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Comparative analysis of fracture resistance and film
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luted lithium disilicate ceramics
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Objectives: This study investigated the fracture resistance and film thickness of the different composite cements
that can be used with lithium disilicate-based ceramic restoration (IPS e.max CAD).

Materials and Methods: Twenty-five (25) IPS e.max CAD discs (A2, shade HT/C14) with a 10 mm diameter
and 1 mm thickness were randomly assigned to five experimental groups (n = 5) according to
luting agent G-zenial™ Universal Injectable (GC Corporation, Japan), Clearfil™ AP-X Esthetics FLOW
(Kuraray Noritake, Japan), Beautifil injectable X (Shofu Inc., Japan), and Filtek™ Supreme Flowable
(3M Oral Care, USA). Flowable composites were bonded between the ceramic disc and dentin. The control
group sample was dual-cured resin cement, Multilink N (lvoclar Vivadent, Liechtenstein). A universal
testing machine (Model LR10K; Lloyd Instruments, Fareham, UK) was used to conduct a three-point
bending test to determine the fracture resistance. The film thickness was analyzed using scanning
electron microscopy (SEM, JSM 6610LV, JEOL, Peabody, PA, USA). The data were analyzed using a one-way
ANOVA.

Results: Flowable composites presented fracture resistance values comparable to the resin cement,
with acceptable film thickness values meeting ISO requirements, except for Filtek™ Supreme Flowable.
However, no statistically significant differences were found among groups (p>0.05)

Conclusions: Flowable composites could be potential alternatives for ceramic luting, although further studies
are needed to confirm their long-term clinical performance.
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Introduction

A luting cement is a substance that is
employed to secure indirect restorations to
prepared tooth surfaces by filling minute
cavities between the restorations and the
tooth structures. This mechanically locks the
restoration in place to prevent dislodgment [1, 2].
Resin cements are composite materials that
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have distinct chemical compositions. They are
composed of a resin matrix (e.g., Bis-GMA
or urethane dimethacrylate) and fine particles of
inorganic fillers. Initially, they are distinguished
from restorative composites by their low filler
content (50-70%wt glass or silicon dioxide)
and viscosity. The filler concentration in the
resin cement is reduced to accommodate
a thin film thickness and a longer working time [3].
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In addition, the mechanical properties
are correlated with the quantity of filler;
the mechanical strength decreases as the number
of fillers decreases [4-6].

The increasing interest in using flowable
composites as adhesive luting is to benefit
from their physical properties; being more
filler-loaded than resin cements, and their
improved cost benefits compared to resin
cements [7]. Most recently, highly filled flowable
composites, including 65-75% fillers by weight,
have been introduced for direct restorations
and indirect cementation. Besides maintaining
low viscosity, these materials have relatively
comparable mechanical and optical properties
with paste-type composites[8]. For light-curing
resin cements, the light transmission rate is
influenced by the thickness of the restoration;
hence, these cements are recommended for
bonding translucent restorations with thicknesses
of less than 2 mm [9, 10]. Consequently, flowable
composites may exhibit mechanical and optical
properties similar to those of resin cements,
particularly in terms of viscosity, filler content, and
clinical handling characteristics.

A novel type of highly filled flowable
composite has recently been developed—
for example, G-aenial Universal Injectable
(GC, Tokyo, Japan). It is distinguished by its high
viscosity and is purported to have improved
mechanical properties that are comparable
to those from conventional composite restorative
materials [11, 12]. In contrast to traditional
paste-type composites, the highly filled flowable
resin contains nano-sized fillers. The surface
of the resin has been modified to reduce its
viscosity for placement, thereby enabling
the composite to be used in load-bearing
restorations [13, 14]. On the other hand, Clearfil™
AP-X Esthetics FLOW (CF, Kuraray, Osaka, Japan)
had a high filler content (75 wt% or 59% volume).
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Additionally, CF was reported to to provide
superior mechanical properties making it suitable
even for posterior restorations.

