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ABSTRACT
	 In all medical subfields, including ophthalmology, the development of artificial intelligence (AI), particularly 
cutting-edge deep learning frameworks, has sparked a quiet revolution. The eyes and the rest of the body are 
anatomically related because of the unique microvascular and neuronal structures they possess. Therefore, ocular 
image-based AI technology may be a helpful substitute or extra screening method for systemic disorders, particularly 
in areas with limited resources. This paper provides an overview of existing AI applications for the prediction of 
systemic diseases from multimodal ocular pictures, including retinal diseases, neurological diseases, anemia, chronic 
kidney disease, autoimmune diseases, sleep disorders, cardiovascular diseases, and various others. It also covers the 
process of aging and its predictive biomarkers obtained from AI-based retinal scans. Finally, we also go through 
these applications existing problems and potential future paths.
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INTRODUCTION
	 In the realm of artificial intelligence (AI) within 
computer science, algorithms are trained to perform 
human-like tasks, spanning areas like robotics, natural 
language processing, and machine learning.1 AI’s rapid 
response, decision-making, and learning capabilities have 
led to its widespread use in recommendation algorithms, 
search engines, and autonomous vehicles. The eye’s unique 
translucent refractive interstitium allows for the non-
invasive assessment of blood vessels and nerves, making 
it a valuable diagnostic tool for systemic conditions 
such as diabetes and hypertension.2 With advancements 
in AI techniques, ocular images have become crucial 
in diagnosing diseases like diabetic retinopathy, age-

related macular degeneration (AMD), and glaucoma.3-5 AI 
enables the identification of previously unseen associations 
between ocular features and systemic illnesses, expanding 
diagnostic possibilities. Recent studies have linked ocular 
characteristics to diseases like diabetes, cardiovascular 
issues, Alzheimer’s, and kidney disease. This review aims 
to summarize the latest developments in ocular image-
based AI’s applications in diagnosing various systemic 
diseases.

Search strategy and article selection
	 A search strategy was implemented to identify and 
review the literature pertaining to the application of AI in 
ophthalmology and its relation to various other disorders 
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via searching through engines like PubMed, MEDLINE, 
Scopus, and Google Scholar using the keywords “AI-
enabled retinal scans,” “aging biomarkers”, “artificial 
intelligence,” “machine learning,” “deep learning,” “artificial 
neural networks,” “Retinal age,” and “natural language 
processing”. 

Inclusion criteria
	 Articles related to artificial intelligence in ophthalmology; 
Original articles of full-text length covering the diagnostic 
capabilities and AI in ophthalmology and its relation to 
various other disorders. 

Exclusion criteria
	 Abstracts, editorial comments, and chapters from 
books; Animal, laboratory, or cadaveric studies. Non-
ophthalmic studies.

Artificial intelligence
	 Artificial intelligence (AI) involves computer-
based simulations of intelligent behavior with limited 
human intervention. The inception of robots marked 
the beginning of AI, with the term “robot” originating 
from the Czech word “robota”, denoting bio-engineered 
devices for forced labor.6 AI in medicine encompasses 
virtual and physical domains. The former encompasses 
deep learning, information management, and decision 
support systems, while the latter involves robots assisting 
patients and physicians in an innovative engineering field 
addressing complex problems. Speed, capacity, and software 
advancements could eventually enable computers to match 
human intelligence. Modern cybernetics has significantly 
contributed to AI progress.6 Medical AI tackles the challenge 
of assimilating and applying vast clinical knowledge. AI 
systems aid clinicians in diagnosing, treatment decisions, 
and outcome predictions. Techniques like deep learning, 
and non-neural networks are used. Deep learning (DL) 
has transformative potential in healthcare, mapping 
inputs to outputs across interconnected neuron layers. 
DL excels in clustering, regression, classification, and 
prediction tasks. However, it is more resource-intensive 
than traditional machine learning methods, particularly 
in imaging. Supervised and unsupervised learning, along 
with semi-supervised learning are also some of the training 
strategies that can be acquired through this mechanism. 
Area under the curve (AUC) is one of the metrics utilized 
by the AI, the receiver operating characteristic (ROC) 
area under the curve (AUC) quantifies the model’s overall 
ability to distinguish between positive and negative 
instances. Plotted on the ROC curve are the true positive 
and false positive rates at different categorization criteria. 

