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® interactivity Ao ARAENIR lumsnITduMIANH
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MGRRERNGHEN
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Bone Tissue Engineering
% 2 1
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1. Osteoinductivity : ANNENINTRIFA lumsFnth
GLﬁlLﬁ@miﬁ%dmz@ﬂ‘ﬁﬂm\i (de novo bone formation) I@m
\'L Y oA 1% A ﬁl v . 14
PN GG REY WNIHINNTEQN (Osteogenic factors)

2. Osteoconductivity : mmm;mmaﬁﬂ@ﬂumsﬁw
miidulasete (scaffold) vBousiuuiiieWifadioda
nseqnIulvmauTe s TR o

3. Osteogenic properties : J6A1*| U3zNoUAIE viable

mesenchymal stem cells, osteoblasts, osteocytes W
, 4 TV ST S P
osteogenic factors dw) lneadtimaniazimtianihliiiia
2 ! "L 16,17
MIFTNTLQNEIR
aenalafions autograft SafidasiaLIEEs W U5
;:1 3 Y G A o v [ [ o
nsvgnfiazsian 9t graft f5ve waz madutheannmh
nsvgnaieansTh graft (Inatamnzlusfihegeans) dasiss
AAmadnm IS Wnsiieandosiauad autograft 17
WalianssgnainyL3ana (allograft) i osteoconductivity
I@amélugﬁsnmmz@mvﬁwﬁq (fresh frozen allograft) %38
TugUundeanusme (demineralized allograft) #9746
- . o A v | Y A A
waninelsdl osteoinductivity NBeN autograft Yaiiem
Hendasiumaignmenszen allogenic Aoamsiieslumsdio
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warlenatmdlavsnu graft viue)

dasnndadnimaih Jaanaununszgn (Bone sub-
stitutes) QNWRIWIY 39 bone substitute HernaNs
N a0 [AfedunnansdaaTt snialaang) fisansn
I lumssnmnszgnanuiidely Taeunimsld autogenous
) allogenous bone™”

Bone substitute MaaNAfnsinuant® Ao W
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v g Y v v ! :il A Y1 A
sniaulan sansnugiidnunsvgnandideluldhe 4
AENUR osteoconductive, osteoinductive™ wavaaele
189 sanandamaaquanilaident/luheme (Fhemsthe
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MINFATaNLENNIZON a1l MIETN bone substitute A9
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Bone Grafing Material for Bone Tissue Engineering
lessamaaiiaifionsegniiufimadnandifdudousnn
- o 6 A ) G )

I@HL%@LH@ﬂ?S@ﬂGL%ﬂG]’JLﬁ Hﬂ'sjjﬂ@’l YUNALULIN cortical bone

ae cancellous (trabecular) bone. Cortical bone Wil

shaft of long bones Wag outer shell 98U trabecular
bone LAVMFIMTULAs IMMETaINTENUAENTEYNFL

%84 &% trabecular bone ﬁazagmﬂu cortical tissue,
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(1% medullary cavities AUFHMEIALR long bones,
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Glmz@ﬁ"u sub-microscopic level, osteons La¢ trabeculae
o A o X 4 “
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lamellae d’;ﬂmsﬁu ultrastructural level, lamellae oy
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mﬂiﬂiaamwnanm%muﬂaawansluﬂmaama@,mz
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1. Polymers
a 6 A a
® Natural polymers WaRLRIDITNIG Duwal-
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wAa 1 A a Y Vo :l A AI Adaa
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biocompatibility) wastiosaane o (biodegradability) 4
UnGensinansinule v extracellular matrix DYUAD LAY
A | A X G @ A o v
501 o starch 138 chitosan HILwENIATNINTOE LA LA
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St snnennamdailadnane®® endraemseinmn
284 Johari B. LA VL(ﬂwﬁﬁ‘kﬂ Lﬁ 291U three-dimensional
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Iaolealsif cytotoxicity mmi%uﬁwaaaﬂgmﬁmh Wistar
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mechanical stress applications)” Ta\deidassyisantsems
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2. Ceramics

