

Changes in Sperm Quality after Two Different Techniques of Sperm Preparation

Satitsuksanoa P, M.Sc., Suthuvoravut S, MD., Wongkularb A, Ph.D.

Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand

Abstract

Introduction: Sperm preparation is an important step in Assisted Reproductive Technology (ART). The two commonly used sperm preparation techniques in ART laboratory are the swim-up technique and density gradient centrifugation. The objective of this study was to compare the sperm qualities after sperm preparation between the swim-up technique and density gradient centrifugation.

Materials & Methods: A total of 25 semen samples were obtained from men who attended infertility clinic, Department of OB-GYN, Faculty of Medicine Ramathibodi Hospital, Mahidol University during February 2012 and March 2012. Semen samples were divided into two equal aliquots for sperm preparation by using the swim-up technique and density gradient centrifugation. Sperm qualities were evaluated as the sperm concentration, total motile sperm, the percentage of sperm motility, and the percentage of normal sperm morphology. The comparison between groups was done by paired t-test with significant level at $\alpha < 0.05$.

Results: The swim-up technique gave a better result in sperm motility and sperm normal morphology than the density gradient centrifugation technique. Density gradient technique resulted in higher sperm concentration and total motile sperm.

Conclusions: The swim-up technique should be a more suitable technique for sperm preparation in ART laboratories because it is a very simple, fast, effective, and less expensive.

Keywords: Sperm preparation technique / Swim-up technique / Density gradient centrifugation

Corresponding Author: Satitsuksanoa P, M.Sc.

Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital,
Mahidol University, Bangkok 10400, Thailand. Tel: +66 2 201-2167 E-mail: jenniferpatt.jp@gmail.com

Introduction

Various techniques of sperm preparation in ART aim to improve qualities sperm and separate all of the unwanted cells - seminal plasma, bacteria, and cell debris - that may reduce the fertilizing ability of spermatozoa⁽¹⁾. These techniques can be divided into four types: migration techniques, density gradient separation, filtration techniques, and washing⁽²⁾. Although many sperm preparation techniques are available, the swim-up and density gradient centrifugation are the two common techniques used for sperm preparation. Briefly, the swim-up technique allows motile sperm to swim in the culture medium, whereas, density gradient centrifugation selects spermatozoa according to their density. Sperm preparation is considered to be an important step for treatment of infertility couples wanting to receive treatment such as intrauterine insemination (IUI), *in vitro* fertilization (IVF) or Intracytoplasmic Sperm Injection (ICSI)⁽³⁾. The objective of this study is to compare the sperm qualities which included sperm concentration, total motile sperm, percentage of sperm motility, and percentage of normal sperm morphology between two techniques of sperm preparation i.e. swim-up technique and density gradient centrifugation.

Materials and Methods

Semen analysis

A total of 25 normozoospermic semen samples were obtained from men who attended infertility clinic, Department of OB-GYN, Faculty of Medicine, Ramathibodi Hospital during February 2012 and March 2012. The present study has been approved by the Ethical Clearance Committee on Human Rights Related to Research Involving Human Subjects, the Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand. (Document no. MURA2012/37 February 7, 2012.) Routine semen analysis was performed according to World Health Organization (WHO) guidelines⁽⁴⁾. Each ejaculate was split into two equal

aliquots and prepared for swim-up technique and density gradient centrifugation.

Swim-up technique

1 ml of semen aliquot was transferred to a 15 ml conical centrifuge tube, and then mixed gently with 1 ml of Ferticult flushing medium (FertiPro, N.V., Beernem, Belgium). The semen aliquot mix was then centrifuged at 300 g for five minutes, and the supernatant was discarded, leaving the sperm pellets in the conical centrifuge tube. 0.5 ml of Ferticult flushing medium was gently layered onto the pellets and the conical centrifuge was positioned at an angle of 45° for 45 minutes in 37°C⁽⁵⁾. The supernatant at a depth of 0.5 ml was then removed for evaluation.

Density gradient centrifugation

Sil>Select Plus(tm) 40/80 (FertiPro, N.V., Beernem, Belgium) was prepared. By performing density gradient centrifugation, the lower layer was 1 ml of Sil>Select Plus™ 80 which was over layered by 1 ml of Sil>Select Plus™ 40. This two layer gradients is stable for up to two hours. 1 ml of semen aliquot was then gently placed on top of the two layers. The semen aliquot mix was then centrifuged at 350 g for seven minutes. The supernatant was removed and discarded, and the pellets were transferred to another new conical centrifuge tube and mixed gently with 1 ml of Ferticult flushing medium and centrifuged at 300 g for five minutes. This step of discarding the supernatant, mixing 1 ml of Ferticult flushing medium, and centrifuging it at 300 g for five minutes was performed for a second time. Finally, 0.5 ml of Ferticult flushing medium was gently layered onto the pellets and mixed well⁽⁵⁾. The uppermost layer to a depth of 0.5 ml is then removed for evaluation.

