteotomy such as  
a double-window technique. In cases where the 
artery is intrasinus, the surgeons can either carefully 
detach and reflect the artery along with the sinus 
membrane or change the area of the approach. 
Also, piezoelectric devices may be utilized to 
create a bony window without compromising the 
membrane or vessel, allowing the artery to move 
upward with the sinus membrane [2, 9].
	 Among various imaging modalities, CBCT is 
considered the current method for the AAA canal 
detection, with identification rates of 60.3% to 
94.6% [5, 12, 13], significantly higher than 
conventional computed tomography (CCT)  
42-60%, and panoramic radiographs 1% [14]. 
While the detection of the AAA canal varies  
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across imaging techniques, cadaveric studies 
consistently reported the presence of the AAA  
in all investigations [3, 15, 16]. However, CBCT 
interpretation has limitations, including time-
consuming, requiring experience, resolution 
constraints, and the possibility of false negatives 
due to small vessel diameter or anatomical 
variations [10].
	 Recent advancements in artificial intelligence 
(AI), particularly deep learning (DL), have 
significantly enhanced medical image processing 
by addressing limitations of traditional diagnostic 
approaches. Convolutional neural networks (CNNs),  
a subset of DL, are particularly effective in tasks 
such as image classification, object detection, and 
segmentation due to their ability to automatically 
extract and learn relevant features from pixel-level 
data [17, 18]. In this study, which focuses on  
multi-label classification of the anatomical position 
of the AAA canal from CBCT images, the ResNet-18 
model was selected. The ResNet-18 offers an optimal 
balance between performance and efficiency, 
making it well-suited for small and imbalanced 
medical datasets [19]. Originally proposed by He 
et al [20] in 2015, ResNet employs residual 
connections to facilitate gradient flow, addressing 
vanishing gradient issues and enabling stable 
training of deeper networks. Compared to deeper 
variants such as ResNet-50, DenseNet, or 
Inception-v4, the ResNet-18 achieves competitive 
performance while requiring fewer computational 
resources and outperforms deeper models in 
classifying lung images of COVID-19 patients from 
computed tomography (CT) scans [21]. This makes 
it particularly advantageous for clinical environments 
where resources may be limited and highlights its 
robustness on small or noisy datasets. Although 
newer architectures such as DenseNet or 
EfficientNet can achieve high accuracy, they 
typically require significantly more computing 
resources and longer training times [21, 22].  
In direct comparisons within medical imaging, 

ResNet-18 has consistently shown strong 
performance while being simpler to train and more 
practical for clinical use [23], making it particularly 
suitable for this study.
	 In dental imaging, CNNs have demonstrated 
utility in detecting key anatomical structures, 
including the maxillary sinus, tongue, and mandibular 
canals, thereby supporting improved diagnosis 
and treatment planning [24-27]. With regard to the 
AAA canal, numerous studies have extensively 
documented its anatomical characteristics, such 
as prevalence, diameter, position, and location 
using conventional methods [5, 12, 28, 29]. 
Existing studies primarily apply a deep learning to 
focus on identifying the location of the AAA canal 
in individual CBCT slices [30]. However, manual 
inspection is still required to further classify it into 
superficial, intraosseous, or intrasinus categories. 
Additionally, the performance of these techniques 
remains uncertain in cases where the AAA is 
absent or when multiple AAAs appear within  
a single slice. To overcome these limitations, this 
study proposes an automated classification model 
using ResNet-18 with a threshold-based approach 
to classify the AAA canal positional variants in 
coronal CBCT images. The proposed approach 
effectively handles cases where the AAA is absent 
or multiple AAAs appear within a single slice, 
reducing the need for manual inspection by 
automating the classification process.

Materials and Methods

Ethical Criteria 
	 This retrospective study utilized existing 
radiographic data for classification purposes and 
was conducted collaboratively between the 
Department of Oral and Maxillofacial Radiology 
and Oral and Maxillofacial Surgery Clinic, Faculty 
of Dentistry, Mahidol University, Bangkok, and the 
Faculty of Information and Communication Technology, 
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Mahidol University, Nakhon Pathom, Thailand.  
The study protocol was in accordance with the 
ethical standards of the responsible committee on 
human experimentation (COA.No.MU-DT/PY-IRB 
2024/004.1501) with the Declaration of Helsinki.  
A formal data-sharing agreement was established 
between the participating faculties. No additional 
imaging was performed specifically for this 
research. No experimental procedures were 
conducted on human subjects or tissues. All patient 
data were anonymized prior to analysis to ensure 
confidentiality and protection of patient privacy. 

