

Cost Analysis Comparison between 6/6 HLA Matched Related Donor Hematopoietic Stem Cell Transplantation (HSCT) and Hypertransfusion in Severe Thalassemia

Panthangkool W, MD¹, Kasemsup V, MD², Sripaiboonkij N³,
Pakakasama S, MD¹, Jearadisak O, Bsc (Pharm), M Pharm⁴, Hongeng S, MD¹

¹ Department of Pediatrics, ² Community Health Medicine, ³ Medical Informatics,
Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

⁴ Mettapracharuk Watraikhang Hospital, Nakornpathom, Thailand

Abstract

Severe thalassemia patients require blood transfusion with iron chelation daily to improve quality of long life. The cost of this hypertransfusion program was provided by The National Health Security Office (NHSO). Based on the year 2006, this was 6,660,000 THB per a 30-years patient. Hematopoietic stem cell transplantation (HSCT) is a new alternative way for curing this disease, but most of the people think of high cost and high risk. The objective of this study was to estimate the cost of HSCT and compare with the cost of hypertransfusion. We examined and calculated the direct costs of treatment in 37 children with thalassemia who underwent 6/6 HLA matchd related donor HSCT at Ramathibodi Hospital between 1992 and 2008. A median time of follow-up was 15 months (1.8-63.6 months). The direct costs included the expenses of pre HSCT evaluation, admission for HSCT, complications and other related procedures for outpatient follow-up until stopping immunosuppressive agents. Our data demonstrated that the cost of HSCT was 957,008 THB per transplant which was lower than hypertransfusion. Thirty-five patients (95%) are disease-free survival, being as normal life.

Keyword: Cost analysis, thalassemia, hematopoietic stem cell transplantation

Corresponding Author: Kasemsup V, MD

Community Health Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400
THAILAND Email: 2028knapp@gmail.com

Background

Thalassemia is one of serious health problems in Thailand as one percent of the population suffers from this hereditary anemic disease⁽¹⁾. Although Thai national health policy provides preventive interventions such as genetic counseling, premarital and prenatal diagnoses for risky couple but thalassemic patients have mostly been treated with symptomatic treatment or hypertransfusion. The National Health Security Office (NHSO) which has been responsible to provide health insurance for 70% of the Thai population has excluded transplantation of its benefit package since the inception of the NHSO in 2001^(2,3). As a result of this policy, many Thai severe thalassemic patients have received only monthly blood transfusion combined with regular daily iron chelating therapy for life⁽⁴⁾. They all take risk of transfusion acquired hepatitis and organ damage from iron overload mainly in the heart and endocrine organs^(5,6).

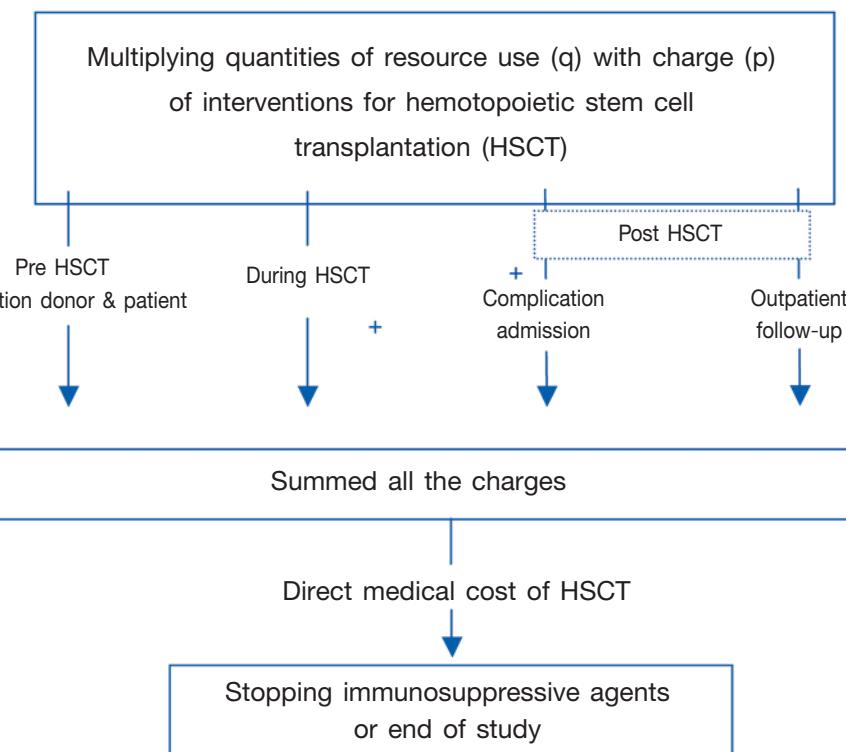
If patients could not receive blood transfusion, they would have anemia, hepatosplenomegaly, growth failure, and bone deformity^(7,8). Desferoxamine is a good iron chelation to prevent iron overload, but it needs to be intravenously or subcutaneously injected everyday for 8 to 12 hours, and also could cause growth failure and visual and hearing impairments^(8,9). So, apart from patients' own suffering and burden on their family, providing medical care for thalassemic patients has also imposed substantial burden on a national health budget⁽¹⁰⁾.