Statistical analysis

The results obtained during the experiment were reported by the comparisons of quantitative variables

which were done by paired t- test. The level of significance was set at $\alpha < 0.05$. Data were analyzed using Computer program SPSS for Microsoft Windows version 18 (SPSS Inc., Chicago, IL, USA), license from Mahidol University.

Results

Before sperm preparation, sperm qualities of all semen under study were within normal range by WHO criteria (Table 1). Reference values for normal semen quality in man compatible with normal fertility according to WHO (2010) were as follows; sperm concentration $\geq 15 \times 10^6/\text{ml}$, percentage of sperm motility $\geq 40\%$, and percentage of normal sperm morphology $\geq 4\%$.

After sperm preparation, sperm qualities were improved in both techniques. Swim-up technique gave a better result in the percentage of motility in comparison with density gradient centrifugation ($98.30 \pm 1.79\%$ VS $94.77 \pm 1.79\%$, respectively) ($p < 0.001$). Swim-up technique was also resulted in significantly higher percentage of normal sperm morphology than density gradient centrifugation ($15.44 \pm 2.00\%$ VS $11.52 \pm 2.00\%$, respectively) ($p < 0.001$). Sperm concen-

tration decreased from $43.80 \pm 7.42 \times 10^6/\text{ml}$ before sperm preparation to $37.18 \pm 9.13 \times 10^6/\text{ml}$ after swim-up preparation ($p < 0.001$). On the contrary, sperm concentration after density gradient centrifugation increased with no significant difference. Sperm concentration after preparation was also significantly difference between two techniques. Total motile sperm after sperm preparation significantly decreased in both techniques, significantly more in swim-up technique than density gradient centrifugation ($18.28 \pm 4.56 \times 10^6$ VS $21.34 \pm 7.07 \times 10^6$, respectively) ($p < 0.001$).

Discussion

The important of sperm preparation in ART is to improve the quality of the sperm. Many techniques of sperm preparation gave different results in sperm concentration, total motile sperm, sperm motility, and sperm normal morphology. These techniques compared of at least four techniques i.e. migration techniques, density gradient separation, filtration techniques, and washing^(2,6). Each technique has its own strength. Migration is mainly focused on “swim-up” techniques which can select highly motile sperm with normal morphologically sperm. Density gradient

Table 1

Semen analysis parameters				(1) & (2)		(1) & (3)		(2) & (3)	
	Before		Swim-up	Density gradient		t	p-value	t	p-value
	Mean (S.D.) (95% CI)	Mean (S.D.) (95% CI)	Mean (S.D.) (95% CI)	t	p-value	t	p-value	t	p-value
Concentration ($10^6/\text{ml}$)	43.80 (7.42) (40.74, 46.86)	37.18 (9.13) (33.41, 40.95)	44.95 (14.57) (38.93, 50.97)	3.44	<0.01	-0.41	0.686	-4.89	<0.001
Total motile sperm (10^6)	70.77 (16.15) (64.11, 77.43)	18.28 (4.56) (16.39, 20.16)	21.34 (7.07) (18.42, 24.26)	19.50	<0.001	20.81	<0.001	-4.17	<0.001
Motility (%)	68.90 (6.09) (66.39, 71.42)	98.30 (1.79) (97.56, 99.04)	94.77 (1.79) (94.03, 95.51)	-29.22	<0.001	-24.52	<0.001	14.49	<0.001
Morphology (%)	17.16 (2.33) (16.19, 18.13)	15.44 (2.00) (14.61, 16.27)	11.52 (2.40) (10.53, 12.51)	4.62	<0.001	9.98	<0.001	11.33	<0.001

separation classifies sperm according to density using commercial gradient materials such as Nycomed® (Nyegaard & Co., Oslo, Norway), Ficoll® (Pharmacia, Quebec, Canada), IxaPrep® (MediCut, Copenhagen, Denmark), Sil-Select Plus™ (FertiPro, N.V., Beernem, Belgium), SpermGrad™ (Vitrolife, Gothenburg, Sweden), PureSperm® (NidaCon Laboratories AB, Gothenburg, Sweden) or Isolate® (Irvine Scientific, Santa Anam CA, USA)⁽⁷⁻⁹⁾. Filtration is performed by many kinds of designed filter such as glass wool column filtration, glass beads, sephadex columns, and transmembrane migration, in order to separate the good quality sperm. These columns are expensive and not very common⁽²⁾. Washing is mainly focused on centrifugation steps which only used in patients with oligozoospermia⁽¹⁰⁾.