	 The overall workflow of this research is 
shown in Figure 1. Coronal CBCT images were 
retrospectively analyzed and annotated by  
expert clinicians to categorize multiple AAA  
canal positions. The annotated dataset was 
randomly divided into training and testing set.  
A ResNet-18 deep learning model was developed 
using five-fold cross-validation. Finally, model 
performance was assessed on the testing set 
using threshold-based classification, with the  
F1-score as the primary evaluation metric.

Figure 1	 The overall workflow of this research in three main steps: (a) collection of coronal view of 
cone-beam computed tomography (CBCT) images. (b) expert annotators labeled AAA canal 
positions. (c)  model development and evaluation.
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Patient Selection and Data Collection
	 Coronal CBCT images from 60 patients (28 
males, 32 females, with an age range of 19-68 
years) who visited the Faculty of Dentistry, Mahidol 
University, between 2019 and 2020 for clinical 
purposes were retrospectively col lected. 
Approximately 480 consecutive coronal slices of 
the maxillary region were extracted for each 
patient, resulting in a total dataset of 28,800 
images. These consecutive slices ensured 
comprehensive anatomical coverage of the 
posterior maxilla, where the AAA canal typically 
courses. Image acquisition was performed using a 
3D Accuitomo 170 Cone Beam Computed 
tomography machine (J. Morita CORP., Osaka, 
Japan) with the field of view (FOV) of 6 cm x 6 cm 
and voxel size of 125 µm. The inclusion criteria 
consisted of coronal CBCT images of patients 
aged over 18 years, acquired from the maxillary 
region, with adequate sharpness and diagnostic 
quality, regardless of the AAA visibility. Exclusion 
criteria included coronal CBCT images from 
patients with a history of jaw fracture, jaw surgery 
in the maxilla, craniofacial deformity, pathological 
conditions or diseases affecting the maxillary 
bone, insufficient image quality, such as blurred 
images, or excessive metal-induced or movement 
artifacts.

	 All coronal CBCT images were viewed on an 
Eizo RX 430 medical-grade monitor (Eizo Nanao 
Corp., Japan) with a resolution of 2560 x 1600 
pixels using i-dixel software (J. Morita CORP., 
Osaka, Japan). Eligible datasets were anonymized 
and exported in Digital Imaging Communications 
in Medicine (DICOM) format via PLANMECA 
Romexis. These were subsequently converted to 
Joint Photographic Experts Group (JPEG) format 
using Fiji ImageJ software for further processing 
and analysis.

Ground-Truth Labeling
	 The dataset includes variations in which the 
AAA canal is either present or absent. When 
present, it is classified into one of three positional 
categories including intraosseous, intrasinus, or 
superficial, as illustrated in Figure 2. The dataset 
was uploaded to Computer Vision Annotation Tool 
(CVAT), an online platform for annotating visual 
data. Consensus-based interobserver agreement 
was performed in the study. The ground truth of 
the AAA canal positions was independently 
annotated by a postgraduate student, majoring in 
Oral and Maxillofacial surgery and by the 27 years’ 
experience Oral and Maxillofacial radiologist.  
Any disagreements were resolved through 
discussion until a consensus was reached.

Figure 2	 The classification of alveolar antral artery (AAA) positions in cone-beam computed 
tomography (CBCT) images. (a) intraosseous, (b) intrasinus, (c) superficial, and (d) absent of 
the artery. 
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Data Preprocessing and Characteristic
	 The data preprocessing process involved 
standardized image transformat ions and 
augmentation techniques to improve model 
training. Initially, all input images were resized to 
224 × 224 pixels as per the model’s requirements 
and converted to grayscale for consistency.  
Data augmentation techniques were applied, 
including horizontal flipping, minor rotational 
adjustments (1°), brightness and contrast 
modif ications, and posit ional shifts using  
Affine Transform. These methods ensured  
an expanded dataset while maintaining the 
clinically significant features of AAA canal 
positions.