AUC 1 indicates an error-free model, while AUC 0.5 
indicates a random estimating model. Because AUC is a 
crucial metric for assessing an AI algorithm’s efficacy, a 
higher AUC suggests improved prediction accuracy and 
offers pertinent details regarding how well an AI model 
can differentiate between multiple classes. However, it 
does not fully capture the utility of a model in a clinical 
setting as different tasks, such as screening, may require 
separate sensitivity metrics.6,7 
	 As healthcare data is so vital, data mining has emerged 
as a significant and challenging field in the healthcare 
industry. Recent developments in data mining techniques 
have established a solid basis for a multitude of uses, such 
as disease diagnosis, pattern recognition, enabling patient-
friendly and affordable medical treatments, and intrusion 
detection. Artificial intelligence supports this process by 
functioning as a machine learning subfield to improve 
predictive capabilities. Three well-known supervised 
learning classifiers are used in the field of classification and 
prediction: Random Forests, Support Vector Machines 
(SVM), and Naive Bayes. Based on Bayes’ theorem, Naive 
Bayes is a probabilistic classifier that is independent of 
features. SVM is an effective classification method that 
finds the best hyperplane to divide classes. SVM and Naive 
Bayes both improve the precision of medical predictions. 
Robust ensemble learning techniques like the Random 
Forest algorithm make a substantial contribution to 
classification tasks by preventing overfitting, optimizing 
model performance, and utilizing insights from multiple 
decision trees. Furthermore, a variety of statistical and 
machine-learning methods are used by artificial intelligence 
to model complex data relationships. One of the most 
important metrics for evaluating regression models is the 
R-squared value, sometimes referred to as the coefficient 
of determination, which shows how well the model 
accounts for the variance in the dependent variable. 
Greater consistency between predictions and observed 
results and a more accurate depiction of the data are 
indicated by higher R-squared values. Medical AI has 
potential, but its acceptance among clinicians requires 
evidence through randomized controlled experiments. 
Medical AI is poised to enhance 21st-century healthcare, 
augmenting future clinicians’ medical intelligence.6,7 A 
graphical overview of the process that AI goes through 
to achieve a diagnosis of systemic illness is illustrated 
in Fig 1.

Use of AI-based retinal scans as biomarkers for the 
aging process
	 In recent estimations, the global elderly population 
aged 65 years and above reached approximately 750 
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Fig 1. A graphical overview of the process that Artificial Intelligence goes through in achieving diagnosis for various systemic illnesses by 
utilizing Ocular scans.

million and is projected to double in the future.8 Aging 
significantly influences the pathophysiology of various 
diseases, making it a crucial risk factor.9 This exploration 
focuses on the use of retinal scans and deep machine 
learning (DL) as an innovative method to predict aging 
and biomarkers, utilizing retinal age (RA) to calculate 
morbidity and mortality risk, as well as studying aging 
genetics.
	 Chronological age (CA) has long been associated with 
age-related morbidity and mortality; however, individual 
variations suggest that the rate of aging differs among 
people.10 Biological age (BA) accounts for gradual cellular 
and physicochemical changes, offering a more accurate 
indicator of health status.11 Current BA assessment 
methods, such as blood profiles and DNA methylation, 
are costly, invasive, and ethically concerning.12-15 Retinal 
assessment provides a non-invasive, cost-effective, and 
user-friendly alternative, given the retina’s physiological 
similarities with other organs and its responsiveness to 
aging-related changes.16 
	 Research has demonstrated retinal microvascular 
variations linked to circulatory pathophysiological changes, 
as well as molecular alterations associated with neural 
retinal layers and neurodegenerative disorders.17 DL 
models have been employed to predict RA, showing 
remarkable accuracy in determining retinal age compared 
to chronological age. Model performance was evaluated 
using samples of retinal images from two separate sets 