This disease could be cured with hematopoietic stem cell transplantation (HSCT)^(11,12), but it is very expensive and has been excluded from the benefit package of the benefit package of the NHSO. This study intended to describe the cost of HSCT in order to inform policy maker about the financial feasibility to cover this treatment.

Objective

To estimate and compare the direct medical cost of 6/6 HLA matched related donor HSCT and hypertransfusion in severe thalassemia.

Method


This study examined a direct-medical cost of 6/6 matched related donor HSCT in 37 cases of severe thalassemia treated at Ramathibodi Hospital during 1992 and 2008. The follow-up time of the cases was from 1.8 to 63.6 months, with an average of 15 months. Four cases underwent second HSCT.

The direct-medical costs of each HSCT was calculated by multiplied quantities of resource use (q) with charge or price (p) of medical interventions⁽¹³⁾, including laboratory tests, radiological images, pharmacy products, procedures, blood products, medical supplies in pre-, during, and post-HSCT until stopping immunosuppressive agents. The expense of care upon donors was also included. We used hospital charge at the Faculty of Medicine Ramathibodi Hospital, Mahidol University in 2009 for the calculation. Average resources used for all interventions were multiplied with charges, and then we added all the results to be total direct-medical charge for the HSCT.

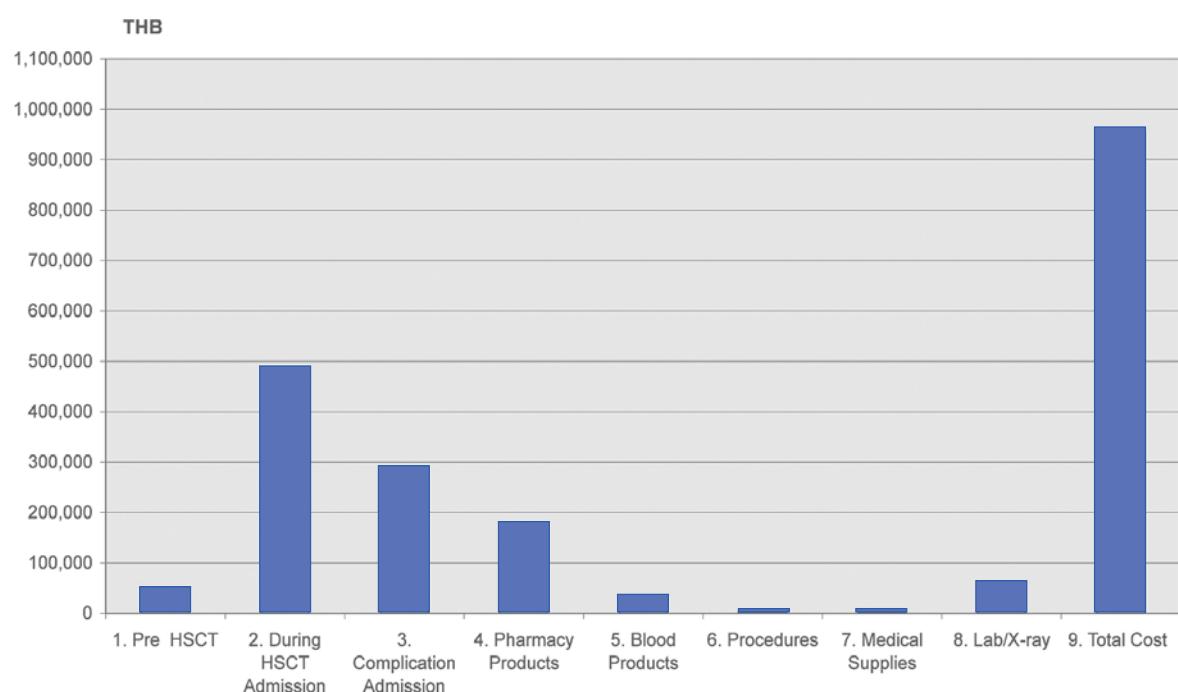
Result

Direct cost of HSCT varied substantially from 368,234 to 3,621,318 THB.