Fracture resistance is a fundamental
mechanical property that indicates a material’s
capacity to endure functional loads without
experiencing catastrophic failure. In dentistry,
this is especially crucial for brittle materials
like ceramics, which are commonly used in
restorative procedures. The fracture resistance
of lithium disilicate ceramics is governed by
several factors. One key factor is restoration
thickness; an adequate thickness significantly
enhances the strength of lithium disilicate
restorations [16]. The manufacturing technique
also plays a vital role. CAD/CAM-fabricated
restorations have demonstrated superior
fracture resistance compared to pressable
techniques, even when using the same material
[17]. Restoration design further influences
stress distribution. For instance, onlays made
from IPS e.max CAD exhibited higher fracture
resistance than crowns made from the same
material [18]. Tooth preparation design—
such as taper angle, margin type, and occlusal
reduction—also affects the outcome. Studies
have reported that occlusal veneers present
lower fracture resistance compared to
adhesive crowns [19]. In addition, the mechanical
properties of resin cement, including its
composition and polymerization characteristics,
are important determinants of overall restoration
performance. Notably, research has shown
that the mean fracture resistance of lithium
disilicate anterior crowns varied significantly
based on the resin cement used [20], Despite
these insights, only a limited number of studies
have comprehensively investigated how different
flowable composites used as luting cements
influence the fracture resistance of ceramic
restorations bonded to tooth structures.
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In addition, film thickness of the luting agent
at the tooth-cement-restoration interface represents
a key aspect for a successful treatment prognosis.
A thicker film is more prone to wear, leading to
consequent marginal misfit [21]. Reduced film
thickness has been linked to increased fracture
resistance of all ceramic restorations, improved
bond strength and low water sorption [22, 23].
As previously mentioned and also according to
ISO standard 4049:2019, film thickness has been
researched and described as ideal between 5 and
25 um and in any event it shall exceed 50 um [24].
Film thickness is closely related to the flowability
and viscosity of the material; flowable composites
typically demonstrate lower viscosity and better
flow characteristics than conventional resin
cements, which may allow for thinner and more
uniform luting layers. These material properties,
including filler content, resin matrix composition,
and rheological modifiers, affect both the ease of
application and the clinical performance of the
luting agent.

Therefore, the null hypothersis of this study
were i) there is no significant difference in fracture
resistance among the tested composite cements
for lithium disilicate-based ceramic restorations. ii)
there is no significant difference in film thickness
among the tested composite cements for lithium
disilicate-based ceramic restorations.

Materials and Methods

Material preparation

1. Sample collection

In this study, twenty-five extracted human
third molars without carious lesions, cracks,
or restorations on the enamel and dentin surfaces
were used and collected under a protocol
reviewed and approved by the university
ethics committee (COE.No.MU-DT/PY-IRB
2023/059.1912). All collected teeth were
stored in 0.1% thymol solution and used within
6 months after extraction. The sample size
was calculated from the estimated effect size
(95% power and 5% error), resulting in N = 5
(G*Power 3.1).

2. Resin luting cement preparation

The following materials were tested:
flowable composites, and resin cements. Their
compositions, instructions, and manufacturers
are described in Table 1 and 2. The flowable
composites and resin cements were used at room
temperature and handled according to the
manufacturers’ instructions.

Table 1 Manufacture, classification, and composition of materials used in this study
Resin-based Manufacturer Type Monomer composition Filler content
luting agent
G-zenial™ GC Corporation, Highly filled ~ UDMA, bis-GMA, Filler load
Universal Tokyo,Japan flowable methacrylatemonomers ~ 69% wt /
Injectable (Gl) composite 46%vol[1]
Clearfil™ Kuraray Noritake, Highly filed ~ TEGDMA, hydrophobic  Filler load
AP-X Esthetics Japan flowable aromatic dimethacrylate, 75% wt/
FLOW composite 59% vol
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Table 1 Manufacture, classification, and composition of materials used in this study (continued)
Resin-based Manufacturer Type Monomer composition Filler content
luting agent

Beautifil injectable  Shofu Inc. Kyoto, Flowable Bis-GMA, TEGDMA, Filler load
X (BI) Japan composite  Bis-MPEPP 64% wt /
42%vol
Filtek™ Supreme 3M Oral Care,St. Flowable Procrylat, BisGMA, Filler load
Flowable (FF) Paul, MN, USA composite and TEGDMA resins 65% wt /
46%vol
Multilink N (MN) Ivoclar Vivadent, Dual cured  dimethacrylate and Filler load
Schaan, Lichtenstein luting resin HEMA (30.5% wt) 68.5% wt/
cement 40% vol.
Table 2 Manufacture of materials used in this study
Material Type Manufacturer

