The Misdiagnosis of Beta-Thalassemia Heterozygosity Led by Hyperthyroidism

Likhasit Sanglutong1, Somchai Insiripong2, Wattana Insiripong3
1 Department of Medicine, Bangkok Hospital Muangraj, Ratchaburi, Thailand
2 Department of Medicine, Saint Mary’s Hospital, Nakhon Ratchasima, Thailand
3 Department of General Practice, Nopparat Rajathanee Hospital, Bangkok, Thailand

When patients have mild microcytic hypochromic anemia with slightly increased hemoglobin (Hb) A2 fraction, the most likely diagnosis is beta-thalassemia heterozygosity. But herein we found a patient who had all these hematological parameters but did not have beta-thalassemia heterozygosity. He was a 14-year-old Thai who presented with fatigue and heat intolerance for 2 weeks. His physical examination revealed mild diffuse enlargement of thyroid gland. Blood tests showed Hb 120 g/L, mean corpuscular volume (MCV) 72.1 fl, mean corpuscular hemoglobin (MCH) 23.3 pg/cell, free triiodothyronine (FT3) > 20 pg/mL, free thyroxine (FT4) > 5.0 ng/dL, thyrotropin < 2.5 mIU/L, serum ferritin 51.3 µg/L, Hb A2 3.8%. Besides primary hyperthyroidism, he was diagnosed with beta-thalassemia heterozygosity. After being treated with antithyroid drug for 6 months, his blood tests showed subclinical hyperthyroidism, Hb 146 g/L, MCV 83.3 fl, MCH 26.3 pg/cell, Hb A2 3.0%. Not only the thyroid hormones levels but also the Hb concentration, MCV, and the Hb A2 percentage became normal. Due to this inconsistency, the DNA analysis for beta-thalassemia genes was performed and found negative for numerous common and rare beta-thalassemia genes meanwhile beta-globin gene sequencing appeared normal. It should be concluded that hyperthyroidism could induce slightly elevated Hb A2 percentage and mild hypochromic microcytic anemia in a normal individual, leading to the misdiagnosis of beta-thalassemia heterozygosity. In other words, Hb analysis should not be performed during hyperthyroidism and it should be delayed till achievement of the euthyroid stage.

Keywords: Hyperthyroidism, Fake Beta, Thalassemia, Heterozygosity
Introduction

Thalassemia is a group of hereditary disease due to genetic transmission of defect of globin chain synthesis. It is mainly classified into alpha and beta-thalassemia depending on the globin chain involved. Most of them are characterized by microcytic hypochromic anemia of that the degree can vary from asymptomatic to transfusion-dependent or still birth. For individuals with beta-thalassemia heterozygosity or traits, they usually have mild microcytic hypochromic anemia, hemoglobin (Hb) concentration ranging from 106 ± 19 to 133 ± 17 g/L, mean corpuscular volume (MCV) 63.8 ± 4.2 fL for beta(0), 67.0 ± 5.5 fL for beta(+), and mean corpuscular hemoglobin (MCH) 20.1 ± 1.4 pg/cell for beta(0), 21.2 ± 1.9 pg/cell for beta(+) thalassemia traits. Hb analysis mostly shows only mildly increased hemoglobin A2 (alpha2 delta2) percentage, 3.5 - 5.7 %, mean 4.9 ± 0.4 %. Although all these characteristics are genetically transmitted, they can be minimally modified by some acquired factors, for instance, in beta-thalassemia heterozygosity complicated by iron deficiency anemia: Hb concentration decreases from 108 ± 11 to 98 ± 11 g/L, MCV from 67.9 ± 4.8 to 64.0 ± 6.4 fL, MCH from 21.5 ± 3.0 to 20.0 ± 3.0 pg/cell, and Hb A2 from 5.8 ± 0.9 % to 5.4 ± 0.9 %. Bradycardia is also an acquired factor.

