

นิพนธ์ต้นฉบับ

พยาธิวิทยาของมะเร็งรังไข่ชนิดเยื่อบุผิวที่โรงพยาบาลพระปักเกล้า: ศึกษาข้อมูล 5 ปี

วินัย ศุนนิค, พ.บ.*, สุภาณี เมืองแทน, พ.บ.* , ปัญญา สนั่นพานิชกุล, พ.บ.*

* ภาควิชาสูติศาสตร์ นรีเวชวิทยา โรงพยาบาลพระปักเกล้า จังหวัดจันทบุรี ประเทศไทย

บทคัดย่อ

ที่มาของปัญหา : มะเร็งรังไข่เป็นสาเหตุของการเสียชีวิตอันดับต้นๆ โดยที่พบมากที่สุดคือมะเร็งรังไข่ชนิดเยื่อบุผิว ซึ่งผลการรักษาแนะนำขึ้นอยู่กับระยะของโรค รอยโรคที่เหลืออยู่หลังการผ่าตัด

วัตถุประสงค์ : วัตถุประสงค์หลักคือ ศึกษาถึงพยาธิวิทยาของมะเร็งรังไข่ชนิดเยื่อบุผิว วัตถุประสงค์รองคือ ศึกษาถึงผลการผ่าตัด ปัจจัยที่มีผลต่อการผ่าตัดและวิธีการรักษาในผู้ป่วยมะเร็งรังไข่ชนิดเยื่อบุผิว

วัสดุและวิธีการ : เป็นการศึกษาเชิงพรรณนาแบบย้อนหลังในผู้ป่วยมะเร็งรังไข่ชนิดเยื่อบุผิวที่เข้ารับการรักษาในโรงพยาบาลพระปักเกล้าระหว่างเดือนมกราคม พ.ศ. 2554 ถึงเดือนธันวาคม พ.ศ. 2559 โดยเก็บจำนวนอุบัติการณ์จำแนกตามพยาธิวิทยา ระยะของโรค ผลการผ่าตัดรวมถึงการรักษาที่ได้รับหลังจากการผ่าตัด

ผลการศึกษา : มีผู้ป่วยมะเร็งรังไข่ชนิดเยื่อบุผิวรายใหม่ทั้งหมด 172 คน พยาธิวิทยาที่พบมากที่สุดคือชนิด Serous (51 ราย, ร้อยละ 29.7) โดยพยาธิวิทยานี้ไม่ได้มีผลต่อผลการผ่าตัดอย่างมีนัยสำคัญทางสถิติ และเมื่อแบ่งพยาธิวิทยาตามความรุนแรงก็พบว่าไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ ในเรื่องของการรักษาเพิ่มเติม ($p = 0.151$) และตำแหน่งที่โรคกระจายไป ($p = 0.364$) และพบว่า ความอ้วน (AOR = 2.37, 95%CI 1.09-5.15, $p = 0.03$) และระยะของโรคที่เป็นระยะลุกลาม (AOR = 4.78, 95%CI 2.11-10.78, $p < 0.001$) คือปัจจัยที่ส่งผลต่อการผ่าตัด สรุป : พบว่ามะเร็งรังไข่ชนิดเยื่อบุผิวที่พบมากที่สุดคือชนิด serous และปัจจัยที่ส่งผลต่อผลการผ่าตัดคือ ความอ้วนและระยะลุกลาม

คำสำคัญ : มะเร็งรังไข่ชนิดเยื่อบุผิว; ผลการผ่าตัด; การรักษา; ปัจจัยเสี่ยง

Original article

Histopathological Patterns of Epithelial Ovarian Cancer at Prapokkla Hospital: A Five Years Retrospective Study

Wineeya Suknithom, M.D. ^{*}, Supanee Muangtan, M.D. ^{*}, Panya Sananpanichkul, M.D. ^{*}

^{*}Department of Obstetrics and Gynaecology, Prapokkla Hospital, Chanthaburi Province, Thailand

Abstract

Background : Ovarian cancer is a leading cause of death, primarily because of delays in diagnosis. Epithelial ovarian cancer (EOC) is the most common histological form of ovarian cancer. The results of treatment depend on the stage and the presence of a residual tumour after surgery.