Model Training, Validation, and Testing
	 The total dataset consists of coronal CBCT 
scans from 60 patients were divided at the  
subject level into a training set (40 patients) and  
a test set (20 patients), ensuring that no images 
from the same patient appeared in both the 

training and test sets. Within the training set,  
the dataset was further split into five-fold  
cross-validation for a model training. The distribution 
of samples per class is presented in Table 1 
including int raosseous (3,885 samples),  
superficial (301 samples), and intrasinus (3,079 
samples). During cross-validation, the dataset 
was partitioned into five subsets, where in  
each fold, a different subset was used for  
validation while the remaining four subsets were 
used for training. A ResNet-18 model was 
employed as the base architecture for multi-label 
classification of the AAA canal positions. Formally, 
let there be m training examples:
	 {(X(1), Y(1)),...,(X(i), Y(i)),...,(X(m), Y(m))}, where 
each X(i)∈ 224×224 represents a single 224×224 
CBCT image slice, and Y(i) = [Y1 , Y2 , Y3  ](i) (i) (i)  is a 
vector of ground truth labels. Each Yj

(i) ∈{0,1} 
indicates the presence (1) or the absence (0) of 
the AAA position, where j = 1, 2, 3  corresponds to 
intraosseous, superficial, and intrasinus positions, 
respectively.

Table 1	 Distribution of training data across five-folds

Class
Fold

Intraosseous Superficial Intrasinus Neither

1 1,200 152 1334 0

2 973 54 857 0

3 604 42 323 0

4 488 22 266 0

5 620 31 299 1

Total 3,885 301 3,079 1
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	 The model predicts the probability of the 
AAA positions being present, producing an output 
vec to r :  Ŷ(i) = [Ŷ1 , Ŷ2 , Ŷ3  ](i) (i) (i) ,  where  Ŷ j

( i )  ∈ [0 ,1] 
represents the predicted confidence score for the 
presence of the AAA position in class j. If Ŷj

(i) 
exceeds a predefined threshold thdj (i.e., Ŷj

(i)  ≥ thdj 
), the model predicts that there is AAA position in 
class j. Our model was trained over 100 epochs. 
The binary cross-entropy with class weights were 
utilized as the loss function to address class 
imbalance. The optimization was employed using 
the Adam optimizer with a ReduceLROnPlateau 
learning rate scheduler. The best-performing 
model for each fold was determined based on the 
validation F1- score and subsequently saved for 
further evaluation. After training, each model was 
evaluated based on its performance on the 
validation set, and the model with the highest 
validation F1-score was selected for testing with 
the test set. During testing, different thresholding 
strategies were applied to improve multi-label 
classification performance. Initially, a single 
default threshold of 0.500 was used for all classes, 
but it was later uniformly lowered to 0.452 to 
address class imbalance and improve sensitivity 
for underrepresented classes. Additionally, a 
class-specif ic thresholding strategy was 
implemented to refine predictions based on the 
unique distribution of prediction scores for each 
class, setting thresholds at 0.515 for intraosseous, 
0.411 for superficial, and 0.452 for intrasinus. 
Unlike a single-threshold approach, class-specific 
thresholds allow independent calibration for each 
class, accounting for differences in class 
prevalence and prediction score distributions. 
This method better addresses class imbalance by 
optimizing the trade-off between precision and 
recall for each class individually, thereby 
enhancing overall model performance.

Performance Evaluation
	 The model's performance was evaluated 
using the F1-score metric. The F1-score, calculated 
as the harmonic mean of precision and recall, was 
implemented at two levels of analysis.

	
Precision = TP

TP+FP

	  
Recall = TP

TP+FN

	
	 The per-class F1-Score evaluates the 
performance of a model for each class representing 
intraosseous, superficial, and intrasinus by 
balancing precision and recall for that class.

	
Per-class F1-Score = 2 x (Precision × Recall)

Precision+Recall

	 The micro F1-Score evaluates the overall 
performance of the model by summing up true 
positives (TP), false positives (FP), and false 
negatives (FN) across all positions. True Positive 
(TP) represents instances where the model's 
classification aligned with expert assessment, 
while False Negative (FN) indicates cases where 
the model failed to detect an existing AAA canal 
feature category. False Positive (FP) denotes 
instances where the model incorrectly classified 
features as belonging to a particular category.