Case Report

A 14-year-old Thai man was definitely diagnosed with primary hyperthyroidism based on the history of 2-week fatigue, heat intolerance without weight loss and diffusely mild enlargement of thyroid gland, no exophthalmos, heart rate 100 beats/min regularly on the physical examination whereas his first thyroid function test showed free triiodothyronine (FT₃) > 20.0 pg/mL (normal 1.71 - 3.71), free thyroxine (FT₄) > 5.0 ng/dL (normal 0.7 - 1.48), thyrotropin < 2.5 mIU/L (normal 0.4 - 4.0), antithyperoxidase antibody 6.4 IU/mL (normal < 9), and antithyroglobulin antibody < 0.9 IU/mL (normal < 4).

Blood tests before starting antithyroid drug showed Hb 120 g/L, hematocrit (Hct) 37.2%, white blood cell (WBC) 8.5 × 10³/L, platelet 341 × 10³/L, neutrophil 56.6%, lymphocyte 31.5%, MCV 72.1 fL, MCH 23.3 pg/cell, mean corpuscular hemoglobin concentration (MCHC) 32.3 g/dL, red blood cell distribution width (RDW) 13.4%, and serum ferritin 51.3 µg/L. Hb analysis using the capillary zone electrophoresis method revealed A₂A₂, Hb A₂ 3.8%, Hb A 96.2%. The interpretation was beta-thalassemia heterozygosity with or without alpha thalassemia trait. The polymerase chain reaction (PCR) for alpha thalassemia was performed and showed negative for alpha thalassemia-1 genes (Southeast Asian and Thai deletions), negative for Southeast Asian Ovalocyte (SAO) gene, negative for alphaglobin gene triplication and negative for alpha thalassemia-2 (3.7 kb and 4.2 kb deletions, Hb Constant Spring and Hb Pakse genes). Hence, the hematological diagnosis of beta-thalassemia heterozygosity was definitely concluded. And genetic counseling was offered to him.

He was treated with methimazole 30 mg, propranolol 20 mg as well as 2 iron tablets a day. He could tolerate drug well, no neutropenia in the first month: Hb 138 g/L, Hct 42.3%, WBC 7.4 × 10³/L, platelet 438 × 10³/L, MCV 75.9 fL, MCH 24.7 pg/cell, MCHC 32.5 g/dL, RDW 13.4%, so antithyroid drug and iron tablets were regularly continued until he achieved euthyroidism in 3 months and antithyroid drug was gradually tapered.

After completion of 6 months of treatment, his blood tests showed FT₃ 4.87 pg/mL, FT₄ 1.78 ng/dL, thyrotropin 0.143 mIU/L, Hb 146 g/L, Hct 45.8%, WBC 7.5 × 10³/L, platelet 336 × 10³/L, MCV 83.3 fL, MCH 26.3 pg/cell, MCHC 31.9 g/dL, RDW 12.9%, serum ferritin 193 µg/L. Whereas his hyperthyroidism had turned from full blown to subclinical, the mild anemia and microcytosis became normal, therefore Hb analysis using the old method was repeated A₂A₂, Hb A₂ 3.0%, Hb F 0.3%.

Many hematological parameters that used to lead to the interpretation as beta-thalassemia heterozygosity during
The Misdiagnosis of Beta-Thalassemia Heterozygosity Led by Hyperthyroidism

Hyperthyroidism became normal during euthyroidism. So, DNA analysis for beta-thalassemia was performed and found negative for all 10 common beta(0) and negative for 7 rare beta(+), and negative for 14 rare beta(0) thalassemia genes. And it was further confirmed with the whole beta-globin gene sequencing which was apparently normal. It was concluded that hyperthyroidism could temporarily induce many hematological parameters of a normal person to be closely similar to those of beta-thalassemia heterozygosity and all turned to normal after euthyroidism was achieved.