Objective: The primary objective was to study the histopathological subtype of EOC in patients at Prapokkla Hospital. The secondary objectives included studying the outcomes and factors that affect the outcomes of surgery and treatment in EOC patients.

Materials and methods: This study is a hospital-based retrospective descriptive study which analysed the data of EOC patients in the Division of Obstetrics and Gynaecology at Prapokkla Hospital between January 2011 and December 2016. Incidences of EOC were counted, while the stage, results of surgery and adjuvant treatment after surgery were recorded.

Results: A total of 172 patients were included

in the sampling. The most common form identified was serous cystadenocarcinoma (51 cases, 29.7%). The results of surgery were not statistically significant in terms of difference between histopathological subtypes ($p = 0.145$). Further, there was no difference in treatment method ($p = 0.151$), metastatic site of disease ($p = 0.364$) between less and more aggressive histopathological subtypes. Obesity (AOR = 2.37, 95%CI 1.09-5.15, $p = 0.03$) and advanced stage (AOR = 4.78, 95%CI 2.11-10.78, $p < 0.001$) were factors that related to suboptimal surgery in EOC patients.

Conclusions: In this study, serous cystadenocarcinoma was found to be the most common of histopathological subtypes. Histopathological subtypes do not affect the outcome of surgery. Suboptimal surgery was found to be more prevalent in patients with obesity and advanced stages of illness.

Keywords: epithelial ovarian cancer; outcome of surgery; treatment; risk factor

Introduction

Ovarian cancer is divided into two major subtypes: epithelial ovarian cancer [EOC], affecting 90% of sufferers, and non-epithelial ovarian cancer [germ cell, sex cord-stromal tumour], affecting 10%.² In the United States of America and Europe, EOC is the second most common gynaecologic malignancy. However, it has the highest mortality rate.^{4,20} In Thailand, ovarian cancer is the sixth most common cancer in women⁹ and the second most common gynaecologic cancer after cervical cancer (age-standardised incidence rate of 6.2 per 100,000 people)¹¹. Ovarian malignancy is characterised by high mortality because roughly two-thirds of patients have advanced stages of the disease at diagnosis, with no accurate screening test and non-specific symptoms at the early stage. Thus, incidences of ovarian cancer are increasing, especially in Asia.¹⁶

The histopathologic subtype is one of the prognostic factors in EOC.^{1,3,13} Serous cystadenocarcinoma and clear-cell carcinoma, especially in the advanced stage, offer poor prognosis, while endometrioid adenocarcinoma is detectable in the early stages, is chemosensitive and has a better prognosis.^{21,23} Nevertheless, extensive cytoreductive surgical treatment includes hysterectomy, bilateral salpingo-oophorectomy, peritoneal cytology, bilateral pelvic lymphadenectomy, para-aortic lymphadenectomy and infracolic omentectomy as primary treatment options for definite diagnosis, staging and tumour removal, which aim

to alleviate symptoms and improve survival in all histopathologic subtypes.² Adjuvant chemotherapy is given to all patients except stage IA, IB grade 1 and 2. A combination of platinum and taxane is the standard regimen and aims to improve progression free survival as well as overall survival.^{14,18}

From previous studies²², the most common histopathologic subtype of EOC is serous cystadenocarcinoma (45%) followed by endometrioid carcinoma (12.6%). At King Chulalongkorn Memorial Hospital of Thailand²⁴, incidences of EOC were found to increase with age, with the peak being in the fifth decade of life. Proportions of endometrioid adenocarcinoma and clear cell carcinoma were increased with age. On the other hand, mucinous cystadenocarcinoma was decreased and serous cystadenocarcinoma remained constant across all age groups. The two most common histopathologic subtypes were endometrioid adenocarcinoma and clear cell carcinoma, different from other studies.

Prapokkla Hospital possessed no data concerning incidence and treatment of EOC, even in the case of ovarian cancer patients referred to the hospital for diagnosis and treatment.

In this study, the authors aim to evaluate rates of incidence according to histopathologic subtypes, treatment and surgical outcomes of EOC patients at Prapokkla Hospital from January 2011 to December 2016.

Materials and methods

Study design

This study was a retrospective case control study approved by the Prapokkla Hospital Institutional Review Board, No. CTIREC 021/61. This study was performed at Prapokkla Hospital, located in Chanthaburi Province, Thailand.