From Table 2, the average of direct cost of HSCT was 957,008 THB per transplant, while the cost of hypertransfusion program was 6,660,000 THB from starting treatment up to 30 years of age (this data from the National Health Security Office based on the year 2006). This study clearly showed that the cost of HSCT was lower than the cost of hypertransfusion program.

Figure 1 The conceptual framework of the cost of hematopoietic stem cell transplantation (HSCT)

Table 1 Patient characteristics of 37 severe thalassemic patients underwent HSCT


Variables	Number (%)	
	Patients (n=37)*	HSCT (n=41)
Sex		
Male	17 (45.95)	19 (46.34)
Female	20 (54.05)	22 (53.66)
Age (yrs)		
1-4	12 (32.43)	12 (29.27)
5-9	18 (48.65)	20 (48.78)
≥ 10	7 (18.92)	9 (21.95)
Type of thalassemia		
Homozygous β thalassemia	8 (21.62)	8 (19.51)
β thalassemia/Hb E	29 (75.68)	33 (80.49)
Lucarelli class		
class I	12 (32.43)	12 (29.27)
class II	21 (56.76)	23 (56.10)
class III	4 (10.81)	6 (14.13)

*4 patients received twice HSCT

HSCT, hematopoietic stem cell transplantation

Table 2 Direct medical cost related to matched related donor HSCT in severe thalassemia by activities per transplant

Expenses	Mean (SD) THB	%
Pre HSCT	48,550 (8,622)	5.07
During HSCT admission	488,976 (233,353)	51.09
Post HSCT		
Complication admission	284,773 (596,659)	29.76
Outpatient follow-up		
Pharmacy products	179,316 (256,192)	8.74
Blood Products	33,292 (40,225)	3.48
Medical procedures	4,215 (5,824)	0.44
Medical supplies	1,997 (1,325)	0.21
Lab/ X-ray	57,969 (42,236)	6.06
Total average cost without complication	790,311 (360,931)	
Total average cost with complication	957,008 (656,743)	100

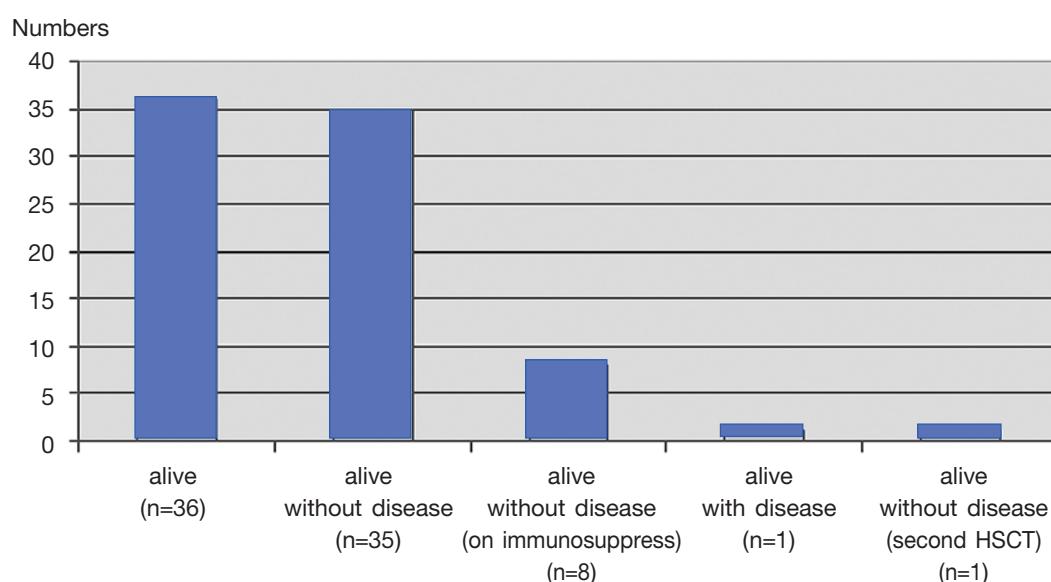

Figure 1 Direct medical cost of HSCT by activities given in Thai baht (THB)