from biobank databases. Upon completion of training, 
the DL model exhibited the ability to predict RA and 
CA (p<0.001) with a mean absolute error of 3.55 years. 
The difference between predicted RA and CA, termed 
the age gap, serves as a potential biomarker. Positive age 
gaps indicate older retinas, while negative gaps suggest 
younger retinas. Studies have revealed that an increase 
in the retinal age gap correlates with a significant rise in 
mortality, highlighting its potential as an independent 
predictor of age-related mortality.18 
	 In a study conducted with participants from 
the Korean Health Screening, a DL algorithm called 
RetiAGE predicted BA accurately, demonstrating 
excellent performance (95% confidence interval [CI]: 
0.965–0.970) and accurate predictions of mortality, 
especially in cancer and cardiovascular disease events.19 

Genetics significantly influence the aging process, with 
ALKAL2 identified as a key gene associated with age-
related changes. This discovery sheds light on the molecular 
mechanisms governing aging, offering opportunities for 
therapeutic interventions and targeted research initiatives. 
Furthermore, predicting age using retinal images operates 
independently of existing methods, providing a unique 
perspective on aging. Integrating retinal imaging with 
other markers enhances understanding of an individual’s 
BA. Unlike invasive blood tests, non-invasive retinal 
imaging facilitates actionable biological and behavioural 
interventions.20 
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	 In summary, the integration of retinal scans and 
DL techniques offers a ground-breaking approach to 
predicting aging and associated biomarkers. The non-
invasive nature of retinal assessment, coupled with its 
accuracy and potential for genetic insights, positions 
it as a promising tool for understanding age-related 
conditions and developing targeted interventions in the 
future.

Use of AI-based ocular scans in diabetic retinopathy
	 Since diabetic retinopathy (DR) is a major contributor 
to visual impairment in developed nations, innovative 
approaches to patient screening, complication avoidance, 
and care optimization are required. An emphasis on 
AI-based models, especially those that enable large-scale 
screening, has resulted from the increasing prevalence of 
DR. Starting with fundus pictures, these models are essential 
for identifying DR-related changes such as haemorrhages, 
exudates, cotton wool patches, and neovascularization. 
They determine whether DR is present or absent and 
provide a grade based on accepted DR grading schemes.21 
	 Numerous artificial intelligence systems have been 
developed to achieve these goals. When the IDx-DR 
system was tested on a number of populations, including 
the 3,640 participants in the Kenyan Nakuru Eye Study22, 
it demonstrated a sensitivity of 87% and a specificity of 
70%. Additionally, it demonstrated strong performance 
in tests utilizing the Messidor-2 dataset, yielding a 97% 
sensitivity and 59% specificity.23 These encouraging results 
led to IDx-DR’s approval by the US Food and Drug 
Administration in 2018.24 The RetmarkerDR software 
showed a sensitivity of 73% for any DR, 85% for referable 
DR, and 98% for proliferative DR.25 EyeArt performed 
well on the Messidor-2 dataset, achieving a sensitivity 
of 94% and a specificity of 72%.26 Using a sensitivity 
of 96% for any DR, 99% for referable DR, and 99% for 
DR that posed a risk to vision, it was employed in the 
smartphone-based DR screening of 296 patients.27,28 

Additionally, EyeArt was applied to a dataset with over 
30,000 images, achieving a sensitivity of 96% for referable 
DR.29 In addition, other systems that have proven to be as 
reliable in DR screening are the Google Inc.-sponsored 
system, RetinaLyze, EyeWisdom®, and the Bosch DR 
Algorithm.21 
	 AI models are not only good at screening, but they 
also assist in grading and staging direct response content. 
Gulshan et al. demonstrated high sensitivity and specificity 
in identifying the presence of diabetic macular edema and 
the severity of DR.30 Ting et al. supported these findings 
by looking at nearly 500,000 images.31 Moreover, the 
high reliability of AI-based screening was validated by a 

recent study that tested a deep learning algorithm using 
over 200,000 fundus images from 16 clinical settings.32 
Ultimately, promising strategies for combating DR are 
offered by AI-based models. Because of their remarkable 
sensitivity and specificity, these systems enhance patient 
care, facilitate early intervention, and greatly aid in the 
widespread prevention of DR-related complications and 
visual impairment.