	
Micro F1-Score = 2 × Sum of TP

2 × Sum of TP+Sum of FP+Sum of FN

Results

	 The per formance of  the ResNet-18  
model using different threshold strategies was 
evaluated using per-class F1-scores and the 
overall micro-average F1-score. The per-class  
F1-scores reflect the model's performance for 
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each artery position when its respective threshold 
is applied, while the overall micro-average  
F1-score represents the combined classification 
performance across all artery positions. Using  
the default threshold of 0.500, the per-class  
F1-scores were 0.8046 for the intraosseous 
position, 0.0000 for the superficial position,  
and 0.6323 for the intrasinus position, with  
an overall micro-average F1-score of 0.8157. 
When lowering the uniform threshold to 0.452, the 
F1-score slightly decreased for the intraosseous 
position to 0.8002 and increased for the intrasinus 
position to 0.6488, while the superficial position 
remained unclassified at 0.0000. The overall 
micro-average F1-score slightly increased to 
0.8193. Class-specific thresholds were then 
applied concurrently, using 0.515 for the 
intraosseous position, 0.411 for the superficial 
position, and 0.452 for the intrasinus position.  
This approach improved the per-class F1-scores 
to 0.8153 for intraosseous, 0.0164 for superficial, 
and 0.6470 for intrasinus. As a result, the overall 

micro-average F1-score reached its highest  
value of 0.8206, indicating that the class- 
specific thresholding strategy achieved the  
best classification performance, as shown in  
Table 2.

Discussion 

	 The integration of deep learning into medical 
imaging has become increasingly important, as 
accurate analysis of anatomical structures plays a 
key role in diagnosis, treatment planning, and 
preventing complications [31, 32]. This study 
marks a significant advancement as the first to 
utilize a deep learning model for classifying the 
presence and positional variants of the AAA canal 
in coronal CBCT images, achieving a high micro 
F1-score. These results highlight the potential of 
deep learning for accurately identifying small 
vascular structures, which could improve clinical 
decision-making and diagnostic efficiency.

Table 2	 The results of the ResNet-18 model performance across different threshold strategies showing 
per-class F1-scores for each position (I= Intraosseous, S= superficial, and N= Intrasinus) and 
the overall micro F1-score.

Threshold
F1-score

Per-class Overall 
micro-averageI S N

0.500 0.8046 0.0000 0.6323 0.8157

0.452 0.8002 0.0000 0.6488 0.8193

0.452
0.411
0.515

0.8153 0.0164 0.6470 0.8206
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	 Park et al. [30] developed a deep learning 
model to precisely locate the posterior superior 
alveolar artery (PSAA/AAA) in CBCT images  
using various 3D networks. However, their study 
did not address whether their model could  
detect the absence of the artery, as it primarily 
focused on detecting and localizing its position. 
Cases where the PSAA was undetectable  
due to low image quality or anatomical variations 
were excluded, suggesting that their analysis  
was limited to scenarios where the artery was 
visible rather than determining its presence or 
absence. In contrast, our study introduces  
a critical classification step by including frames 
without the AAA canal to detect artery’s presence 
or absence, which slightly decreased the  
overall micro F1-score to 0.7. This reduction in 
performance can be attributed to the inclusion of 
artery-absent frames, which introduce additional 
noise and hinder the model’s ability to extract 
relevant features. Nonetheless, this comprehensive 
approach offers greater clinical relevance by 
addressing both the detection and precise 
positioning of the AAA, accounting for realistic 
variations encountered in clinical practice. 
Identifying artery absence can reduce bleeding 
risks and simplify sinus lift surgery, whereas  
failing to detect an existing artery may lead to 
unexpected bleeding and surgical complications. 
Additionally, we successfully classified the 
positional variations of the AAA canal, enabling 
cl inicians to select the most appropriate 
preoperative approach and manage unexpected 
intraoperative bleeding more effectively. Figure 3 

