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Objectives: The alveolar antral artery (AAA) supplies the posterior maxillary region. Detecting this artery using
radiographs is essential before oral and maxillofacial surgeries to prevent bleeding complications. However,
manual radiograph interpretation is time-consuming and requires expert experience. This study aims to develop
and evaluate a ResNet-18 deep learning model that applies varying thresholds for multi-label classification of
the AAA canal positions categorized as intraosseous, superficial, or intrasinus in coronal cone-beam computed
tomography (CBCT) images.

Materials and Methods: Coronal CBCT images of 60 patients were selected and categorized into training data
and testing data. Annotation of the AAA canal positions was done by experts via the Computer Vision Annotation
Tool. Image transformation and augmentation techniques were applied to optimize a model training. A ResNet-18
model was trained with five-fold cross-validation. The best-performing model for each fold was determined
based on the F1- score of the validation and tested on the test set.

Results: The model achieved a micro F1-score of 0.8206 when applying class-specific thresholds of 0.411,
0.452, and 0.515 for the superficial, intrasinus, and intraosseous positions, respectively. A single threshold of
0.452 and 0.500 marginally decreased the micro F1-scores to 0.8193 and 0.8157, respectively. The class-specific
thresholds strategy yielded the highest per-class F1-scores, with values of 0.8153 for intraosseous, 0.6470 for
intrasinus, and 0.0164 for the superficial class.

Conclusions: The implementation of deep learning for the AAA canal classification aids dentists and oral surgeons
in preoperative planning, minimizing iatrogenic injury of the artery during surgery. Additionally, knowing the
artery’s position beforehand enhances perioperative and postoperative management, allowing for better handling
of complications in the event of vascular injury, potentially improving surgical outcomes and reducing procedural
complications, benefiting both clinicians and patients.
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Introduction

Dental implant placement is an oral surgical
procedure utilized to replace the edentulous
region. A significant challenge in dental implant
placement in the posterior maxilla is insufficient
alveolar bone height, often presenting as an atrophic
condition [1]. Currently, the sinus lift procedure is
among the most commonly employed surgical
interventionstoaddressthisissue. The fundamental
approach involves creating an osteotomy to
establish awindow in the lateral wall of the maxillary
sinus. The sinus membrane is then elevated to
create a space beneath it, which is subsequently
filled with grafting materials. This technique ensures
the augmentation of bone height, facilitating the
placement of osseointegrated implants [2].

The alveolar antral artery (AAA) is a significant
vascular structure that courses through the
anterolateral wall of the maxillary sinus, providing
essential blood supply to the lateral wall of the
maxillary sinus, Schneiderian membrane,
periosteal tissues, and posterior maxillary teeth
[3]. It is formed by anastomosis between the
posterior superior alveolar artery (PSAA) and the
infraorbital artery (IOA) [4]. The AAA canal is
anatomically located in three mediolateral
positions, including intraosseous (within the
lateral sinus wall), intrasinus (beneath the sinus
membrane), and superficial (underthe periosteum).
Among these, the intrasinus and intraosseous
positions are the most prevalent [5, 6].

latrogenic injury to the AAA canal during
sinus lift procedures can result in significant
intraoperative and postoperative bleeding and
subsequent complications. The study of Zijderveld
et al [7] in 2008 reported that 2% of the cases
experienced intraoperative bleeding from this
artery during sinus lift. The presence of bleeding
impaired visualization and made the surgical
procedure more challenging. Another case report
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also found that bleeding can persist in the
immediate postoperative period or be delayed for
up to seven hours after surgery representing
ongoing bleeding and progressive swelling a few
hours after a transcrestal sinus lift, presumably
from a lacerated of the AAA canal by an osteotomy
path close to the lateral sinus wall [8]. While
hemorrhage from this vessel rarely presents life-
threatening scenarios, itintroduces critical surgical
challenges, including impaired field visualization,
extended operative time, loss of graft materials,
and sinus membrane perforation, potentially leading
to hemosinus and sinus dysfunction [9, 10].