Use of AI-based ocular scans in macular degeneration
	 In developed nations, age-related macular degeneration 
(AMD) is a major cause of visual impairment, which calls 
for the use of AI-based techniques for precise analysis. The 
main source of data is optical coherence tomography (OCT) 
images, which need to be precisely segmented in order to 
identify retinal structures. During follow-up, AI-based 
segmentation algorithms, utilizing unsupervised learning 
techniques, have demonstrated remarkable success in 
identifying retinal features and measuring retinal fluids.33,34 

These algorithms operate autonomously, eliminating 
the need for human interpretation of the images. They 
excel in fluid localization and quantification, as well as 
in evaluating retinal integrity. Advances in predicting 
visual outcomes and evaluating treatment responses 
have been made possible by AI in AMD research. The 
prevalence of AMD-related lesions and the progression 
of the disease varied between AMD eyes treated initially 
and twice, according to AI models.35 AI also measured 
the number of drusen, evaluated their distribution, and 
examined hyper-reflective foci on OCT scans to forecast 
the likelihood of disease progression and the beginning 
of complications.36 
	 Schmidt-Erfurth et al. made a substantial contribution 
by estimating the risks of AMD progression, highlighting 
the prognostic significance of intra-retinal cystoid fluid, 
and creating automated techniques for fluid volume 
calculation.37 By examining fluid changes following 
injections, AI forecasted visual results for a treat-and-
extend regimen. AI also measured leakage on angiography 
and segmented macular neovascularizations.38,39 AI 
proved helpful in conjunction with new treatments 
like pegcetacoplan, as it accurately identified atrophic 
margins and tracked their expansion in the context 
of geographic atrophy.40 Self-monitoring AI systems, 
like the Notal Vision Home OCT and ForeseeHome, 
have proven accurate and feasible.41 Patients who used 
these systems for daily self-imaging demonstrated good 
agreement with expert-based grading, and over a 3-year 
period, ForeseeHome successfully identified changes in 
visual acuity and indicated the likelihood that a disease 
would progress in 2,123 patients.41,42 These uses highlight 
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AI’s critical contribution to improving patient care and 
AMD research.

Use of AI-based ocular scans in glaucoma
	 Artificial intelligence has been applied in glaucoma 
diagnosis using various imaging techniques, such as 
fundus photographs, optical coherence tomography 
(OCT), and visual field (VF) tests. Deep convolutional 
neural network models have shown high accuracy in 
distinguishing normal and glaucomatous VF, as well 
as diagnosing glaucoma based on Retinal Nerve Fiber 
Layer (RNFL) thickness and Optic Nerve Head (ONH) 
parameters. AI can effectively learn complex glaucoma 
features from fundus photographs and holds promise 
in OCT-based glaucoma assessment using RNFL or 
Ganglion Cell-Inner Plexiform Layer (GCIPL) thickness 
parameters.5 

Use of AI-based ocular scans in cardiovascular diseases
	 Given that cardiovascular illnesses are one of the 
leading causes of death worldwide, early detection is vital 
to patient health.43 Because fundus vessels are directly 
visible in hypertensive retinopathy, it is a useful biomarker 
for hypertension in ophthalmology. Researchers have 
studied cardiovascular and ocular diseases in greater detail 
thanks to AI. By taking advantage of the rare opportunity 
to observe fundus vessel parameters directly through the 
eye, researchers studying cardiovascular disease have 
investigated parameters such as diameter, density, and 
tortuosity.44 Based on retinal images, artificial intelligence 
(AI) has made it possible to identify key cardiovascular 
risk factors like age, gender, blood pressure, and smoking 
status.45 In contrast to conventional methods, risk factors 
can be directly acquired through AI analysis; however, 
there is a tendency to overuse AI in the prediction of these 
factors. This over-reliance has affected the information’s 
accuracy and could hinder the advancement of AI-based 
retinal image screening.46 
	 Furthermore, using fundus images to detect the 
coronary artery calcification fraction has been made 
possible by AI. Son et al. compared the predictive power 
of fundus images and clinical data by classifying subjects 
according to age interval and coronary artery calcification 
fraction. The values of the Area Under the Curve (AUC) 
for age, bilateral images, and unilateral images were 
0.828, 0.832, and 0.823, respectively. Interestingly, 
the AI model concentrated on the blood vessels in the 
retina, highlighting atherosclerosis and hypertension 
as important indicators of cardiovascular disorders.47 