Discussion

When definite diagnosis of primary hyperthyroidism had been concluded, our case was misdiagnosed as beta-thalassemia heterozygosity because he had mild anemia, Hb 120 g/L, with mild microcytosis (MCV 72.1 fL), mild hypochromia (MCH 23.3 pg/cell), and mildly increased Hb A₂ percentage, 3.8%, that were perfectly consistent with parameters belonging to beta-thalassemia heterozygosity, MCV 67.0 ± 5.5 fL, MCH 21.2 ± 1.9 pg/cell, Hb A₂ 3.5 - 5.7%, Hb concentration range from 106 ± 19 to 133 ± 17 g/L. His serum ferritin was normal (51.3 µg/L), more than 30 µg/L, hence iron deficiency anemia, another one of two common causes of microcytic anemia could be excluded.

Basically, thyroid hormones can enhance erythropoiesis and delta globin chain synthesis. Jaafar et al showed the significant increase of Hb A₂ in hyperthyroidism as compared with normal control, 2.77 ± 0.01 % vs 2.3 ± 0.01 %. But it did not reach 3.5%, the initial cut point for distinguishing beta-thalassemia heterozygosity from the control. In contrast, Hb A₂ in our case was 3.8% while the serum ferritin was adequate (51.3 µg/L) during hyperthyroidism. One of common causes of the decrease of percentage of Hb A₂ in beta-thalassemia heterozygosity is iron deficiency anemia but it was not shown in Jaafar’s study.

Characteristics of beta-thalassemia heterozygosity, Hct 35%, MCV 72 fL, MCH 27 pg/cell, MCHC 34 g/dL, Hb A₂ 4.5% in Graves’ disease used to be recognized in a Mediterranean man since 1994. After euthyroidism achievement, many parameters became normal, Hct 45% and Hb A₂ 2.8% although the MCV and MCH were not mentioned. Moreover, the DNA analysis for beta-thalassemia was not demonstrated, either. In contrast, both MCV and MCH turned normal in euthyroidism in our case.

Besides hyperthyroidism, some authorities demonstrated the slightly higher percentage of Hb A₂ alone should not be generally the only one tool for making the diagnosis of beta-thalassemia heterozygosity because among 38 cases with beta-thalassemia traits which were proved with DNA sequencing; 7 cases had Hb A₂ < 3%, 3 cases had Hb A₂ 3.1 - 3.9 %, the remainder (28 cases) had Hb A₂ > 4%. On the contrary, among 189 normal cases, 179 cases had Hb A₂ < 3%, 8 cases had Hb A₂ 3.1 - 3.9 %, and 2 cases had Hb A₂ level above 4%.

Hb concentration, MCV, and MCHC were found significantly low in only 38%, 8%, and 4% of hyperthyroidism, respectively, as compared with normal control. Severity of the decrease of any parameter was not enough to suspect beta-thalassemia heterozygosity: Hb 124 ± 13 to 125 ± 14 g/L, MCV 81.3 ± 8.6 to 81.7 ± 8.3 fL, and MCH 26.9 ± 2.7 to 27.0 ± 3.6 pg/cell, as compared with 136 ± 12 g/L, 85.0 fL, 29.3 ± 2.9 pg/cell, respectively. In addition, because iron deficiency anemia can be found in 0.9% or more of Graves’ disease patients and it can contribute all these low parameters, so it should be concurrently explored in any microcytic anemic patient also.

Thyroid hormones could directly enhance erythropoiesis via the Krüppel-like factor 9 (KLF9) acting at thyroid hormone receptor-alpha that is essential for regulating erythropoiesis or via increased erythropoietin through augmented accumulation of hypoxia-inducible factor-1. Moreover, without iron deficiency, hyperthyroidism could induce microcytosis which would become normocytosis after euthyroidism achievement and the microcytosis could reappear again when the hyperthyroidism recurred, the difference of MCV between hyperthyroidism and euthyroidism stages was 6 ± 3.5 fL. The underlying mechanism of microcytosis in hyperthyroidism has not
The Misdiagnosis of Beta-Thalassemia Heterozygosity Led by Hyperthyroidism

been well understood but may be due to an ineffective erythropoiesis or thyroid hormone itself because it was found in cats that the higher serum total thyroxine, the higher percentage of microcytosis was and there was no correlation between the time elapse from the first diagnosis of hyperthyroidism and the MCV.