Clearfil SE bond
Single Bond Universal

Scotchbond Universal Etchant Etchant gel

Monobond N

IPS Ceramic Etching gel

3. Tooth preparation

The occlusal third of the crown was
sectioned using a low-speed diamond saw
(Diamond blade 4-inch series HC, PACE, USA)
under water cooling. Teeth with a dentin
diameter of less than 9 mm were excluded.
A smear layer was created by manually
finishing the surface with 600-grit silicon carbide
(SiC) grinding paper (Buehler, Buehler Ltd,
Lake Bluff, lllinois, USA) under running water
for 60 seconds.
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Self-etching adhesives

Universal adhesive

Ceramic primer

Hydrofluoric acid

Kuraray Noritake. Osaka, Japan
3M Oral Care,St. Paul, MN, USA
3M Oral Care,St. Paul, MN, USA
Ivoclar Vivadent, Schaan, Lichtenstein

Ivoclar Vivadent, Schaan, Lichtenstein

4. Preparation of lithium disilicate ceramics
slice (LDS, IPS e.max CAD)

The IPS e.max CAD HT CAD/CAM blocks
(LDS, IPS e.max CAD, Ivoclar Vivadent, Schaan,
Liechtenstein; SiO3, Li2O, K20, P205, ZrO,,
Zn0, Al,O3, MgO, coloring oxides; HT A2/C14)
were used. The block dimensions were 18 mm
in length, 14.5 mm in width, and 12.4 mm
in height. Each block was sectioned into
15 pieces (1 x 10 x 10 mm) by using a low-speed
diamond saw (Diamond blade 4-inch series HC,
PACE, USA). The ceramic discs were then
crystallized in an Ivoclar Vivadent ceramic furnace
(Programat® P300) to complete the restoration
process. Flat LDS surfaces were prepared by
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manually grinding with wet 600-grit silicon
carbide (SiC) paper 60 s. Then, the blocks were
cleaned in an ultrasonic bath (Bandeloin
DT-156BH, Germany) of distilled water for
10 minutes to ensure a contaminant-free ceramic
surface.

5. Cementation of lithium disilicate discs to
the tooth substrate

The cementation was performed in
a controlled room at 25°C. The surfaces of
all ceramic discs were etched with 4.5%
hydrofluoric acid (IPS Ceramic Etching Gel,
Ivoclar Vivadent) for 20 seconds, subsequently
washed with a spray jet and water for
30 seconds, and then placed in an ultrasonic
bath containing distilled water for 5 minutes.
Following this, a silane coupling agent (Monobond
N, Ivoclar Vivadent) was applied using a size M
microbrush (3M Oral Care, St. Paul, MN, USA) and
allowed to react for 60 seconds. The remaining
excess was dispersed with a strong stream of
air for 10 seconds.

Group A, The flowable composite.

Clearfil SE Bond (Kuraray Noritake) primer
and bonding were applied on the tooth surface
according to the manufacturer’s instructions.
The light intensity of the curing unit (Bluephase
G2, lvoclar Vivadent, Schaan, Liechtenstein)
was verified using a calibrated light meter
(bluphase® meter, Ivoclar Vivadent, Liechtenstein)
before use. The device was operated at
an intensity of approximately 1,000 mW/cm?
for 10 seconds. Four groups of flowable
composites were used as follow: Filtek™
Supreme Flowable (FF, 3M Oral Care,St. Paul,
MN, USA), G-aenial™ Universal Injectable (Gl, GC
Corporation, Tokyo, Japan), Clearfil™ AP-X
Esthetics FLOW (CF, Kuraray Noritake, Japan),
Beautifil injectable X (Bl, Shofu Inc. Kyoto, Japan).
The materials were applied to the intaglio surface

of the pretreated ceramics and then seated
onto the tooth surface. All specimens were luted
by applying a controlled force of 50 N for
3 minutes. The specimens were light-cured
for 60 seconds per surface at an intensity of
1,000 mW/cm? using a light-curing unit
(Bluephase® G2 LED curing light, Ivoclar
Vivadent, Schaan, Liechtenstein).

Group B, resin cement.