Study population

The study utilised the recruitment of all medical records for EOC patients between January 2011 and December 2016. All new cases of EOC patients involving a gynaecologic oncologist team and medical records confirming diagnoses were enrolled to this study. All EOC cases were reviewed for pathological confirmation of diagnosis. Patients that were diagnosed with recurrent EOC were excluded.

Data collection and Outcome measures

Medical records for new cases of EOC patients were reviewed and the data collected. Baseline characteristics, stage according to FIGO, 25 histopathology based on WHO classification 2014¹⁵, ultrasound findings, risk of malignancy index score, clinical presentation, treatment and surgical outcomes were recorded.

The primary outcome was the incidence of histopathologic subtypes of EOC. The secondary outcomes comprised treatment of EOC, surgical outcomes and the factors that affected those surgical outcomes.

Statistical analysis

Data was analysed using Stata 12 (Stata Corp LLC, Texas, USA). Normal distribution of data was tested with the Kolmogorov-Smirnov test. Parametric descrip-

tive data was expressed as mean \pm SD or percentage and compared with Student t test and Chi-square test or Fisher Exact test, respectively. Nonparametric continuous data was shown as median (interquartile range; IQR) and compared with the Mann-Whitney U test. Statistical significance was considered if p value was less than 0.05.

Results

A total of 172 new cases that were diagnosed with EOC between January 2011 and December 2016 were recruited. Mean age at time of EOC diagnosis was 52.3 years old. Baseline characteristics such as age, body mass index (BMI), menopausal status, parity, family history of cancer and RMI score were similar between less and more aggressive histopathological subtypes (table 1). The suboptimal surgery group tended to be older (53.4 ± 12.7 versus 51.0 ± 10.0 , $p = 0.048$). However, the optimal surgical group had more history of endometriosis [19 (24.4%) versus 12 (12.8%), $p = 0.049$] and family history of cancer [14 (17.9%) versus 7 (7.4%), $p = 0.036$] when compared to the suboptimal surgical group. The patients had advanced stages (stage 3 and stage 4) in both less and more aggressive pathological subtypes (64.5% and 59.3%) that were not statistically significant different between the 2 groups ($p = 0.266$). However, when considering the results of surgery, early stage (stage 1 and 2) was ideal for surgery compared to suboptimal surgery (56.4% versus 18.1%). On the other hand, suboptimal surgery was ideal in advanced stages (stage 3 and 4) compared to optimal surgery (81.9% versus 43.6%), as shown in table 1.

Table 1. Demographic characteristics of the study population (N = 172)

