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Machine Learning Risk Factors for Blood Transfusion

After Hip Arthroplasty in Fracture Neck Femur Patients
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Abstract

Objective: The purpose is to study risk factors for blood transfusion in hip arthroplasty in
fracture neck of femur patients by machine learning.

Method: This is a retrospective study by collecting the data of fracture neck of femur
patients underwent hip arthroplasty surgery at Samutsakhorn Hospital from 2015 to 2020 A.D. ; 232

patients were analysed.
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Result: Male, CKD, and cemented prostheses increase risk for blood transfusion significantly.

According to machine learning; male, CKD, ischemic heart disease, cemented prostheses, and ASA

are important factors for predicting risk for blood transfusion.

Conclusion: In patients with risk factors, modifying the risk factors will decrease blood

transfusion and also reduce cost and complication from blood transfusion.
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35n15ANEN

nsdnulay retrospective study 210
nasudeuduasiildfunisidedady fracture
neck of femur Tuane unsAL 255-5u01AL 2563
leduaugaeg 232 au

WaualunIsAAL (inclusion criteria) Ao
HU3e fracture neck of femur Flasuniseng
Uoazlnniiiyu

neudilunisAnean (exclusion criteria)
Gh) ﬂﬂjaﬁlﬂu pathologic fracture 970 tumor
9138 infection, &:Iﬂwﬁﬁ multiple fracture, &U
flaileFunisiage, waggvaedliannsamdeya
mangszidoulaasu

muitedldfueyynanamuenssunig
Tuay Isangrunaaynsains \afl SKH REC
08/2564/V.1

{anuslaiudeya demographic
data laeiiudeyavedeny, e, BMI, ASA,
underlying disease wu HT, DM, MI, CVA,
CKD (eGFR <40), pre-op hemoglobin, pre-op
hematocrit, Garden classification iLay Lﬁwﬁaaﬂa
perioperative WLa¢ post-operative data Ao

pre-operative tranexamic acid, type of anesthesia,

A9 1 wans demographic data

v

operative time, intraoperative blood loss,
type of prosthesis (bipolar/ THA, cemented,
cementless), post-operative anticoagulation,
post-operative tranexamic acid, post-operative
NSAIDs, length of stay 21AsziTU

inausilunsToiden fie {thefill hematocrit
fNT1 30% wsesin 25% Tusiefdu chronic
anemia
N15IATIZANISEDA

@ﬁwuﬂﬁﬁ' chi-square test, ranksum,
independent t test, Fisher exacttest (R Foundation
for statistical computing, Vienna, Austria)
Tun1sUszidiu demographic data Fapnsnedt 1
ﬁau‘%ﬁ)ga perioperative, post-operative Famns97i 2
ez multivariate logistic regression Fap5797 3
\levn risk factors AinuSld machine learning
Tumsiden feature fifiamuduiusiiu transfusion
Tagld RFE (recursive feature elimination)
algorithm Liiardn feature Mlaiflanuduiusiu
transfusion eanlUw& feature idAMUEURUS
iU transfusion u1&@319 model Tagld machine

learning lag library scikit learn

Total Transfusion Nontransfusion
Factor P value
(n = 232) (n = 88) (n = 144)
Gender* 03
Male 78 (100) 57 (73.1) 21 (26.9)
Female 154 (100) 31 (20.1) 123 (79.9)
Age (yr)tmedian (range) 75 (40,94) 73 (41,88) 75 (57,89) 59
BMI (kg/m2)+mean (SD) 23.9 (3.7) 21.02 (3.5) 25.32 (3.6) .28
ASA* .009
Il 31 (100) 0(0) 31 (100)
1l 195 (100) 85 (43.6) 110 (56.4)
Y, 6 (100) 3 (33.3) 3 (66.7)

* chi-square, + Ranksum, # independent t test, § Fischer exact test, wansrndugiuau (Fevay) snviusyyuiluegedu
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15197 1 wans demographic data (si0)

A%

Factor Total Transfusion Nontransfusion P value
(n =232) (n = 88) (n = 144)
Co-morbidity*
DM 41 (100) 17 (41.5) 24 (58.5) a7
HT 131 (100) 52 (40) 79 (60) 24
CKD 40 (100) 35 (88.5) 5(12.5) .03
Ml 13 (100) 6 (46.2) 7 (53.8) 27
CVA 14 (100) 8 (57.1) 6 (42.9) 43
Hb#+, mean (SD) 11.94 (1.7) 11.01 (1.6) 12.4 (1.6) .001*
Hct$, mean (SD) 35.78 (4.3) 33.02 (4.1) 37.13(4.2) .001*
Garden Classification§ .43
I 0(0) 0(0) 0(0)
Il 49 (100) 10 (20.4) 39 (80.9)
1] 162 (100) 71 (48.1) 91 (51.9)
v 21 (100) 6 (28.6) 15(71.4)
Duration (day)t, median (range) 3(1,15) 3(1,15) 3(1,9) .089