Yeoumiinlagianny Calcium phosphate %@agﬂugﬂ
999 Calcium phosphate cements (CPCs) ﬁ@mﬁa\lﬂﬁﬂu
osteoconductivity, osteoinductivity, biocompatibility, and
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udag e liiagamedilad Seinsrnymeaaamis
Lﬁmgmﬂﬁﬂﬁaﬁ@hm 217 AN soluble salts shatiia
¢19°) weRmosaraenhla (4 danneses o-tricalcium
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s ieenideTusua® e msldanaTrhliAe
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3. Metals
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52,53 YA 1% ‘[ A 2 [
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4. Composites
@ o v oA u Yoy .o Y
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5. Factor for adding osteoinductivity to bone grafting
materials
® Stem cells
ﬁwﬂ’uﬁmﬂ%’ stem cells 313n¥1l5a Ny
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embryonic stem cells fisnansniiie differentiation VLG\”Mmﬂ
A A Y o A v .
nesULIY mmﬁmaaﬂmﬂmamm Wa 1 embryonic
stem cells 1 differentiation WaeNsSiUsyANTmMNEINTU®
A~ 2 A A A oy
Seflnamsenenianka 917 miﬂﬂwﬂu@ma 11 Mgy
52-79 Tifidinsamefieeswanngs nsasathsgss (severe
mandibular ridge resorption) ﬁ%ﬂwﬂ@\ﬂ‘ﬁﬁﬁaaﬂ‘ﬂngﬂ
(bone marrow-derived mesenchymal stromal cell; BMSC)
NNYBAGIFINTIUG AT (posterior iliac crest) FINAL
biphasic calcium phosphate granules LLﬂ%ﬂ@ﬂﬁmmu‘%nm
SLW”Lﬁaﬁ”Nﬂit@ﬂ (subperiosteal area of alveolar ridge) &
ﬂmﬁmﬁaﬁ”mﬂaﬁz@ﬂélmimﬂmimwémma MNMISIRINEN
mimqa%mﬁaLLazﬂizLﬁummﬁaa@ﬁama@ﬁﬁﬂmaﬁmiﬁ@ﬂ
e 4-6 1w uaztsufiulssAnmnuazenaiona lazed
) (% 1 A 1 v YA
ihenasImslgney 12 wiaw wun BMSC mz@pﬂmm@
mizﬁ”mﬂizgmal'wﬂu%nmaummﬂmdma&mﬁﬁaﬁﬁmso
;é % b2 A 1 [~ % ‘il v A [
smm{bmaa%mz@ﬂﬁuaa@mmammwma@gﬂﬂammrm
P Jx v o da ¢ %, a
Waitiansegnanniedn uimsanelagiiiaammiandn
AN AFIUALIUAaY [ aNNITURSsIaa M3
nosauemNAnLnfaaslaslulan e lwanasmih ldms
natinlaathalaandy
® Growth factors
A a9 o A4 4,
Hlafimsld Stem cells Tasunibsfiavimdieni stem
YA . ) . v =3 A A § [~3
cells GLMLﬂ(ﬂ differentiation vlmamwﬂizawﬁmwmﬂw n
@ Growth factors dwiLienaununIzgn Anmdnm
Growth factors ¥iangiia a9l platelet-rich plasma (PRP)”,
vascular endothelial growth factor (VEGF)® %38 bone
morphogenic protein (BMP) Toenanny BMP ulisi
fifimatinnflamen@  osteoinduction 68 MSCs,
osteoblasts L&¢ mature chondrocytes”. %3 BMP-2 Uay
BMP-7 l@5Uma5U309a1n the United States Food and
Drug Administration (FDA) sl lmsadiinie lay BMP-2
901195 uma3NI acute setting 199 open tibial fracture
1 BMP-7 90193 14m33n# long bone nonunion g
revision posterior lumbar fusion®™® fmsenwlseieinms
Snwefaumai(retrospective chart study) Tusfihefidhsuns
W60 complex ankle arthrodesis e Tlizarov technique

Sam 82 718 loenthamaidildefidenadonsilushang

n3Lgn (fl5a1/35a167 1@ charcot neuropathy, rtheumatoid
arthritis, peripheral vascular disease, active malignancy
@ v A v A Vo .
fudt) laedlfthhe 42 Mefimssnlesl recombinant human
BMP-2 (thBMP-2)semimandiasiauriveilae 40 Teusn
11650 mBMP-2nutetheilesu hBMP-2 funhind
\aLEanIENAMIFNUd (fusion) MAIMINFAATILIN
ANINGNALAN (93% Wul 53%, p < 0.001; OR,
11.76; 95%CL: 3.12-44.41) hanlumsldqunsalsaemes
n3zgN (frame) URERd (124 Wisui 161 F4, p <0.01) way
wuhfimsidesnsgnannaulumssunu CT (48% Waurty
Y da 4 :
32%, p < 0.05) ihevnenimsizannszgnannnai 30%
fdaneanmeswnm CT 3 Wauadrdnlssaunnuaisa
61 A o I vL I (1,, o A L7
umsiueaasnszgnlaglaisaglimasnmans) angae

Mechanical Properties of Bone substitutes

[« (% ‘il o v tﬂl 0 @ A [~ 1 %
nsganiuadengnvhminefmyae Wulassnamanuag
TNME uaﬂmﬂﬁﬁﬁ@maai’aqﬂqﬂmmm”a@mﬁmﬂﬁ%ma
(mechanical properties) JdaNN AT BNNAaMTETI
bone substitute 6}?@Lﬁmmaﬁamiﬂ%’m’a@wﬁqmmﬂ’@Lﬁ?@ﬂa

va o o 4 4 v
Tnaid mﬂmsz@mwﬂmmm@ Tufitlnandaehaema
Aane 9T TnepinnRiGanaahaunsvianglu Bone Tissue

Engineering Haaem Young's modulus of elasticity
® Young’s modulus of elasticity / elastic modulus
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