Table 3 The cost of HSCT by patient characteristics

Variables	Number		
	Patients (n=37)	HSCT (n=41)	Mean (SD) THB
Sex			
male	17	19	921,933 (515,945)
female	20	22	987,300 (768,960)
Age			
<10 yrs	30	32	845,763 (507,393)
≥10 yrs	7	9	1,352,547 (966,146)
Type of thalassemia			
β thalassemia/Hb E	29	33	1,011,640 (716,605)
Homozygous β thalassemia	8	8	731,651 (212,118)
Lucarelli class			
class I	12	12	1,093,188 (861,295)
class II	21	23	914,716 (626,869)
class III	4	6	846,769 (148,668)

Table 4 The cost of follow-up care after HSCT per transplant (average 15 months)

Variables	Mean (SD) THB
Complication admission	284,773 (596,659)
Pharmacy products	179,316 (256,192)
Blood Products	33,292 (40,225)
Procedures	4,215 (5,824)
Medical supplies	1,997 (1,325)
Lab/ X-ray	57,969 (42,236)
Total cost	419,482 (595,703)

Figure 2 The follow-up status of 37 thalassemic patients underwent HSCT

The cost after HSCT depended on age of patients, methods of HSCT and complications.

The highest cost after HSCT was the cost of complication admission.

There were 37 HSCT cases in Ramathibodi Hospital during 1992 and 2008 (Figure 2). Only one case still alive with disease after undergoing his first HSCT. He denied the second HSCT. One case of β thalassemia/Hb E disease class III died with brain and lung fungal infection after the second HSCT. Disease free survival rate was 96.8% in 2009 (95% CI: 79.82-99.55). Only 8 cases are still on immunosuppressive drugs after finishing the study, blood transfusion requirement and no longer on any medications. The Karnofsky score of all patients is more than 90.

Discussion

Health personnel, patients and patients' families were highly concerned about the cost and risk of HSCT. Most of patients were young when they received HSCT, thus the chance of taking graft was much higher than old age groups with shorter length of stay of each admission and fewer complications that resulted in lower cost of HSCT. The high costs of post HSCT were pharmacy products and complications. It was estimated that HSCT in 6/6 matched related donor of severe thalassemia was cost-effective in children. Because thalassemia major patients would be dead during teenage period, HSCT is the only life-saving procedure for them and could yield normal growth development for the patients. With HSCT, thalassemic patients could get normal activity as other people and no longer suffering with more expensive procedure, hypertransfusion. GVHD can make a large difference in costs. Future advance technology may minimize GVHD and CMV infection which

would reduce the cost and increase more the cost effectiveness at the same time. This study of cost analysis may provide important information for national policy makers to think of the chance to reduce in health care cost of thalassemic treatment with better quality of life for patients.

Conclusion

Although this study contained only 37 patients, our data demonstrated solid figures of the expense of 6/6 matched related donor HSCT in severe thalassemia in tertiary care setting in Thailand and helped estimate cost of HSCT in other developing countries that was lower than hypertransfusion. These data may be beneficial for consideration of health care policy in Thailand. Along with another study of cost effectiveness of HSCT in the same population, this study could act as a guiding light for decision makers to accept the possibility to include matched related donor HSCT into the options of treatment for severe thalassemia in Thailand.

Recommendation

1. Even though we have this effective treatment such as HSCT for severe Thalassemia cases we still could perform this treatment for limited number of patients. Therefore, providing genetic counseling with premarital and prenatal diagnosis in risky couple should still be strongly encouraged to reduce new cases of severe thalassemia in Thailand.

2. The 6/6 matched related donor HSCT should be included into benefit package of the National Health Security Office (NHSO) of Thailand, which is responsible for providing health insurance for more than 70% of the Thai population. It will reduce cost of the national medical care and get more a good quality of Thai people.