Characteristics	All (N=172(%))	Aggressive Epithelial ovarian cancer			Results of surgery	
		Less aggressive (113(65.7))	More aggressive (59(34.3))	p-value	Optimal Sx (78(45.3))	Sub optimal Sx (70(40.7))
Age	52.3±0.9	53.2±11.1	50.6±12.4	0.168	51.0±10.0	53.4±12.7
Ethics				0.744		0.157
Thai	165 (95.9)	108 (95.6)	57 (96.6)		73 (93.6)	92 (97.5)
Non-Thai	7 (4.1)	5 (4.4)	2 (3.4)		5 (6.4)	2 (2.1)
Status				0.136		0.105
Single	49 (28.5)	28 (24.8)	21 (35.6)		27 (34.6)	22 (23.4)
Married	123 (71.5)	85 (75.2)	38 (64.4)		51 (65.4)	72 (76.6)
Parity				0.171		
Nulliparity	61 (35.5)	36 (31.9)	25 (42.4)		32 (41.0)	29 (30.9)
Multiparity	111 (64.5)	77 (68.1)	34 (57.6)		46 (59.1)	65 (69.1)
BMI				0.696		0.105
Non-obesity	117 (68.0)	78 (69.0)	39 (66.1)		58 (74.4)	59 (62.8)
Obesity*	55 (32.0)	35 (31.0)	20 (33.9)		20 (25.6)	35 (37.2)
Smoking				0.494		0.504
No	167 (97.1)	109 (96.5)	58 (98.3)		75 (96.2)	92 (97.9)
Yes	5 (2.9)	4 (3.5)	1 (1.7)		3 (3.8)	2 (2.1)
Contraception				0.071		0.086
Non-Hormonal	156 (90.7)	101 (89.4)	55 (93.2)		74 (94.9)	82 (87.2)
Hormonal	16 (9.3)	12 (10.6)	4 (6.8)		4 (5.1)	12 (12.8)
Underlying disease				0.596		0.177
No	115 (66.9)	74 (65.5)	41 (69.5)		48 (61.5)	67 (71.3)
Yes	57 (33.1)	39 (34.5)	18 (30.5)		30 (38.5)	27 (28.7)
History of endometriosis						0.049*
No	141 (82.0)	96 (85.5)	45 (76.3)		59 (75.6)	82 (87.2)
Yes	31 (18.0)	17 (15.0)	14 (23.7)		19 (24.4)	12 (12.8)
Family history of cancer				0.116		0.036*
No	151 (870.8)	96 (85.0)	55 (93.2)		64 (82.1)	87 (92.6)
Yes	21 (12.2)	17 (15.0)	4 (6.8)		14 (17.9)	7 (7.4)
Menopausal status				0.681		0.514
Premenopausal	53 (30.8)	36 (31.9)	17 (28.8)		26 (33.3)	27 (28.7)
Postmenopausal	119 (69.2)	77 (68.1)	42 (71.2)		52 (66.7)	67 (71.3)
Ca125(Mean ±SD)	1713.35±410. 1	1291.43±434.7	2521.44±854.1		1362.8±420. 8	2004±664. 9
Stage at surgery						0.196
1	49 (28.5)	37 (32.7)	12 (20.3)	0.266	32 (41.0)	17 (18.1)
2	12 (7.0)	9 (8.0)	3 (5.1)		12 (15.4)	0 (0)
3	43 (25.0)	26 (23.0)	17 (28.8)		22 (28.2)	21 (22.3)
4	68 (39.5)	41 (36.3)	27 (45.8)		12 (15.4)	56 (59.6)
RMI				0.344		0.989
<200	33 (19.2)	24 (21.2)	9 (15.3)		15 (19.2)	18 (19.1)
>200	139 (80.8)	89 (78.8)	50 (84.7)		63 (80.8)	76 (80.9)

EOC-E= epithelial ovarian cancer coexisting with endometriosis; EOC-NE= epithelial ovarian cancer NOT coexisting with endometriosis; *Obesity defined as body mass index (BMI= bodyweight(kgs)/ height(meter)²) more than 24.9; † underlying disease defined as medical disease diagnosed before time of admission such as diabetes mellitus, chronic kidney disease, hypertension, syphilis, chronic lung disease etc.; Less aggressive subtype=serous, mucinous, Endometrioid, Brenner; more aggressive subtype=clear cell, mixed epithelium, undifferentiated.

Table 2 exhibits that the most common histopathological subtype was serous cystadenocarcinoma (51 cases, 29.7%), followed by unclassified (33 cases, 19.2%) and endometriod adenocarcinoma (32 cases, 18.6%). About two thirds of patients had advanced stages of

disease at time of diagnosis [111(64.5%) versus 61(35.5%)]. The results of surgery showed no statistically significant differences between histopathological subtypes ($p = 0.145$).

Table 2. Pathology report of early stage, advanced stage epithelial ovarian cancer and results of surgery

Pathology	N=172	Early stage	Advanced stage	Results of surgery		
				Optimal Sx	Sub optimal Sx	<i>p</i> -value
		61	111	78	94	
Serous	51 (29.7)	16 (26.2)	35 (31.5)	26 (33.3)	25 (26.6)	
Endometrioid	32 (18.6)	18 (29.5)	14 (12.6)	19 (24.4)	13 (13.8)	
Mucinous	30 (17.4)	12 (19.7)	18 (16.2)	10 (12.8)	20 (21.3)	
Clear cell	20 (11.6)	9 (14.8)	11 (9.9)	10 (12.8)	10 (10.6)	0.145
Brenner	0	0	0	0	0	
Mixed EOC	5 (2.9)	0	5 (4.5)	1 (1.3)	4 (4.3)	
Unclassified	33 (19.2)	5 (8.2)	28 (25.2)	11 (14.1)	22 (23.4)	
Undifferentiated	1 (6.0)	1 (1.6)	0	1 (1.3)	0	