i l lustrates a comparison between expert 
annotations and model predictions regarding  
the presence or absence of the artery in different 
anatomical posit ions across CBCT frame  
numbers from two representation patients.  
The AAA canal typically appears within slices 
200–450, confirming this range as corresponding 
to the posterior maxillary region. This information  
is highly valuable for clinicians, allowing them  
to quickly focus on relevant slices, significantly 
reducing manual inspection time. In Figure 3(a), 
representing the first patient, the model prediction 
closely matched expert annotations, accurately 
classifying the intraosseous artery position  
wi th minimal  mismatches,  and correct ly 
recognizing the absence of superficial or  
intrasinus positions. However, in the second 
patient, shown in Figure 3(b), expert annotations 
revealed a more complex pattern involving  
all the artery position appearances. In this 
scenario, the model demonstrates several 
prediction mismatches (highlighted in orange), 
notably missing superf ic ia l  occurrences  
and exhibit ing inaccuracies in identifying 
intraosseous and intrasinus positions. This detailed 
comparison underscores regions requiring  
further clinical verification, helping clinicians 
quickly pinpoint slices that demand closer 
inspection while minimizing unnecessary image 
review. By clearly delineating these critical  
areas, the proposed approach significantly 
reduces manual inspection time, enhances 
diagnostic accuracy, and contributes to safer, 
more precise surgical planning.
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Figure 3	 Comparison between actual (expert-annotated) and predicted (model-classified) of alveolar 
antral artery (AAA) positions across CBCT frames in two patients (a, b). Prediction mismatches 
highlighted in orange.

	 A notable challenge encountered in our 
study was the class imbalance within the dataset, 
particularly affecting the superficial class, which 
had significantly fewer samples compared to  
the other two positions. This finding aligns  
with existing literature, which reports that the 
superficial position is naturally less prevalent  
[5, 33]. The class imbalance likely impacted  
the F1-score, as deep learning models often 
struggle with underrepresented classes [34].  
This problem can be alleviated by using different 
threshold adjustment strategies [35]. First,  
we lowered the default single-threshold to  
increase recall (sensitivity), aiming to capture 

more true positives even at the expense of 
increased false positives for rare classes.  
As a result, the per-class F1-score demonstrated  
a slight improvement in the intrasinus classification, 
however, the model still failed to classify the 
superficial class and exhibited a minor decline in 
the classification of intraosseous position. 
Nonetheless, the overall micro F1-score increased 
slightly compared to the default threshold.  
Second, using the class-specific threshold 
strategy, in which the threshold was lowered 
specifically for the rare superficial class while 
being increased for the more abundant classes. 
This adjustment aimed to recover some false 
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negative cases in the superficial class with a few 
sacrificing for false positives. This strategy 
improved the balance between precision and 
recall, especially for the superficial class, and  
led to a small but crucial improvement in the 
superficial classification, achieving the highest 
score of both per-class and overall micro  
F1-score. While this study focused on improving 
classification performance through threshold 
lowering and implementing class-specif ic 
thresholds, future research could explore  
the impact of using higher threshold values. 
Raising the threshold above 0.500 may increase 
precision by reducing false positives, although 
this would likely lower recall [35]. Investigating  
this trade-off would offer clearer insights into  
the model’s sensitivity and help evaluate the 
stability of the thresholding strategy. Such analysis 
could enhance the model’s reliability and support 
more informed threshold selection for clinical 
applications. Additionally, our study incorporated 
class weighting based on inverse frequency, 
which helped balance the contribution of  
each class in the loss function, further enhancing 
model robustness.
	 Despite the promising results of our study, 
which is the first to classify the AAA canal presence 
in three positions using coronal CBCT images  
and addresses a previously unexplored clinical 
challenge, several important limitations should be 
acknowledged. First, our dataset was limited  
to 60 patients, which may not fully capture the 
variety of anatomical variations present in the 
broader population. Second, analyzing the AAA 
canal from coronal CBCT images could be 
challenged. According to the study of previous 
studies, the average diameter of this artery 
presented in CBCT image is about 1.0-1.5 mm, 
making it inherently more difficult to classify  
[5, 9, 36]. Additionally, as our data was collected 
from a single hospital without external validation, 

the model's generalizability to different patient 
populations and healthcare settings remains 
uncertain. Furthermore, our study relied on  
a single deep learning architecture, which may 
have limited the model's potential performance 
compared to more advanced or ensemble 
approaches.
	 Expanding the dataset and collaborating 
across multiple centers should be prioritized in 
future research to enhance the model’s reliability, 
generalizability, and clinical relevance. Although 
the current classification model effectively 
identifies AAA canal positions, it lacks spatial 
localization capabilities, which are critical for 
guiding surgical planning. Future research should 
explore object detection models such as YOLO 
(You Only Look Once) or Faster R-CNN, which are 
capable of both classifying and localizing 
anatomical structures [24, 37]. Integrating these 
models could significantly improve the clinical 
utility of AI-based detection systems by providing 
comprehensive spatial information, improving 
preoperative planning and reducing surgical risks. 
This study highlights the potential of deep learning 
in automated vascular classification, making the 
AAA canal classification more efficient and 
accurate.