On the dentin surface, the mixed Multilink
Primer A/B (lvoclar Vivadent, Schaan, Lichtenstein)
was applied to all prepared surfaces using
a size M microbrush. The primer was lightly
scrubbed into the dentin for 15 seconds. Excess
Multilink Primer was dispersed with a strong
stream of air until the mobile film disappeared,
as the primer was self-curing. The cement was
mixed and dispensed onto the intaglio surface
of the pretreated disc, and the discs were
seated onto the pretreated tooth surface
under a constant load of 50 N for 3 minutes.
The resin cement was light-cured in the same
manner with the flowable composite group.

All the bonded specimens were stored in
distilled water for one week at a constant
temperature of 37°C.

6. Measurement of fracture resistance

To conduct the fracture resistance test,
the stored specimens were trimmed into
bar-shaped samples (2 x 2 x 8 mm?®; n = 3 per
specimen) using a low-speed diamond saw.
During this step, the enamel was completely
removed. The trimmed specimens from central
area (15 per subgroup) were used for the
fracture resistance test (10 per subgroup) and
the film thickness measurement (5 per subgroup).
The three-point bending test was performed
using a universal testing machine (Model LR10K;
Lloyd Instruments, Fareham, UK) at a crosshead
speed of 1 mm/min.
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The trimmed specimens, with the ceramic
positioned on the top side, were placed in a jig
and then loaded until fracture. The jig, consisting
of two triangular prisms mounted in parallel with
a 5 mm distance between centers and a third
prism centered between and parallel to the
other two, was used to support the specimens.
The load—-deflection curves obtained from these
tests were carefully examined for any discontinuity
to determine whether the ceramic and dentin
fractured simultaneously, and the load (N) at
fracture was determined.

Fracture resistance values were averaged
from two specimens from each tooth and used
to represent the fracture resistance for each
sample.

7. Measurement of film thickness

Five trimmed specimens per subgroup
were used for film thickness measurement.
The specimens were polished using abrasive
SiC papers in ascending grit sizes (500, 1000,
1200, and 2500 grits, respectively), followed
by dehydration through immersion in ethanol
solutions of increasing concentrations (60%,
80%), 90%, and 100%) for 2 minutes each. To
evaluate the ceramic—cement-dentin interface
thickness (11), the analysis was performed using
SEM. Photomicrographs of the cross-sections
were taken at 200x and, if necessary due to
reduced film thickness, at 500x magnification.
Film thickness values were obtained directly
from the microscope’s imaging software at
the thickest, thinnest, and midmost regions of
the luting agent. The mean of the three
measurements was calculated and used to
represent the film thickness for each sample.
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Statistical Analysis

The means and standard deviations of
fracture resistance values (N) and film thickness
(um) were calculated using descriptive statistics.
All data were organized and analysed for
homogeneity of variance and normal distribution
using the Levene test and Kolmogorov-Smirnov
test, respectively. The data were normally
distributed and showed homogeneity of variance,
a one-way ANOVA was conducted. A p-value of
less than 0.05 was considered statistically
significant

Results

The fracture resistance values (N) and the
film thickness (um) of e.max CAD bonded with
different resin-based luting composites are
summarized in Table 3. Among the tested
materials, no statistically significant differences
were found among the groups for both parameters
(p>0.05). The result suggested that all tested
flowable composites, highly-filled flowable
composite and the resin cement provided
comparable fracture resistance and flim thickness
when used with e.max CAD.
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shows mean fracture resistance (N), film thickness (um) and standard deviation of different

resin composites bonded with E.max CAD. No statistically significant differences were found

Composite cements

Flowable composite

Table 3
among the groups (p>0.05)
Filtek™ G-zenial™
Supreme Universal
Flowable Injectable
Fracture

resistance (N)

Film 52.55 + 9.91 42.239 + 15.34

Thickness (um)

Discussion

The results of this study indicated that the
fracture resistance and film thickness were not
substantially influenced by the use of various
flowable composite with IPS e.max CAD.
Consequently, both null hypotheses were
accepted (p > 0.05).