Early=epithelial ovarian cancer stage I-II; Advanced= epithelial ovarian cancer stage III-IV; EOC-E=epithelial ovarian cancer coexisting with endometriosis, EOC-NE=epithelial ovarian cancer NOT coexisting with endometriosis; Sx= surgery; Optimal surgery= residual tumor nodules each measuring 1 cm or less in maximum diameter

There was no significant difference in treatment method ($p = 0.151$), metastatic site of disease ($p = 0.364$) between less and more aggressive histopathological subtypes. Most EOC patients underwent surgery and adjuvant chemotherapy (119 [69.2%]) followed by neo-

adjuvant chemotherapy plus interval tumour debulking surgery (25 [14.5%]). The most metastatic sites included the pelvis and abdomen (84 [48.8%]), followed by only the pelvic region (83 [48.3%]), as shown in table 3.

Table 3. Comparison of treatment and between less & more aggressive

Characteristics	All	Pathological subtype			p-value	
		Less	More	Aggressive		
		Aggressive	Aggressive			
Treatment	172 (100)	113 (100)	59 (100)		0.151	
Surgery Only	5 (2.9)	4 (3.5)	1 (1.7)			
Neoadjuvant CMT+Sx	25 (14.5)	12 (10.6)	13 (22.0)			
Surgery before CMT	119 (69.2)	84 (74.3)	35 (59.3)			
CMT alone	14 (8.1)	7 (6.2)	7 (11.9)			
Palliative	9 (5.2)	6 (5.3)	3 (5.1)			
Distribution	172 (100)	113 (100)	59 (100)		0.364	
Pelvis	83 (48.3)	58 (51.3)	25 (42.4)			
Abdomen-pelvis	84 (48.8)	51 (45.1)	33 (55.9)			
Distance	5 (2.9)	4 (3.5)	1 (1.7)			

Less aggressive subtype=serous, mucinous, Endometrioid, Brenner; more aggressive subtype=clear cell, mixed epithelium, undifferentiated

When calculated for crude odd and adjusted odd ratio, obesity (AOR=2.37, 95%CI 1.09-5.15, $p = 0.03$) and advanced stage of disease at diagnosis (AOR = 4.78, 95%CI 2.11-10.78, $p < 0.001$) were found to be factors that related to suboptimal surgery in EOC patients, as shown in table 4.

Table 4. Crude odd and adjusted odd ratios of factors related to suboptimal surgery (n=172)

Factors	Crude odd ratio	95%CI	p-value	Adjusted odd ratio	95% CI	p-value
Age	1.018	0.991 - 1.045	0.188	1.016	0.979 - 1.053	0.408
Postmenopausal	1.241	0.648 - 2.374	0.515	1.144	0.467 - 2.804	0.769
Obese	1.720	0.891 - 3.322	0.106	2.367	1.087 - 5.154	0.030*
Family history of cancer	2.719	1.038 - 7.122	0.042*	1.894	0.610 - 5.876	0.269
RMI >200	1.005	0.469 - 2.154	0.989	1.989	0.741 - 5.336	0.172
More aggressive pathology subtype	1.484	0.783 - 2.815	0.227	1.405	0.651 - 3.035	0.387
EOC-E	0.454	0.205 - 1.008	0.052	0.470	0.181 - 1.218	0.120
Advanced stage	5.862	2.940 - 11.687	< 0.001*	4.775	2.114 - 10.784	< 0.001*

Discussion

In this study, the incidence of EOC over 5 years (January 2011 - December 2016) was 172. The most prevalent histopathological

subtype was serous cystadenocarcinoma, which is correspondent to global previous studies,^{5,17,22} but different from previous study in Thailand,²⁴ which found that endometrioid