Since each positional variation of the AAA
canal significantly influences surgical planning
and requires different technique selection, precise
preoperative classification and evaluation of the
artery canal positions enable surgeons to tailor
their interventions, ensuring optimal procedural
outcomes while minimizing the risk of vascular
injury and associated adverse events [11]. For
instance, if the artery is located superficially,
surgeons can carefully detach the vessel from the
bone and reflect with the buccal flap without
damaging it. However, if it is intraosseous, the
recommendation is to avoid its course by modifying
the size and position of the osteotomy such as
a double-window technique. In cases where the
artery is intrasinus, the surgeons can either carefully
detach and reflect the artery along with the sinus
membrane or change the area of the approach.
Also, piezoelectric devices may be utilized to
create a bony window without compromising the
membrane or vessel, allowing the artery to move
upward with the sinus membrane [2, 9].

Among various imaging modalities, CBCT is
considered the current method for the AAA canal
detection, with identification rates of 60.3% to
94.6% [5, 12, 13], significantly higher than
conventional computed tomography (CCT)
42-60%, and panoramic radiographs 1% [14].
While the detection of the AAA canal varies
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across imaging techniques, cadaveric studies
consistently reported the presence of the AAA
in all investigations [3, 15, 16]. However, CBCT
interpretation has limitations, including time-
consuming, requiring experience, resolution
constraints, and the possibility of false negatives
due to small vessel diameter or anatomical
variations [10].

Recent advancements in artificial intelligence
(Al), particularly deep learning (DL), have
significantly enhanced medical image processing
by addressing limitations of traditional diagnostic
approaches. Convolutional neural networks (CNNs),
a subset of DL, are particularly effective in tasks
such as image classification, object detection, and
segmentation due to their ability to automatically
extract and learn relevant features from pixel-level
data [17, 18]. In this study, which focuses on
multi-label classification of the anatomical position
of the AAA canal from CBCT images, the ResNet-18
model was selected. The ResNet-18 offers an optimal
balance between performance and efficiency,
making it well-suited for small and imbalanced
medical datasets [19]. Originally proposed by He
et al [20] in 2015, ResNet employs residual
connections to facilitate gradient flow, addressing
vanishing gradient issues and enabling stable
training of deeper networks. Compared to deeper
variants such as ResNet-50, DenseNet, or
Inception-v4, the ResNet-18 achieves competitive
performance while requiring fewer computational
resources and outperforms deeper models in
classifying lung images of COVID-19 patients from
computed tomography (CT) scans [21]. This makes
it particularly advantageous for clinical environments
where resources may be limited and highlights its
robustness on small or noisy datasets. Although
newer architectures such as DenseNet or
EfficientNet can achieve high accuracy, they
typically require significantly more computing
resources and longer training times [21, 22].
In direct comparisons within medical imaging,

ResNet-18 has consistently shown strong
performance while being simpler to train and more
practical for clinical use [23], making it particularly
suitable for this study.

In dental imaging, CNNs have demonstrated
utility in detecting key anatomical structures,
including the maxillary sinus, tongue, and mandibular
canals, thereby supporting improved diagnosis
and treatment planning [24-27]. With regard to the
AAA canal, numerous studies have extensively
documented its anatomical characteristics, such
as prevalence, diameter, position, and location
using conventional methods [5, 12, 28, 29].
Existing studies primarily apply a deep learning to
focus on identifying the location of the AAA canal
in individual CBCT slices [30]. However, manual
inspection is still required to further classify it into
superficial, intraosseous, or intrasinus categories.
Additionally, the performance of these techniques
remains uncertain in cases where the AAA is
absent or when multiple AAAs appear within
a single slice. To overcome these limitations, this
study proposes an automated classification model
using ResNet-18 with a threshold-based approach
to classify the AAA canal positional variants in
coronal CBCT images. The proposed approach
effectively handles cases where the AAA is absent
or multiple AAAs appear within a single slice,
reducing the need for manual inspection by
automating the classification process.