order to predict hypertension, Kim et al. created an 
AI system with an astounding AUC of up to 0.961, 

highlighting the significance of determining the risk of 
cardiovascular events based on vascular status as reflected 
in the eyes.48 Additionally, using clinical data and retinal 
images, artificial intelligence has been used to predict the 
frequency of cardiovascular events. Researchers developed 
prediction models using the atherosclerosis score and 
coronary artery calcification fraction identified by AI 
as predictors in long-term studies. Subject grouping 
and the prediction of cardiovascular events in different 
groups were made possible by the prediction of coronary 
artery calcification or atherosclerosis scores using fundus 
images.49,50 These findings highlight the possibility of 
using fundus images to identify pertinent biomarkers 
for cardiovascular disease and to forecast the course of 
the condition in the future. 

Use of AI-based ocular scans in diabetes
	 Early and effective screening techniques are required 
due to the significant health burden posed by the increasing 
prevalence of diabetes worldwide. Even though they 
are accurate, traditional oral glucose tolerance tests are 
intrusive and have limited applicability. Because chronic 
hyperglycemia affects the retinal microvasculature, there 
is a well-established correlation between diabetes and 
ocular changes, including retinopathy.2 Researchers 
have investigated AI-based screening with retinal images 
by taking advantage of this relationship. In 2020, an 
artificial intelligence (AI) system examined 1222 retinal 
fundus photos from rural Chinese citizens, detecting 
hyperglycemia with 78.7% accuracy and an area under 
the curve (AUC) of 0.880.51 Expanding on this, Zhang 
et al. combined fundus images with patient metadata in 
2021 to predict the incidence of type 2 diabetes within 
five years, using over 100,000 images. The method was 
inventive, but the non-standardized risk score casts doubt 
on its applicability in a wider context. AUCs for diabetes 
detection in external datasets were higher than 0.80, and 
the prediction model’s AUC was 0.824. The AI system was 
incorporated into smartphones for cloud-based retinal 
image analysis to improve accessibility, increase screening 
options, and lowering healthcare inequities.51 The fact 
that diabetic complications go beyond eye problems 
highlights the need for all-encompassing AI-based strategies. 
 
Use of external eye images in the prediction of laboratory 
results
	 Another study which was done on diabetic patients 
proved to be useful in detecting systemic parameters through 
the use of external eye images. This study developed and 
evaluated a deep learning system (DLS) using external 
eye photographs to predict systemic parameters related 
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to liver, kidney, bone, thyroid, and blood. Trained on 
123,130 images from 38,398 diabetic patients, the DLS 
outperformed baseline models in predicting abnormalities 
such as elevated AST, low calcium, decreased eGFR, 
low hemoglobin, low platelets, elevated ACR, and low 
WBC in validation sets. The DLS demonstrated superior 
performance by achieving absolute AUC improvements 
of 5.3–19.9%. Notably, the study suggests that external eye 
photographs could serve as a non-invasive screening tool 
for systemic diseases, showcasing potential applications 
for accessible and widespread disease detection. The 
results indicate promising performance, even with low-
resolution images, opening possibilities for the use of 
consumer-friendly devices like smartphones. The study 
emphasizes the importance of further research to explore 
the generalizability and practical implications of this 
approach in diverse populations and clinical settings.52 