3. Severe thalassemia (homozygous β thalassemia and β thalassemia Hb E disease, Hct < 25%) with full matched related donor should be encouraged to get HSCT early in life to reduce cost and improver quality of life of these patients.

Acknowledgement

The author would like to thank the Health Intervention and Technology Assessment Program (HITAP), of Thailand which supported a budget to collect data for this study.

References

1. กรมอนามัย มูลนิธิโรคโลหิตจางฮัลส์ชีเมียแห่งประเทศไทย สำนักงานหลักประกันสุขภาพแห่งชาติ สถานการณ์ปัจจุบัน “ฮัลส์ชีเมีย” ในประเทศไทย ประชุมฮัลส์ชีเมียแห่งชาติครั้งที่ 13 ประจำปี 2550 และแผนงานฮัลส์ชีเมียแห่งชาติ ปี 2550-2554. ระหว่างวันที่ 3-5 ตุลาคม 2550; โรงแรมมิราเคิลแกรนด์ กรุงเทพฯ : หน้า 5-9.
2. Tangcharoensathien, V., Jongudomsuk, P. From policy to implementation: Historical events during 2001-2004 of universal coverage in Thailand. Nonthaburi: National Health Security Office 2004.
3. Towse A, Mills A, Tangcharoensathien V. Learning from Thailand's health reforms. British Medical Journal 2004;328:103-5.
4. วรรณรัตน์ ตันไพบูลย์. การรักษาผู้ป่วยโรคฮัลส์ชีเมีย ใน: ทัศนีย์ เล็บนาค. สุทัศน์ พู่เจริญ ปราณี พู่เจริญ, นกกดล ศิริอินทนนทกุล, วรรณรัตน์ ตันไพบูลย์. บรรณาธิการ. Thalassemia : from molecular biology to clinical medicine. นนทบุรี: โรงพยาบาลพิมพ์ชุมนุมสหกรณ์; 2548. หน้า 128-35.
5. Gottschall J. Blood components. In: Friedman KD, King K, Nguyen KA, Pomper G, Sesok-Pizzini D, Wu Y, editors. Blood transfusion therapy, A physician's handbook. 8thed. Maryland: AABB; 2005. p.1-30.
6. Lanzkowsky P. Hemolytic anemia. In: Manual of pediatric hematology and oncology, 4thed. New York: Elsevier Inc; 2005. p.181-8.
7. Hsich MM, Tisdale JF, Rodgers GP. Hemolytic Anemia: Thalassemia and sickle cell disorder. In: Rodgers GP, Young NS, editors. The Bethesda Handbook of Clinical Hematology. 2nded. Philadelphia: Lippincott Williams & Wilkins; 2010. p.35-55.
8. Forget BG, Cohen PR. Thalassemia syndromes. In: Hoffman R, Benz Jr EJ, Shattil SJ, Furie B, Cohen HJ, Silberstein LE, McGlave P, editors. Hematology basic principles and practice, 4thed. Philadelphia: Elsevier Inc; 2005. p.557-88.
9. Viprakasit V, Lee LC, Chong QT, Lin KH, Khuhapinant A. Iron chelation therapy in the management of thalassemia: the Asia perspectives. Int J Hematol 2009;90:435-45.
10. Weatherall D, Akinyanju O, Fucharoen S, Olivieri N, Musgrave P. Inherited disorders of the hemoglobin. In: Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M, Evans DB, et al. Disease control priorities in developing countries 2nded. New York: The World Bank and Oxford University Press; 2008.
11. Angelucci E. Hematopoietic stem cell transplantation in thalassemia. Hematology Am Soc Hemat Educ Program 2010; 2010:456-62.

12. Lucarelli G, Gaziev J. Advances in the allogeneic transplantation of thalassemia. *Blood Rev* 2008;22:53-63.
13. Cost analysis. In: Drummond FM, Sculpher JM, Torrance WG, O'Brien JB, Stoddart LG. Methods for the economic evaluation of health care programmes. 3rded. Oxford: Oxford University Press; 2005. p 57.