Materials and Methods

Ethical Criteria

This retrospective study utilized existing
radiographic data for classification purposes and
was conducted collaboratively between the
Department of Oral and Maxillofacial Radiology
and Oral and Maxillofacial Surgery Clinic, Faculty
of Dentistry, Mahidol University, Bangkok, and the
Faculty of Information and Communication Technology,
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Mahidol University, Nakhon Pathom, Thailand.
The study protocol was in accordance with the
ethical standards of the responsible committee on
human experimentation (COA.No.MU-DT/PY-IRB
2024/004.1501) with the Declaration of Helsinki.
A formal data-sharing agreement was established
between the participating faculties. No additional
imaging was performed specifically for this
research. No experimental procedures were
conducted on human subjects or tissues. All patient
data were anonymized prior to analysis to ensure
confidentiality and protection of patient privacy.
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Figure 1 The overall workflow of this research

The overall workflow of this research is
shown in Figure 1. Coronal CBCT images were
retrospectively analyzed and annotated by
expert clinicians to categorize multiple AAA
canal positions. The annotated dataset was
randomly divided into training and testing set.
A ResNet-18 deep learning model was developed
using five-fold cross-validation. Finally, model
performance was assessed on the testing set
using threshold-based classification, with the
F1-score as the primary evaluation metric.
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in three main steps: (a) collection of coronal view of

cone-beam computed tomography (CBCT) images. (b) expert annotators labeled AAA canal

positions. (c) model development and evaluation.
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Patient Selection and Data Collection

Coronal CBCT images from 60 patients (28
males, 32 females, with an age range of 19-68
years) who visited the Faculty of Dentistry, Mahidol
University, between 2019 and 2020 for clinical
purposes were retrospectively collected.
Approximately 480 consecutive coronal slices of
the maxillary region were extracted for each
patient, resulting in a total dataset of 28,800
images. These consecutive slices ensured
comprehensive anatomical coverage of the
posterior maxilla, where the AAA canal typically
courses. Image acquisition was performed using a
3D Accuitomo 170 Cone Beam Computed
tomography machine (J. Morita CORP., Osaka,
Japan) with the field of view (FOV) of 6 cm x 6 cm
and voxel size of 125 pm. The inclusion criteria
consisted of coronal CBCT images of patients
aged over 18 years, acquired from the maxillary
region, with adequate sharpness and diagnostic
quality, regardless of the AAA visibility. Exclusion
criteria included coronal CBCT images from
patients with a history of jaw fracture, jaw surgery
in the maxilla, craniofacial deformity, pathological
conditions or diseases affecting the makxillary
bone, insufficient image quality, such as blurred
images, or excessive metal-induced or movement
artifacts.

All coronal CBCT images were viewed on an
Eizo RX 430 medical-grade monitor (Eizo Nanao
Corp., Japan) with a resolution of 2560 x 1600
pixels using i-dixel software (J. Morita CORP.,
Osaka, Japan). Eligible datasets were anonymized
and exported in Digital Imaging Communications
in Medicine (DICOM) format via PLANMECA
Romexis. These were subsequently converted to
Joint Photographic Experts Group (JPEG) format
using Fiji ImagedJ software for further processing
and analysis.

Ground-Truth Labeling

The dataset includes variations in which the
AAA canal is either present or absent. When
present, it is classified into one of three positional
categories including intraosseous, intrasinus, or
superficial, as illustrated in Figure 2. The dataset
was uploaded to Computer Vision Annotation Tool
(CVAT), an online platform for annotating visual
data. Consensus-based interobserver agreement
was performed in the study. The ground truth of
the AAA canal positions was independently
annotated by a postgraduate student, majoring in
Oral and Maxillofacial surgery and by the 27 years’
experience Oral and Maxillofacial radiologist.
Any disagreements were resolved through
discussion until a consensus was reached.

Figure 2 The classification of alveolar antral artery (AAA) positions in cone-beam computed
tomography (CBCT) images. (a) intraosseous, (b) intrasinus, (c) superficial, and (d) absent of
the artery.
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Data Preprocessing and Characteristic

The data preprocessing process involved
standardized image transformations and
augmentation techniques to improve model
training. Initially, all input images were resized to
224 x 224 pixels as per the model’s requirements
and converted to grayscale for consistency.
Data augmentation techniques were applied,
including horizontal flipping, minor rotational
adjustments (1°), brightness and contrast
modifications, and positional shifts using
Affine Transform. These methods ensured
an expanded dataset while maintaining the
clinically significant features of AAA canal
positions.