Conclusion

	 In summary, this study provides the first 
deep learning-based classification of the presence  
or absence of the AAA canal positions, making the 
AAA canal classification more efficient and 
accurate. Class-specific thresholds improve 
performance compared to single-threshold 
method. Our findings lead the way for future 
advancements in deep learning applications  
for medical imaging, highlighting the potential  
of deep learning in medical image analysis.  
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These advancements could benefit clinicians in 
diagnosis, treatment planning, and surgery, 
leading to better patient outcomes.

Acknowledgements

	 The authors would like to express their 
sincere gratitude to Mr. Sorawit Piriyapanyaporn, 
Mr. Pathompum Jirakarnpaisan, and Mr. Phusit 
Mongkhonwatcharaphun,  undergraduate  
students from the Faculty of Information and 
Communication Technology, Mahidol University, 
Salaya Campus, Nakorn Pathom, Thailand,  
for their valuable contributions to this research. 
Their efforts in developing the model and assisting 
in data analysis were instrumental in the success 
of this study.

References 

1.	 Larsen PE, Kennedy KS. Managing the posterior 
maxilla with implants using bone grafting to enhance 
implant sites. Oral Maxillofac Surg Clin North Am. 
2019 May;31(2):299-308. doi:10.1016/j.coms.2019. 
01.002.

2.	 Mol ina A,  Sanz-Sánchez I ,  Sanz-Mar t ín  I ,  
Ortiz-Vigón A, Sanz M. Complications in sinus lifting 
procedures: Classification and management. 
Periodontol 2000. 2022 Feb;88(1):103-115. doi:10. 
1111/prd.12414.

3.	 Rosano G, Taschieri S, Gaudy JF, Weinstein T,  
Del Fabbro M. Maxillary sinus vascular anatomy and 
its relation to sinus lift surgery. Clin Oral Implants Res. 
2011 Jul;22(7):711-715. doi:10.1111/j.1600-0501. 
2010.02045.x.

4.	 Danesh-Sani  SA,  Movahed A,  E lChaar ES,  
Chong Chan K, Amintavakoli N. Radiographic 
evaluation of maxillary sinus lateral wall and posterior 
suerior alveolar artery anatomy: A cone-beam 
computed tomographic study Clin Implant Dent  
Relat Res. 2017 Feb;19(1):151-160. doi:10.1111/cid. 
12426.

5.	 Laovoravit V, Kretapirom K, Pornprasertsuk-
Damrongsri S. Prevalence and morphometric analysis 
of the alveolar antral artery in a group of Thai 
population by cone beam computed tomography. 
Oral Radiol. 2021;37(3):452-462. doi:10.1007/
s11282-020-00478-3.

6.	 Fahrettin Kalabalık HA. Evaluation of the alveolar 
antral artery position in the lateral sinus wall  
using cone-beam computed tomography. Ann Clin 
Anal Med 2020;11(4):330-334. doi: 10.4328/ACAM. 
20084

7.	 Zijderveld SA, van den Bergh JP, Schulten EA,  
ten Bruggenkate CM. Anatomical and surgical 
findings and complications in 100 consecutive 
maxillary sinus floor elevation procedures. J Oral 
Maxillofac Surg. 2008 Jul;66(7):1426-1438. doi:10. 
1016/j.joms.2008.01.027

8.	 Jensen SS, Eriksen J, Schiodt M. Severe bleeding 
after sinus floor elevation using the transcrestal 
technique: a case report. Eur J Oral Implantol.  
2012 Autumn;5(3):287-291. 

9.	 Yang DH, Lee NV. A simple method of managing  
the alveolar antral artery during sinus lift surgery.  
Int J Otolaryngol Head Neck Surg. 2021;10:131-146. 
doi: 10.4236/ijohns.2021.103014. 