การวิเคราะห์ต้นทุนการรักษาเปลี่ยนถ่ายบริบทหัว่างการเปลี่ยนถ่ายเชลล์ตันกำเนิดที่มีเนื้อเยื่อติดกันจากผู้ป่วยและ การรักษาด้วยการให้เลือดเป็นประจำในผู้ป่วยรายลักษณะเมืองกรุงเทพฯ

วันเพ็ญ พันธุรงค์¹, วิชช์ เกษมทรัพย์², นิลกิตา ศรีไพบูลย์กิจ³,
สามารถ ภาคผนวก¹, อรพรรณ เจียรอดศักดิ์⁴, สรุเดช วงศ์อิง¹

¹ ภาควิชาการเวชศาสตร์, ² สำนักงานศูนย์เวชศาสตร์ชุมชน, ³ ฝ่ายเวชสารสนเทศ
คณะแพทยศาสตร์โรงพยาบาลรามาธิบดี มหาวิทยาลัยมหิดล กรุงเทพฯ

⁴ โรงพยาบาลสหัต្តาประชาธิค์ (วัดไธสง) นครปฐม

บทคัดย่อ

ผู้ป่วยรายลักษณะเมืองกรุงเทพฯ ต้องได้รับการรักษาด้วยการเติมเลือดทุกเดือนร่วมกับการฉีดยาขับเหล็กทุกวันไปตลอดชีวิต เพื่อบรรเทาอาการเหนื่อยจากภาวะชีดีมากให้พ้อช่วยเหลือตัวเองได้ ซึ่งสำนักงานประกันสุขภาพแห่งชาติได้ทำการคำนวณเฉพาะค่ารักษาทางการแพทย์นี้ เมื่อปี พ.ศ. 2549 ตั้งแต่เริ่มรักษาจนผู้ป่วยอายุถึง 30 ปี ต้องเสียค่าใช้จ่ายรายละ 6,660,000 บาท การเปลี่ยนถ่ายเชลล์ตันกำเนิดเป็นวิธีการเดียวที่รักษาโรคนี้ให้หายขาดได้ แต่ค่าส่วนใหญ่มักคิดว่าวิธีนี้มีค่าใช้จ่ายสูงมาก และมีความเสี่ยงสูง จุดประสงค์ในการศึกษาครั้งนี้เพื่อต้องการประมาณค่าใช้จ่ายทางการแพทย์ของการรักษาที่เปรียบเทียบกับการรักษาแบบเดิมที่ต้องเติมเลือดประจำใน 30 ปีแรกของชีวิต โดยคำนวณและรวบรวมค่าใช้จ่ายทั้งหมดจากค่าใช้จ่ายทั้งหมด รวมถึงค่าวิเคราะห์โรคต่างๆ ทางเลือด การตรวจทางรังสี การตรวจต่างๆ การทำหัดถุงที่เกี่ยวข้อง ล้วนประกอบของเลือด ตลอดจนอุปกรณ์ทางการแพทย์ในช่วงก่อน ขณะทำ และช่วงหลังจากการทำการเปลี่ยนถ่ายเชลล์ตันกำเนิด ภาวะแทรกซ้อน จนถึงการติดตามการรักษาในช่วงผู้ป่วยนอกรุจสิ่งหยุดยากดูภูมิในผู้ป่วยรายลักษณะเมือง 37 ราย ที่มีเนื้อเยื่อติดกันคลุมด้านกับผู้ให้ชีวิตเป็นพื้นที่โรงพยาบาลรามาธิบดีในปี พ.ศ. 2535 ถึง 2551 เนื่องจากการติดตาม 15 เดือน ซึ่งต้องเสียค่าใช้จ่ายเฉลี่ยครั้งละ 957,008 บาท ซึ่งเป็นการพิสูจน์ให้เห็น ชัดเจนว่าถูกกว่าการรักษาแบบเดิมมาก ผู้ป่วย 35 ราย (ร้อยละ 95) มีชีวิตที่ปราศจากโรคเมื่อคนปกติ

คำสำคัญ: การวิเคราะห์ต้นทุนการรักษา รายลักษณะเมือง การเปลี่ยนถ่ายเชลล์ตันกำเนิด

Corresponding Author: วิชช์ เกษมทรัพย์

สำนักงานศูนย์เวชศาสตร์ชุมชน คณะแพทยศาสตร์โรงพยาบาลรามาธิบดี มหาวิทยาลัยมหิดล กรุงเทพฯ 10400

Email: 2028knapp@gmail.com