Conclusions

Hyperthyroidism seemed to lead the misdiagnosis of beta-thalassemia heterozygosity in a normal person. Hence, Hb analysis should not be performed during hyperthyroidism.

References


The Misdiagnosis of Beta-Thalassemia Heterozygosity Led by Hyperthyroidism


ภาวะไทรอยด์เกิน ลวงไปสู่การวินิจฉัยเบต้าธาลัสซีเมียแฝงเทียม

ลิขสิทธิ์ แสงลุงทอง, สมชาย อินทรศิริพงษ์, วัฒนะ อินทรศิริพงษ์
1 กลุ่มงานอายุรกรรม โรงพยาบาลกรุงเทพเมืองราช ราชบุรี ประเทศไทย
2 กลุ่มงานอายุรกรรม โรงพยาบาลเซนต์เมรี่ นครราชสีมา ประเทศไทย
3 กลุ่มงานเวชปฏิบัติ โรงพยาบาลนพรัตน์ราชธานี กรุงเทพฯ ประเทศไทย

ผู้ป่วยที่โภชนาการเด็กชาย มีขนาดเนื้อเยื่อเจลเล็ก ซึ่งอาจเป็นผลมาจากการกลับสู่ภาวะสุขภาพปกติของฮอร์โมนไทรอยด์ที่สูงขึ้น การวินิจฉัยที่เป็นไปได้มากที่สุดคือ เบต้าธาลัสซีเมียแฝง พยาบาลที่ทำงานอยู่ในโรงพยาบาลที่ต่อเนื่องทั้งหมด แต่ไม่มีภาวะเบต้าธาลัสซีเมียแฝง ผู้ป่วยเป็นชายไทยอายุ 14 ปี มาพบแพทย์ด้วยอาการหน้าตื่นขี้ขมี่ เสียงหาย 100 ครั้งต่อนาที ผลตรวจเลือดพบ Hb 120 g/L, mean corpuscular volume (MCV) 72.1 fL, mean corpuscular hemoglobin (MCH) 23.3 pg/cell, free triiodothyronine (FT3) > 20 pg/mL, free thyroxine (FT4) > 5.0 ng/dL, thyrotropin < 2.5 mIU/L, serum ferritin 51.3 µg/L, Hb A2 3.8% นอกจากนี้จากภาวะฮอร์โมนไทรอยด์สูงปฐมภูมิแล้ว การวินิจฉัยที่เป็นไปได้มากที่สุดคือ เบต้าธาลัสซีเมียแฝง แพทย์ให้การรักษาด้วยยาต้านไทรอยด์เป็นเวลา 6 เดือน ตรวจเลือดพบว่าฮอร์โมนไทรอยด์ปกติ Hb 146 g/L, MCV 83.3 fL, MCH 26.3 pg/cell, Hb A2 3.0% ซึ่งไม่เพียงระดับฮอร์โมนไทรอยด์ที่สูงขึ้นแต่ความต่ำชื้นฮีโมโกลบินขนาดเม็ดเลือดแดง และสัดส่วนของฮีโมโกลบิน A2 2 เป็นปกติคือ ผลการตรวจชะลอการเห็นสัมพันธ์ โพแทนีฟอร์มยิ่งนั้นดีกว่า ไม่พบเห็นยีนเบต้าธาลัสซีเมีย และสัดส่วนชั้นของฮีโมโกลบิน A2 จึงพบการตรวจวิเคราะห์ยีนส์พบว่า ไม่พบเบต้าธาลัสซีเมียและลิภ์บลลิภ์ ขอขอบคุณ;i

คำสำคัญ: ภาวะฮอร์โมนไทรอยด์สูง, ภาวะเบต้าธาลัสซีเมีย, แฝงเทียม