adenocarcinoma was the most histopathological subtype. The mean age of EOC was 52.3 years old, which was similar to a recent study in Thailand,²⁴ which showed patients were affected by reproductive factors. Further, most patients were menopausal, possibly due to estrogen transducing the pro-metastatic pathways via nuclear estrogen receptors (ER) and conforms to epidemiological study^{8,19} that shows elevation incidence of ovarian cancer in postmenopausal women who received estrogen. The stage at diagnosis was advanced (64.5%), which could be due to EOC patients displaying no symptoms in the early stage. The risk factors for EOC include low parity, age, early menarche and late menopause.² In the current study, however, most patients were married and multiparity, but showed no statistically significant difference. In previous cohort studies and meta-analysis, it was found that cigarette smoking increased the risk of ovarian mucinous cystadenocarcinoma, but did not increase the risk of serious or endometrioid adenocarcinoma.^{6,10} This was correlated with a previous study by the authors that found low prevalence of cigarette smoking as a reason for low incidence of mucinous cystadenocarcinoma. At present, the population of Chanthaburi Province and Thailand in general has adapted more westernised forms of diet and lifestyles, leading to earlier menarche, decreased parity, increased obesity associ-

ated with compounded exposure of estrogen and endometriosis resulting in increased endometrioid and clear cell carcinoma.⁷

Histopathologic subtype was one of the prognostic factors for patients with EOC. In this study, however, histopathological subtype was not influential on the stage at diagnosis, treatment strategies or results of surgery. Standard treatment strategy for EOC is surgery for definite diagnosis, staging and tumour removal aimed at alleviating symptoms.² In this study, most patients received surgery and adjuvant chemotherapy for primary treatment, followed by neoadjuvant chemotherapy plus debulking surgery.

This study demonstrated the univariate and multivariate analysis of factors that are associated with the results of surgery in table 4. It was found that obesity and advanced stage of disease at diagnosis were factors that related to suboptimal surgery in EOC patients. The results were matched with knowledge that advanced stage of disease, more residual disease after primary surgery had inferior outcomes for treatment.² Moreover, obesity may be associated with higher estrogen levels, which increase the risk for clear cell carcinoma (poorly differentiated, very aggressive subtype). Prognosis is worse than for other histological subtypes and advanced stage at diagnosis, meaning this may affect the results of surgery.

One limitation of this study was the small

sample population used. This was due to the fact that the hospital only recently had gynaecologic oncology. Further, this study was retrospective, so could not establish overall and disease-free survival statistics for EOC patients. A larger sample size and extended follow-up period is needed to determine these outcomes. Furthermore, the hospital is a tertiary care centre in Eastern Thailand. As such, the sample might not be representative of all Thai female patients.

To the best of the authors' knowledge, this study was the first to report the incidence, histological subtypes and surgical outcomes of EOC patients in Chanthaburi Province, Thailand.

In conclusion, the incidence of EOC at Prapokkla Hospital was 172 between January 2011 and December 2016. Serous cystadenocarcinoma was the most common histopathological subtype, expressing different distribution from previous studies in Thailand. Nevertheless, histopathological subtype did not affect the outcomes of surgery in this study. Most patients received surgery and adjuvant chemotherapy for first-line treatment. The factors that caused suboptimal surgery included obesity and advanced stage of disease at diagnosis.

Conflicts of interest:

The authors declare that there are no conflicts of interest regarding this study.

References

1. Agarwal R, Kaye SB. Prognostic factors in ovarian cancer: how close are we to a complete picture?. *Ann Oncol* 2005;16: 4-6.
2. Berek JS, Longacre TA, Friedlander M. Ovarian, Folloopian tube and peritoneal cancer. In: Berek JS, Berek DL, editor. Berek and Novak's gynecology. 15th ed. Philadelphia: Williams and Wilkins; 2012, 1350-427.
3. Clark TG, Stewart ME, Altman DG, Gabra H, Smyth JF. A prognostic model for ovarian cancer. *Br J Cancer* 2001; 85: 944-52.
4. Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. *Eur J Cancer* 2010; 46: 765-81.
5. Ghosh A, Ghartimagar D, Thapa S, Sathian B, Narasimhan R, Talwar OP. Ovarian tumors: pattern of histomorphological types- a 10 years study in tertiary referral center and review of literature. *Kathmandu Univ Med J* 2016;14(54): 153-8.
6. Gram IT, Lukanova A, Brill I, Braaten T, Lund E, Lundin E, et al. Cigarette smoking and risk of histological subtypes of epithelial ovarian cancer in the EPIC cohort study. *Int J Cancer* 2012;130: 2204-10.
7. Heidemann LN, Hartwell D, Heidemann CH, Jochumsem KM. The relation

between endometriosis and ovarian cancer a review. *Acta Obstet Gynecol Scand* 2014; 93: 20–31.