* chi-square, T Ranksum, ¥ independent t test, § Fischer exact test, ansanduduu (ovay) EJﬂﬁmsm‘fJumhﬁu

M13199 2 Yoyadu perioperative, Wagpostoperative

Total Transfusion Nontransfusion
Factor P value
(n = 232) (n = 88) (n = 144)
Type of anesthesia* A7
GA 93 (100) 50 (53.7) 43 (46.3)
SB 139 (100) 38 (27.3) 101 (72.7)
Operative time (min)+ 60 (25,140) 55 (25,105) 55 (45,100) .25
median (range)
Intraoperarive blood loss 150 (20,900) 260 (30,700) 180 (20,800) 01*
(cc)tmedian (range)
Type of prosthesis*
Cemented bipolar 46 (100) 40 (86.9) 6(13.1) .0001*
Cementless bipolar 168 (100) 40 (24.8) 128 (75.2) .058*
Cementless THA 18 (100) 8 (44.5) 10 (55.5) 44
Postoperative anticoagulant* 79 (100) 36 (45.6) 43 (54.4) 31
Transamine used* 31 (100) 6(19.4) 25 (80.6) 53
Postoperative NSAIDs* 106 (100) 33 (31.1) 73 (68.9) 42
Length of staytmedian (range) 8 (5,72) 7(7,63) 7 (5,43) .10

* chi-square, T Ranksum, # Independent t test, § Fischer exact test, uansandudiuiu Gosay) aﬂﬁuizqﬁ]uaéwﬁu
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A15197 3 Multivariate logistic regression

v

Factor OR 95%ClI P value

Gender

Male 1.98 1.12-2.74 .02*

Femle 0.87 0.78-1.26 52
Age 0.99 0.67-1.96 2
BMI 0.96 0.94-1.23 1
ASA 0.80 0.69-0.93 .6
Underlying disease

DM 1.05 0.46-1.36 .920

HT 0.89 0.85-2.36 64

M 1.12 0.091-1.31 .052

CKD 3.67 3.40-7.50 .022*

CVA 0.86 0.64--2.15 748

Hb (Pre-op) 1.14 0.84-1.23 25
Type of Anesthesia

GA 0.83 0.41-1.65 .602

SB 0.33 0.87-2.62 31
Type of prosthesis

Cemented bipolar 2.1 1.58-2.63 .03*

Cementless bipolar 0.48 0.29-2.13 .20

Cementless THA 1.01 0.41-3.82 .38
Transamine used

Pre-op 0.58 0.34-2.98 .053

Post-op 0.27 0.03-2.47 25
Post-op anticoagulant 0.53 0.84-1.55 .35
Post-op NSAIDs 0.51 0.20-1.27 15
Length of stay 0.98 0.96-1.13 .29

* chi-square, T Ranksum, # independent t test, § Fischer exact test

NANIIANEN
91n15ANYINUIY demographic data
wuin fUnedildsuidendunguidumave,
CKD 1Judaulug wasilszAu hemoglobin uay
hematocrit finninBnnga
mﬂﬁzl”ayjalua'au perioperative Way
postoperative Wu2" nsld prosthesis ¥ln

cemented i intraoperative blood loss
funnd warillenaldsudenuinnin
970 multivariate analysis Wu11 LWeIe,
1saly, prosthesis wiln cemented \isAsdes
ponsliidensgiidudfey
mamaﬁw%;ﬂaﬁgmmmw machine
learning 1agld RFE 180N feature fid1Aayaani
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WU 1 Ay (male), 1sale (CKD), Tspialavin
\don (MI), ¥8nvas prosthesis wuuly cement
(cernented), ASA 18 feature fianunsasdudum
vostoyarimunald vdsniiuia feature fnd
11@579 model lagly random forest classifier
(A9N13UN decision tree %A )BUNIVINUILEA?
\donandiulugves decision tree 1@on class lwu
(mdennsoliliiasn) wuindl accuracy 5p8ay 80