Use of AI-based scans in neurological diseases
Alzheimer’s disease
	 It is imperative to conduct early screening for 
Alzheimer’s disease (AD), particularly in light of the 
rapidly aging population. By using fundus images from 
AD patients and healthy individuals from 11 different 
studies conducted in different countries, researchers 
such as Cheung et al. have made significant progress. 
They produced impressive results when building and 
validating a model for AD diagnosis, with AUCs in 
external validation sets ranging from 0.73 to 0.91. Their AI 
model performed better in patients with ocular diseases 
and was able to distinguish between patients who tested 
positive and those who tested negative for beta-amyloid.53 
	 Furthermore, retinal thickness is a useful parameter 
for AI-based detection as it indicates the progression of 
AD.54 Retinal thickness images from optical coherence 
tomography (OCT) have been successfully used in AD 
detection algorithms with an AUC of 0.795.55 AI systems 
perform even better when multiple imaging modalities 
and clinical data are combined. To create sophisticated 
AI models for AD detection, multimodal retinal images—
including OCT, OCT-Angiography, and Ultra-widefield 
scanning laser ophthalmoscopy were combined with patient 
specific data. With parameters such as the OCT-derived 
ganglion cell-inner plexiform layer thickness map, these 
combined models produced remarkable outcomes with 
AUCs greater than 0.8.56 These developments highlight 
AI’s potential for early AD screening. 

Use of AI-based scans in renal diseases
Chronic kidney disease
	 Innovative methods for identifying chronic kidney 

disease (CKD) through ocular manifestations have been 
made possible by the complex relationship between the 
kidney and the eye, which share similarities in structure, 
development, physiology, and pathogenic pathways.57 

It has been discovered by researchers that renal disease 
can be linked to ocular abnormalities like those seen in 
tubulointerstitial nephritis uveitis syndrome (TINUS) 
and that retinal microvascular parameters can predict 
the onset of chronic kidney disease (CKD).58 Interstitial 
nephritis, a disorder that frequently precedes or coexists 
with ocular symptoms, is diagnosed in conjunction with 
symptoms of TINUS in children, which include fever, 
pain, photophobia, and acute bilateral non-granulomatous 
anterior uveitis.59 According to a study on the relationship 
between CKD and age-related macular degeneration 
(AMD), patients with moderate CKD had three times 
the frequency of early AMD without geographic atrophy 
and choroidal neovascularization than patients with mild 
or no CKD.60 Kidney function tests, urine analysis, and 
kidney puncture biopsy have historically been used in the 
diagnosis of kidney disease. Although these techniques 
work well, they can be laborious and could use more 
succinct screening methods. Artificial intelligence (AI) 
advances in the last few years have completely changed 
early detection techniques, especially when it comes to 
retinal imaging.
	 A deep learning model that uses retinal images to 
predict early renal functional impairment is a ground-
breaking development. With an astounding AUC of more 
than 0.81, the model performed better in patients with 
higher HbA1c levels, the researchers found.61 Furthermore, 
compared to the images-only model, the combination 
of retinal images and clinical data greatly improved the 
detection of CKD. The combined model had an AUC of 
about 0.8 in the entire population.61 Notably, the AUC 
exceeded 0.9 in patients with hypertension or diabetes. 
This demonstrates the AI’s capacity to classify CKD 
patients according to their estimated glomerular filtration 
rate (eGFR) and to differentiate between healthy people 
and CKD patients.
	 AI models based on retinal images were used to 
predict the course of CKD in cohort studies.62 To predict 
the likelihood of developing CKD and advanced CKD in 
healthy subjects, researchers built predictive models using 
metadata, fundus images, or a combination of both. Cox 
proportional hazards analysis was used to evaluate these 
models, and the combined model produced impressive 
results: it had a C-index of 0.719 and an impressive prediction 
accuracy of up to 0.844 on the internal validation set. These 
studies do have certain limitations, though. Researchers 
used a high-sensitivity but low-specificity AI model to 
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improve screening performance, which may increase the 
number of CKD misdiagnoses. Furthermore, there may 
be limitations to the model’s applicability in different 
research contexts due to the lack of universal acceptance 
of the risk stratification criteria used in these studies.62 

Additionally, there is room for improvement because 
the emphasis is on predicting the risk of progression in 
healthy subjects rather than patients with early-stage 
CKD. These studies highlight the promise of AI-driven 
retinal imaging in revolutionizing early CKD detection, 
despite these drawbacks. 