8. Hein A, Thiel FC, Bayer CM, Fasching PA, Haberle L, Lux MP, et al. Hormone replacement therapy and prognosis in ovarian cancer patients. *Eur J Cancer Prev* 2013; 22:52–8.

9. Imsamran W, Chaiwerawattana A, Wiangnon S, Pongnikorn D, Suwanrungrung, Sangrajrang S, et al. Cancer in Thailand Vol.. VIII, 2010-2012 [Internet], Bangkok: New Thammada Press; 2015. [cited 2018 Jan 23]. Available from: http://www.nci.go.th/th/File_download/Nci%20Cancer%20Registry/Cancer%20in%20Thailand8.pdf

10. Jordan SJ, Whiteman DC, Purdie DM, Green AC, Webb PM. Does smoking increase risk of ovarian cancer? a systematic review. *Gynecol Oncol* 2006;103:1122-9.

11. Khuhaprema T, Attasara P, Sriplung H, Wiangnon S, Sangrajrang. .Cancer in Thailand Vol. VII 2007-2009. Bangkok: Ministry of public health; 2013. [cited 2018 Jan 23]. Available from:http://www.nci.go.th/th/File_download/Nci%20Cancer%20Registry/Cancer%20in%20thailand_VII.pdf

12. Kline RC, Wharton JT, Atkinson EN, Burke TW, Gershenson DM, Edwards CL. Endometrioid carcinoma of the ovary: retrospective review of 145 cases. *Gynecol Oncol* 1990; 39: 337-46.

13. Makar AP, Baekelandt M, Tropé CG, Kristensen GB. The prognostic significance of residual disease, FIGO Substage, tumor histology, and grade in patients with FIGO stage III ovarian cancer. *Gynecol Oncol* 1995;56:175-80.

14. McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. *N Engl J Med* 1996;334:1-6.

15. Meinhold-Heerlein I, Fotopoulou C, Harter P, Kurzeder C, Mustea A, Wimberger P, et al. The new WHO classification of ovarian, fallopian tube, and primary peritoneal cancer and its clinical implications . *Arc Gynecol Obstet* 2016; 293:695-700.

16. Murthy N S, Shalini S, Suman G, et al (2009). Changing trends in incidence of ovarian cancer- the Indian scenario. *Asian Pac J Cancer Prev* 2009;10:1025-30.

17. Onyiaorah IV, Anunobi CC, Banjo AA, Fatima AA, Nwankwo KC. Histopathological patterns of ovarian tumors seen in Lagos University Teching Hospital: a ten year retrospective study. *Niq Q J Hosp Med* 2011; 21:114-8

18. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, et al.

Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. *J Clin Oncol* 2003;21: 3194-200.

19. Rodriguez C, Patel AV, Calle EE, Jacob EJ, Thun MJ. Estrogen replacement therapy and ovarian cancer mortality in a large prospective study of US women. *JAMA* 2001; 285:1460-5.

20. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. *CA Cancer J Clin* 2012; 62:10-29.

21. Storey DJ, Rush R, Stewart M, Rye T, Al-Nafussi A, Williams AR, et al. Endometrioid epithelial ovarian cancer: 20 years of prospectively collected data from a single center. *Cancer* 2008;112: 2211-20.

22. Sung PL, Chang YH, Chao KC, Chuang CM. Global distribution pattern of histological subtypes of epithelial ovarian cancer: a database analysis and systematic review. *GynecolOncol* 2014;133, 147-54.

23. Tidy J, Mason WP. Endometrioid carcinoma of the ovary: a retrospective study. *Br J ObstetGynaecol* 1988; 95:1165-9.

24. Kunpalin Y, Triratanachat S, Tantbirojn P. Proportion of ovarian cancers in overall ovarian masses in Thailand. *Asian Pac J Cancer Prev* 2014; 15:7929-34.

25. Zeppernick F, Meinhold-Heerlein I. The new FIGO staging system for ovarian, fallopian tube, and primary peritoneal cancer. *Arch GynecolObstet* 2014; 290: 839-42.