10.	 Varela-Centelles P, Loira M, González-Mosquera A, 
Romero-Mendez A, Seoane J, García-Pola MJ, et al. 
Study of factors influencing preoperative detection  
of alveolar antral artery by CBCT in sinus floor 
elevation. Sci Rep. 2020 Jul 2;10(1):10820. doi:10. 
1038/s41598-020-67644-9.

11.	 Testori T, Tavelli L, Scaini R, Saibene AM, Felisati G, 
Barootchi S, et al. How to avoid intraoperative and 
postoperative complications in maxillary sinus 
elevation. Periodontol 2000. 2023 Jun;92(1):299-328. 
doi:10.1111/prd.12480.

12.	 Pimkhaokham A, Aung CMS, Panmekiat  S.  
The study of the alveolar antral artery canal in  
using cone beam computed tomography. M Dent J. 
2016;37(1):63-69. 

13.	 Ilgüy D, Ilgüy M, Dolekoglu S, Fisekcioglu E. 
Evaluation of the posterior superior alveolar artery 
and the maxillary sinus with CBCT. Braz Oral Res. 
2013 Sep-Oct;27(5):431-437. doi:10.1590/s1806-
83242013000500007.



AI-based multi-label classification of the AAA canal positions

http://www.dt.mahidol.ac.th/division/th_Academic_Journal_Unit   121

14.	 Ketabi AR, Hassfeld S, Lauer HC, Piwowarczyk A. 
Comparative diagnosis of the alveolar antral  
artery canal in the lateral maxillary sinus wall in 
corresponding panoramic radiography and  
cone-beam computed tomography. Int J Implant 
Dent. 2023 Sep 19;9(1):30. doi:10.1186/s40729-023-
00497-9.

15.	 Kqiku L, Biblekaj R, Weiglein AH, Kqiku X, Städtler P. 
Arterial blood architecture of the maxillary sinus  
in dentate specimens. Croat Med J. 2013 Apr;54(2): 
180-184. doi:10.3325/cmj.2013.54.180.

16.	 Solar P, Geyerhofer U, Traxler H, Windisch A,  
Ulm C, Watzek G. Blood supply to the maxillary sinus 
relevant to sinus floor elevation procedures. Clin Oral 
Implants Res. 1999 Feb;10(1):34-44. doi:10.1034/ 
j.1600-0501.1999.100105.x.

17.	 Ossowska A, Kusiak A, Świetlik D. Artificial Intelligence  
in dentistry-narrative review. Int J Environ Res Public 
Health. 2022 Mar 15;19(6):3449. doi: 10.3390/ijerph 
19063449.

18.	 Anaya-Isaza A, Mera-Jiménez L, Zequera-Diaz M. An 
overview of deep learning in medical imaging. Inform 
Med Unlocked. 2021;26:100723. doi:10.1016/j.
imu.2021.100723.

19.	 Xu W, Fu YL, Zhu D. ResNet and its application to 
medical image processing: Research progress and 
challenges. Comput Methods Programs Biomed. 
2023 Oct;240:107660. doi:10.1016/j.cmpb.2023. 
107660.

20.	 He K, Zhang X, Ren S, Sun J. Deep residual learning 
for image recognition. 2016 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR). 
Las Vegas, NV, USA, 2016, pp.770-778, doi: 10.1109/
CVPR.2016.90.

21.	 Yang Y, Zhang L, Du M, Bo J, Liu H, Ren L, et al. A 
comparative analysis of eleven neural networks 
architectures for small datasets of lung images of 
COVID-19 patients toward improved clinical 
decisions. Comput Biol Med. 2021 Dec;139:104887. 
doi:10.1016/j.compbiomed.2021.104887.

22.	 Huang G, Liu Z, Maaten LVD, Weinberger KQ, 
editors. Densely connected convolutional networks. 
2017 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR). Honolulu, USA, 2017, 
pp.4700-4708. doi.org/10.1109/CVPR.2017.243

23.	 Wu Z, Zhuo R, Liu X, Wu B, Wang J. Enhancing 
surgical decision-making in NEC with ResNet18:  
a deep learning approach to predict the need for 
surgery through x-ray image analysis. Front Pediatr. 
2024 Jun 4;12:1405780. doi:10.3389/fped.2024. 
1405780.