Model Training, Validation, and Testing

The total dataset consists of coronal CBCT
scans from 60 patients were divided at the
subject level into a training set (40 patients) and
a test set (20 patients), ensuring that no images
from the same patient appeared in both the

training and test sets. Within the training set,
the dataset was further split into five-fold
cross-validation for a model training. The distribution
of samples per class is presented in Table 1
including intraosseous (3,885 samples),
superficial (301 samples), and intrasinus (3,079
samples). During cross-validation, the dataset
was partitioned into five subsets, where in
each fold, a different subset was used for
validation while the remaining four subsets were
used for training. A ResNet-18 model was
employed as the base architecture for multi-label
classification of the AAA canal positions. Formally,
let there be m training examples:

{(XD, YD), (XD, YO),... (X, Y}, where
each XWeR***** represents a single 224x224
CBCT image slice, and YO=[Y{, Y, Y] is a
vector of ground truth labels. Each Y €{0,1}
indicates the presence (1) or the absence (0) of
the AAA position, where j =1, 2,3 corresponds to
intraosseous, superficial, and intrasinus positions,
respectively.

Table 1  Distribution of training data across five-folds
Class Intraosseous Superficial Intrasinus Neither
Fold
1 1,200 152 1334 0
2 973 54 857 0
3 604 42 323 0
4 488 22 266 0
5 620 31 299 1
Total 3,885 301 3,079 1
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The model predicts the probability of the
AAA positions being present, producing an output
vector: YO=[Y" ¥, ¥¥], where Y, €[0,1]
represents the predicted confidence score for the
presence of the AAA position in class j. If Yj(")
exceeds a predefined threshold thd, (i.e., Y? > thd,
), the model predicts that there is AAA position in
class j. Our model was trained over 100 epochs.
The binary cross-entropy with class weights were
utilized as the loss function to address class
imbalance. The optimization was employed using
the Adam optimizer with a ReduceLROnPlateau
learning rate scheduler. The best-performing
model for each fold was determined based on the
validation F1- score and subsequently saved for
further evaluation. After training, each model was
evaluated based on its performance on the
validation set, and the model with the highest
validation F1-score was selected for testing with
the test set. During testing, different thresholding
strategies were applied to improve multi-label
classification performance. Initially, a single
default threshold of 0.500 was used for all classes,
but it was later uniformly lowered to 0.452 to
address class imbalance and improve sensitivity
for underrepresented classes. Additionally, a
class-specific thresholding strategy was
implemented to refine predictions based on the
unigue distribution of prediction scores for each
class, setting thresholds at 0.515 for intraosseous,
0.411 for superficial, and 0.452 for intrasinus.
Unlike a single-threshold approach, class-specific
thresholds allow independent calibration for each
class, accounting for differences in class
prevalence and prediction score distributions.
This method better addresses class imbalance by
optimizing the trade-off between precision and
recall for each class individually, thereby
enhancing overall model performance.

Performance Evaluation

The model's performance was evaluated
usingthe F1-score metric. The F1-score, calculated
as the harmonic mean of precision and recall, was
implemented at two levels of analysis.

. TP
Precision =
TP+FP
Recall = i
TP+FN

The per-class F1-Score evaluates the
performance of a model foreach class representing
intraosseous, superficial, and intrasinus by
balancing precision and recall for that class.

(Precision x Recall)
Precision+Recall

Per-class F1-Score = 2 x

The micro F1-Score evaluates the overall
performance of the model by summing up true
positives (TP), false positives (FP), and false
negatives (FN) across all positions. True Positive
(TP) represents instances where the model's
classification aligned with expert assessment,
while False Negative (FN) indicates cases where
the model failed to detect an existing AAA canal
feature category. False Positive (FP) denotes
instances where the model incorrectly classified
features as belonging to a particular category.

2 x Sum of TP
2 x Sum of TP+Sum of FP+Sum of FN

Micro F1-Score =

Results

The performance of the ResNet-18
model using different threshold strategies was
evaluated using per-class F1-scores and the
overall micro-average F1-score. The per-class
F1-scores reflect the model's performance for