1111 plot ROC curve (receiver operating
characteristic curve) Fadunsnd plot 521119
true positive rate (wWNUY) AU false positive rate
(wnw)) W@ tadn model Tuauisauenues
2 nquesnandulddudlvy Bsnseginie
RnduUsE nnuhlasudath model duiugann)
Teiwegudi 1, 2

[29] from sklearn.metrics import accuracy_score

y_pred = model.predict(X test)
accuracy_score(y test,y pred)

@.8

;J‘U‘ﬁ 1 accuracy ¥4 model lagld random forest classifier = 80%
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False positive rate

5U# 2 ROC curve

511 model lunennsel fie Landeyaves
Auld Ao e (@1 = 1, wda = 0), WWulsalansoll
(Oulsala = 1, lddulsala = 0), Wulsala
adeansoll (Julsaiilavnaden = 1,
Ldulsaiilavmden = 0), vlinves prosthesis

(cemented = 1, cementless = 0), ASA (I = 1,
=21l =3, IV = 4) lumnldlu model 7ils
(neladoyaisewmuil i, 15ale, lsailaviniden,

prostheses, ASA) walsh model wennsal
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271115471 model TUlduass dogas
Ao fiendl, a1y 84 T, dlsauszdndife CKD,
Td prosthesis cemented ASA Ill 35ld@anlu model
TU0 (wemigds), 1 @ CkD), 0 (ililspimalavinidon),

© mydata=([[0,1,0,1,3]])
array = model.predict(mydata)

print('Patient need not tranfusion') if array[@]

Patient may need transfusion

JUN 3 uanan13un model lulHhunenislviden

anfleg19Ae {Urevs, o1y 70 U,
Hlsauszdsme HT, 1d prosthesis cemented,
ASA Il Fsldmlu model U 0 (iwends), 0 (Ll

© rydata=([[0,6,0,1,31])
array = model.predict(mydata)

1 (ld cemented prostheses), 3 (ASA=3) AUEIAU
model vhugitlasuiden gUieatelasuiion
Wiy auun 3

@ else print ('Patient may need transfusion')

ckD), 0 (liflsalaviaden), 1 (1d cemented
prostheses), 3 (ASA=3) aua1AU model 11U
lailssuiden fUaeatdlallisuiden mugui 4

print('Patient need not tranfusion') if array[@] == @ else print ('Patient may need transfusion")

[ Patient need not tranfusion

JUN 4 wanan1sun model lulHhunenislviden

a ¢
971938

lumsshdindeaglnniieustheu1eseea
v o oA 2 % = Yo oA v &
dosTuldendante Fanistasuidenanndaun
Jvede WU N15LAA acute reaction transfusion,
fluid overload, WinszagalunsuaulsameIua
wainsidindeaglnniieuty Wlvgdemneuiag
Aaslasuiden nadfvedlsanegIuIaaynIans
WU ARSIl TUd oAU 1 Tu 3

v A o v v a o
vosUeilasunisindndeavinniion usegals

2 v a v oo Y a v
Anugthendiiunmsiidnteasinniienlasunis
FpadennT1e Fedleldinglunisrendenyinay
140 U uavdiUhesedldsuideniazdaliing

Yo = 1 a ¥

nMslasuden 1,700 umseelln 01457811750
anlentanishiidenuniuielalasandadeded
aansannlvle nzunsndouannslasudeniun

Iranal wagduanunsaUsediuaudedladuae
a a ° lo & v a
selafimnudeann envagliindudasansian
$3990130AANAININUNR FLaWTnaAAT G187
Tl ndulilsanenunale wud model wennsaiin
vl Y W % v o I3 &
AuldNazsunsidnlifeslidon L51Av0den
= a a a [ 1 %
Wied 1 efinanuniiavass 2 gl faganusandld
1 o o = v a v = dy
Pedmiunsseadonluld 1 olin dannisAnuiil
Aranusnannseddentalisnduly 154 51
(Uszano 2/3 vesftheaginniinyioue) Andudu
Uzl 140 x 154 = 21,560 um

GELL
= & | v A {
31n15Anw1dnudn Jadeidessonis
Yo oA D v Ay vo v v
lasuidenludUavaginninila Sunisuidnde

azlnnuisy Aw male, CKD, cemented prosthesis
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failuitedifianudsstnam Ssnsulurous]
Urglasusindin wu fUae CKD AvsTv DDAVP fiau
vLU&J’]GTGl, nenenuly prosthesis ¥in cementless
waziansaUsediuled JUleselaenvazsies
§sunslndenndmsnlagld model Aadadu
11 Fsannsavilfannnzunsndeuiionaaziaain
mslidenls analddrsanmsssadeniildsndu
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