24.	 Jiang T, Lu Z, Hu X, Zeng L, Ma X, Huang J, et al. 
Deep learning multi-label tongue image analysis and 
its application in a population undergoing routine 
medical checkup. Evid Based Complement Alternat 
Med. 2022 Sep 29;2022:3384209. doi:10.1155/2022/ 
3384209.

25.	 Kwak GH, Kwak EJ, Song JM, Park HR, Jung YH, Cho 
BH, et al. Automatic mandibular canal detection 
using a deep convolutional neural network. Sci Rep. 
2020 Mar 31;10(1):5711. doi:10.1038/s41598-020-
62586-8.

26.	 Jaskari J, Sahlsten J, Järnstedt J, Mehtonen H, Karhu K, 
Sundqvist O, et al. Deep learning method for mandibular 
canal segmentation in dental cone beam computed 
tomography volumes. Sci Rep. 2020 3 Apr;10(1):5842. 
doi:10.1038/s41598-020-62321-3.

27.	 Choi H, Jeon KJ, Kim YH, Ha E-G, Lee C, Han S-S. 
Deep learning-based fully automatic segmentation  
of the maxillary sinus on cone-beam computed 
tomographic images. Sci Rep. 2022 Aug 17;12(1): 
14009. doi:10.1038/s41598-022-18436-w.

28.	 Rahpeyma A, Khajehahmadi S. Alveolar antral  
artery: review of surgical techniques Iivolving this 
anatomic structure. Iran J Otorhinolaryngol. 2014; 
26(75):73-78. 

29.	 Maridati P, Stoffella E, Speroni S, Cicciù M,  
Maiorana C. Alveolar antral artery isolat ion  
during sinus lift procedure with the double window 
technique. Open Dent J. 2014 May30;8:95-103.  
doi:10.2174/1874210601408010095.

30.	 Park JA, Kim D, Yang S, Kang JH, Kim JE, Huh KH,  
et al. Automatic detection of posterior superior 
alveolar artery in dental cone-beam CT images  
using a deeply supervised multi-scale 3D network. 
Dentomaxillofac Radiol. 2024 Jan 11;53(1):22-31. 
doi:10.1093/dmfr/twad002.

31.	 Putra RH, Doi C, Yoda N, Astuti ER, Sasaki K.  
Current applications and development of artificial 
intel l igence for  digi ta l  dental  radiography. 
Dentomaxillofac Radiol. 2022 Jan1;51(1):20210197. 
doi:10.1259/dmfr.20210197.



Thachamon Mepetch, et al

122   M Dent J 2025 August; 45 (2): 109-122

32.	 Schwendicke F, Samek W, Krois J. Artif icial 
intelligence in dentistry: chances and challenges.  
J Dent Res. 2020 Jul;99(7):769-774. doi:10.1177/ 
0022034520915714.

33.	 Staněk J, Machálková K, Staňková M, Zapletalová J, 
Kocurová T. Alveolar antral artery: cone beam 
computed tomography study and clinical context. 
PeerJ. 2023 Nov 30;11:e16439. doi:10.7717/peerj. 
16439.

34.	 Luque A, Carrasco A, Martín A, de las Heras A.  
The impact of class imbalance in classification 
performance metrics based on the binary confusion 
matrix. Pattern Recognit. 2019 Jul;91:216-231. 
doi:10.1016/j.patcog.2019.02.023.

35.	 Saito T, Rehmsmeier M. The precision-recall plot is 
more informative than the ROC plot when evaluating 
binary classifiers on imbalanced datasets. PLoS One. 
2015 Mar4;10(3):e0118432. doi:10.1371/journal.
pone.0118432.

36.	 Benjaphalakron N, Jansisyanont P, Chuenchompoonut C, 
Kiattavorncharoen S. Evaluation of the posterior 
superior alveolar artery and related factors using 
cone beam computed tomography images. JDAT 
2021;71:35-43. 

37.	 Ragab MG, Abdulkadir SJ, Muneer A, Alqushaibi A, 
Sumiea EH, Qureshi R, et al. A comprehensive systematic 
review of YOLO for medical object detection (2018 to 
2023). IEEE Access 2024 Apr.;12:57815 - 57836. doi: 
10.1109/ACCESS.2024.3386826.