http://www.dt.mahidol.ac.th/division/th_Academic_Journal_Unit 115




MAHIDOL DENTAL JOURNAL

Thachamon Mepetch, et al

each artery position when its respective threshold
is applied, while the overall micro-average
F1-score represents the combined classification
performance across all artery positions. Using
the default threshold of 0.500, the per-class
F1-scores were 0.8046 for the intraosseous
position, 0.0000 for the superficial position,
and 0.6323 for the intrasinus position, with
an overall micro-average F1-score of 0.8157.
When lowering the uniform threshold to 0.452, the
F1-score slightly decreased for the intraosseous
position to 0.8002 and increased for the intrasinus
position to 0.6488, while the superficial position
remained unclassified at 0.0000. The overall
micro-average F1-score slightly increased to
0.8193. Class-specific thresholds were then
applied concurrently, using 0.515 for the
intraosseous position, 0.411 for the superficial
position, and 0.452 for the intrasinus position.
This approach improved the per-class F1-scores
to 0.8153 for intraosseous, 0.0164 for superficial,
and 0.6470 for intrasinus. As a result, the overall

micro-average F1-score reached its highest
value of 0.8206, indicating that the class-
specific thresholding strategy achieved the
best classification performance, as shown in
Table 2.

Discussion

The integration of deep learning into medical
imaging has become increasingly important, as
accurate analysis of anatomical structures plays a
key role in diagnosis, treatment planning, and
preventing complications [31, 32]. This study
marks a significant advancement as the first to
utilize a deep learning model for classifying the
presence and positional variants of the AAA canal
in coronal CBCT images, achieving a high micro
F1-score. These results highlight the potential of
deep learning for accurately identifying small
vascular structures, which could improve clinical
decision-making and diagnostic efficiency.

Table 2 The results of the ResNet-18 model performance across different threshold strategies showing
per-class F1-scores for each position (1= Intraosseous, S= superficial, and N= Intrasinus) and

the overall micro F1-score.

F1-score
Threshold Per-class Overall
| s N micro-average

0.500 0.8046 0.0000 0.6323 0.8157
0.452 0.8002 0.0000 0.6488 0.8193
0.452
0.411 0.8153 0.0164 0.6470 0.8206
0.515

116 M Dent J 2025 August; 45 (2): 109-122
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Park et al. [30] developed a deep learning
model to precisely locate the posterior superior
alveolar artery (PSAA/AAA) in CBCT images
using various 3D networks. However, their study
did not address whether their model could
detect the absence of the artery, as it primarily
focused on detecting and localizing its position.
Cases where the PSAA was undetectable
due to low image quality or anatomical variations
were excluded, suggesting that their analysis
was limited to scenarios where the artery was
visible rather than determining its presence or
absence. In contrast, our study introduces
a critical classification step by including frames
without the AAA canal to detect artery’s presence
or absence, which slightly decreased the
overall micro F1-score to 0.7. This reduction in
performance can be attributed to the inclusion of
artery-absent frames, which introduce additional
noise and hinder the model’s ability to extract
relevantfeatures. Nonetheless, thiscomprehensive
approach offers greater clinical relevance by
addressing both the detection and precise
positioning of the AAA, accounting for realistic
variations encountered in clinical practice.
Identifying artery absence can reduce bleeding
risks and simplify sinus lift surgery, whereas
failing to detect an existing artery may lead to
unexpected bleeding and surgical complications.
Additionally, we successfully classified the
positional variations of the AAA canal, enabling
clinicians to select the most appropriate
preoperative approach and manage unexpected
intraoperative bleeding more effectively. Figure 3

illustrates a comparison between expert
annotations and model predictions regarding
the presence or absence of the artery in different
anatomical positions across CBCT frame
numbers from two representation patients.
The AAA canal typically appears within slices
200-450, confirming this range as corresponding
to the posterior maxillary region. This information
is highly valuable for clinicians, allowing them
to quickly focus on relevant slices, significantly
reducing manual inspection time. In Figure 3(a),
representing the first patient, the model prediction
closely matched expert annotations, accurately
classifying the intraosseous artery position
with minimal mismatches, and correctly
recognizing the absence of superficial or
intrasinus positions. However, in the second
patient, shown in Figure 3(b), expert annotations
revealed a more complex pattern involving
all the artery position appearances. In this
scenario, the model demonstrates several
prediction mismatches (highlighted in orange),
notably missing superficial occurrences
and exhibiting inaccuracies in identifying
intraosseous and intrasinus positions. This detailed
comparison underscores regions requiring
further clinical verification, helping clinicians
quickly pinpoint slices that demand closer
inspection while minimizing unnecessary image
review. By clearly delineating these critical
areas, the proposed approach significantly
reduces manual inspection time, enhances
diagnostic accuracy, and contributes to safer,
more precise surgical planning.
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Figure 3 Comparison between actual (expert-annotated) and predicted (model-classified) of alveolar
antral artery (AAA) positions across CBCT frames in two patients (a, b). Prediction mismatches

highlighted in orange.