Swim-up technique and density gradient centrifugation are two common techniques used in ART. In our study, Sil-Select Plus™ (FertiPro, N.V., Beernem, Belgium) was a medium that were used while performing density gradient centrifugation technique because of its cost and availability. Previous study indicated that it gave a lowest percentage of sperm

DNA damage⁽¹¹⁾.

The important parameters that indicate the success rate of ART are the percentage of sperm motility and the percentage of sperm normal morphology⁽¹²⁻¹⁵⁾. Our study showed that swim-up technique gave better results than density gradient centrifugation in sperm motility and sperm normal morphology. Density gradient centrifugation gave better semen qualities in sperm concentration and total motile sperm.

Swim-up technique is a very simple, fast, effective, and less expensive sperm preparation technique. Density gradient centrifugation is more expensive due to the cost of commercial gradient media. In conclusion, swim-up techniques may be more suitable than density gradient centrifugation in standard laboratories in developing countries.

Acknowledgements

The present study was financially supported by research grant of the Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand.

References

1. Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C, et al. Sperm morphology, motility, and concentration in fertile and infertile men. *N Engl J Med* 2001;345:1388-93.
2. Acosta AA, Kruege TF, editors. *Human Spermatozoa in Assisted Reproduction*. 2nd ed. New York, USA: The Parthenon Publishing Group Inc.; 1996.
3. Ren SS, Sun GH, Ku CH, Chen DC, Wu GJ. Comparison of four methods for sperm preparation for IUI. *Arch Androl* 2004;50:139-43.
4. WHO. *WHO laboratory manual for the examination and the processing of human semen*. 5th ed: WHO Press 2010.
5. Ricci G, Perticarari S, Boscolo R, Montico M, Guaschino S, Presani G. Semen preparation methods and sperm apoptosis: swim-up versus gradient-density centrifugation technique. *Fertil Steril* 2009;91:632-8.
6. Drobis EZ, Zhong CQ, Overstreet JW. Separation of cryopreserved human semen using Sephadex columns, washing, or Percoll gradients. *J Androl* 1991;12:201-8.
7. Soderlund B, Lundin K. The use of silane-coated silica particles for density gradient centrifugation in in-vitro fertilization. *Hum Reprod* 2000;15:857-60.

8. Mousset-Simeon N, Rives N, Masse L, Chevallier F, Mace B. Comparison of six density gradient media for selection of cryopreserved donor spermatozoa. *J Androl* 2004;25:881-4.
9. Van der Zwalm P, Bertin G, Schoysman-Deboeck A, Geerts L, Schoysman R, Debauche C. Techniques of sperm selection, improvement and separation in an in vitro fertilization program. *Acta Eur Fertil* 1989;20:269-83.
10. Agarwal A, Ikemoto I, Loughlin KR. Effect of sperm washing on levels of reactive oxygen species in semen. *Arch Androl* 1994;33:157-62.
11. Chiamchanya C, Kaewnoonual N, Visutakul P, Manochantr S, Chaiya J. Comparative study of the effects of three semen preparation media on semen analysis, DNA damage and protamine deficiency, and the correlation between DNA integrity and sperm parameters. *Asian J Androl* 2010;12:271-7.
12. Tomlinson MJ, Moffatt O, Manicardi GC, Bizzaro D, Afnan M, Sakkas D. Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. *Hum Reprod* 2001;16:2160-5.
13. Van Waart J, Kruger TF, Lombard CJ, Ombelet W. Predictive value of normal sperm morphology in intrauterine insemination (IUI): a structured literature review. *Hum Reprod Update* 2001;7:495-500.
14. Kasai T, Ogawa K, Mizuno K, Nagai S, Uchida Y, Ohta S, et al. Relationship between sperm mitochondrial membrane potential, sperm motility, and fertility potential. *Asian J Androl* 2002;4:97-103.
15. Morbeck DE, Leonard PH, Weaver AL, Shimek KM, Bouwsma EV, Coddington CC. Sperm morphology: classification drift over time and clinical implications. *Fertil Steril* 2011;96:1350-4.