The literature has reported inorganic filler
load values ranging between 37% and 53% by
volume for flowable resin composites [3, 25].
Therefore, FF and BI, which contain 46% and
42% vol fillers, respectively, were selected to
represent conventional flowable composites.
On the other hand, CF with a filler content of
59% vol, was included to represent highly filled
flowable composites. For Gl, specific data
regarding its filler volume percentage (%vol)
were not available from the manufacturer;
however, the material was selected based on the
manufacturer’s claim that it is a high-strength
composite suitable for all restorative indications.
In this study, filler content was reported as
volume percentage (%vol) to more accurately
reflect the spatial distribution of fillers within the
resin matrix. Given that the mechanical and

AP-X Esthetics

38.974 £ 7.00

Resin cement

Clearfil™ Beautifil Multilink N
injectable X

FLOW

219.62 £ 17.77 206.323 £ 15.31 207.453 £ 12.09 215.12 £20.879 214.143 £ 18.49

50.633 +£14.32 42.231 £9.67

physical properties of resin composites are more
strongly influenced by filler volume rather than
weight, the use of %vol provides a more reliable
and meaningful comparison between different
materials [26].

In this study, no significant differences in
fracture resistance were found between resin
cements and flowable composites. This may be
attributed to the dominant role of the ceramic’s
inherent strength, which likely outweighs the
influence of the thin cement layer. These findings
are consistent with those of Guess et al. (2013),
who reported that the intrinsic strength of the
ceramic material plays a more crucial role in
resisting fracture than external factors such as
cement layer thickness [27]. This study employed
ceramic specimens with a 1.0 mm thickness,
which aligns with previous research showing
that the load at crack initiation and the time to
crack propagation in chair-side CAD/CAM
lithium disilicate with a 1.0 mm occlusal thickness
did not differ statistically from the previous 1.5 mm
recommendation [28]. Additionally, a 1.0 mm
ceramic thickness is favorable in terms of light
transmission. Supporting evidence demonstrated
that 1.5 mm and 2.5 mm thick ceramics significantly
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attenuated light transmission, leading to reduced
mean values of ySBS, degree of conversion,
and polymerization shrinkage stress for all types
of resin cements tested [29].

In this study, water storage was performed
prior to specimen sectioning to ensure adequate
completion of the auto-cure polymerization
process. Previous studies have used a 7-day
water storage period for this purpose. Immediate
sectioning after cementation may disrupt the
ongoing polymerization of the resin cement,
potentially leading to incomplete curing and
compromised bonding performance. Therefore,
delayed sectioning after water storage was
adopted to minimize these effects and ensure
more consistent results [30, 31].

The film thickness of most tested flowable
composites, excluding FF, was less than 50 pm,
complying with 1SO 4049:2019 standards.
Although highly filled flowable composites
contained a greater amount of filler, they exhibited
similar film thickness to that of conventional
flowable composites and resin cements. This
phenomenon may be attributed to the incorporation
of rheological modifiers in highly filled flowable
composites, which effectively reduce viscosity.
The simplest method for decreasing the viscosity
of composites is to lower the viscosity of the
monomer mixture itself [32]. Notably, the primary
monomers used in Gl and CF composites are
UDMA and TEGDMA, respectively, both of which
have lower molecular weights and viscosities
compared to Bis-GMA. Previous studies have
shown that the flowability of composites depends
not only on the composition and ratio of the resin
matrix [33], but also on the content, shape, size
distribution, and silane treatment of the fillers [34].

Although this study evaluated the fracture
resistance and film thickness of various flowable
composites in comparison with resin cement,
several limitations must be considered.
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The mechanical performance of luting agents in
clinical applications is influenced by multiple
factors beyond fracture resistance, including
bond strength to both tooth structure and ceramic
surfaces, long-term durability under cyclic loading
(fatigue resistance), water sorption, solubility, and
resistance to thermal and mechanical stresses
[35-38]. In addition, the experimental design employed
flat specimens, whereas actual restorations
often involve more complex geometries. Such
differences may affect light accessibility and
polymerization efficiency, particularly for light-
cured materials. Therefore, future investigations
should include comprehensive evaluations to
thoroughly validate the potential of flowable
composites as alternative luting agents for ceramic
restorations.

Conclusion

Within the limitations of this study, flowable
composites demonstrated comparable fracture
resistance and film thickness to conventional resin
cement when bonded to lithium disilicate-based
ceramic restorations. Flowable composites may
offer a potential alternative to resin cements for
ceramic luting; however, comprehensive
mechanical and clinical validations are essential
before their routine clinical application can be
recommended.
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