A notable challenge encountered in our
study was the class imbalance within the dataset,
particularly affecting the superficial class, which
had significantly fewer samples compared to
the other two positions. This finding aligns
with existing literature, which reports that the
superficial position is naturally less prevalent
[5, 33]. The class imbalance likely impacted
the F1-score, as deep learning models often
struggle with underrepresented classes [34].
This problem can be alleviated by using different
threshold adjustment strategies [35]. First,
we lowered the default single-threshold to
increase recall (sensitivity), aiming to capture

118 M Dent J 2025 August; 45 (2): 109-122

more true positives even at the expense of
increased false positives for rare classes.
As a result, the per-class F1-score demonstrated
a slight improvement in the intrasinus classification,
however, the model still failed to classify the
superficial class and exhibited a minor decline in
the classification of intraosseous position.
Nonetheless, the overall micro F1-score increased
slightly compared to the default threshold.
Second, using the class-specific threshold
strategy, in which the threshold was lowered
specifically for the rare superficial class while
being increased for the more abundant classes.
This adjustment aimed to recover some false
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negative cases in the superficial class with a few
sacrificing for false positives. This strategy
improved the balance between precision and
recall, especially for the superficial class, and
led to a small but crucial improvement in the
superficial classification, achieving the highest
score of both per-class and overall micro
F1-score. While this study focused on improving
classification performance through threshold
lowering and implementing class-specific
thresholds, future research could explore
the impact of using higher threshold values.
Raising the threshold above 0.500 may increase
precision by reducing false positives, although
this would likely lower recall [35]. Investigating
this trade-off would offer clearer insights into
the model’s sensitivity and help evaluate the
stability of the thresholding strategy. Such analysis
could enhance the model’s reliability and support
more informed threshold selection for clinical
applications. Additionally, our study incorporated
class weighting based on inverse frequency,
which helped balance the contribution of
each class in the loss function, further enhancing
model robustness.

Despite the promising results of our study,
which is the first to classify the AAA canal presence
in three positions using coronal CBCT images
and addresses a previously unexplored clinical
challenge, several important limitations should be
acknowledged. First, our dataset was limited
to 60 patients, which may not fully capture the
variety of anatomical variations present in the
broader population. Second, analyzing the AAA
canal from coronal CBCT images could be
challenged. According to the study of previous
studies, the average diameter of this artery
presented in CBCT image is about 1.0-1.5 mm,
making it inherently more difficult to classify
[5, 9, 36]. Additionally, as our data was collected
from a single hospital without external validation,

the model's generalizability to different patient
populations and healthcare settings remains
uncertain. Furthermore, our study relied on
a single deep learning architecture, which may
have limited the model's potential performance
compared to more advanced or ensemble
approaches.

Expanding the dataset and collaborating
across multiple centers should be prioritized in
future research to enhance the model’s reliability,
generalizability, and clinical relevance. Although
the current classification model effectively
identifies AAA canal positions, it lacks spatial
localization capabilities, which are critical for
guiding surgical planning. Future research should
explore object detection models such as YOLO
(You Only Look Once) or Faster R-CNN, which are
capable of both classifying and localizing
anatomical structures [24, 37]. Integrating these
models could significantly improve the clinical
utility of Al-based detection systems by providing
comprehensive spatial information, improving
preoperative planning and reducing surgical risks.
This study highlights the potential of deep learning
in automated vascular classification, making the
AAA canal classification more efficient and
accurate.

Conclusion

In summary, this study provides the first
deep learning-based classification of the presence
or absence of the AAA canal positions, making the
AAA canal classification more efficient and
accurate. Class-specific thresholds improve
performance compared to single-threshold
method. Our findings lead the way for future
advancements in deep learning applications
for medical imaging, highlighting the potential
of deep learning in medical image analysis.
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These advancements could benefit clinicians in
diagnosis, treatment planning, and surgery,
leading to better patient outcomes.
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