Use of AI-based ocular scans in hematological diseases
Anemia
	 Deep learning algorithms utilizing ocular imaging have 
emerged as a promising approach to forecasting anemia, 
the most prevalent hematological disorder. Researchers 
have explored subtle retinal changes and conjunctival 
symptoms as potential markers of anemia.63 A notable 
study by Chen et al. presented a novel framework that 
combined semantic segmentation and a convolutional 
neural network to predict eyelid hemoglobin levels, 
achieving a promising R2 value of 0.512.64 However, 
conjunctival imaging-based models encounter challenges 
concerning acquisition criteria, image extraction, and 
algorithm selection. To overcome these limitations, 
Mitani et al. developed a deep learning system based on 
Color Fundus Photography (CFP) for anemia screening, 
which showed significant promise. Utilizing data from 
the UK Biobank, the integrated AI system effectively 
determined hemoglobin levels and anemia, and it also 
performed well for diabetes patients (AUC = 0.89).65 
	 Zhao et al. extended the focus to retinal features 
and employed Ultra-Widefield (UWF) retinal images as 
input, achieving an impressive AUC of 0.93 for accurate 
anemia prediction.66 Recent research has investigated the 
relationship between anemia and alterations in capillary 
plexus density and retinal microvascular perfusion observed 
in optical coherence tomography angiography (OCTA). 
A lightweight network utilizing OCTA images achieved 
an excellent AUC of 0.99, demonstrating respectable 
performance. However, validation on a larger and more 
diverse dataset is essential to establish its reliability.67 
	 In a different approach, Wu et al. devised a method 
to detect anemia in pregnant individuals by combining 
metadata and quantitative OCTA measurements, achieving 
an AUC of 0.874.68 In conclusion, deep learning systems 
based on ocular imaging hold enormous potential for 
predicting anemia. Despite encouraging results, further 
validation and improvement are required to address 
issues related to data size and external validation. If 
these challenges are overcome, these techniques have 

the potential to revolutionize anemia screening and 
management by offering non-invasive, effective, and 
reliable diagnostic tools for this common hematological 
illness.

Use of AI-based ocular scans in autoimmune conditions
Multiple sclerosis
	 A number of autoimmune diseases, such as multiple 
sclerosis, inflammatory bowel disease, and Sjögren syndrome, 
are examples of the complex relationship between the 
immune system and the eyes. These conditions can 
cause symptoms that affect the eyes, such as uveitis, 
optic neuritis, and dry eyes. Retinal thickness may be 
a useful biomarker for the advancement of multiple 
sclerosis, according to studies examining the connection 
between the disease and the eyes.69 In this context, optical 
coherence tomography (OCT) images have become a 
popular source for artificial intelligence (AI) diagnosis. 
Researchers that have gathered OCT images from multiple 
sclerosis patients and controls include Cavaliere et al. 
They examined various retinal and choroid regions in 
detail using the OCT ETDRS and TNSIT scan modes. 
Through the application of a support vector machine 
algorithm, they developed a diagnostic model by identifying 
variables with the highest area under the curve (AUC) 
of 0.97. This novel method showcased the ability of AI 
to detect multiple sclerosis in its early stages and the 
effectiveness of OCT-based diagnostic systems in disease 
detection and tracking.69,70 
	 Martin et al. similarly examined OCT pictures 
from 48 patients with early-stage multiple sclerosis 
and 48 healthy people. They established an efficient 
classifier by precisely measuring the thickness of the 
retinal and choroidal layers, which allowed them to 
identify regions with significant discriminant capacity. 
The top-performing classifier demonstrated remarkable 
0.98 measurements for both specificity and sensitivity. 
Their research clarified the various layers of the eye and 
suggested that the papillomacular bundle may be the 
first region to be affected in the early phases of multiple 
sclerosis. The significance of accurate layer analysis in 
early disease detection is highlighted by this discovery, 
however It’s crucial to acknowledge the limitations, 
considering the high AUC scores, and to be cautious about 
potential overfitting, emphasizing the need for further 
validation on new data.70 All of these studies highlight 
how OCT images can revolutionize AI-driven multiple 
sclerosis diagnosis. AI systems can provide invaluable 
insights into disease progression by utilizing the detailed 
information provided by OCT scans, which can help 
clinicians diagnose and intervene early in patients’ lives.
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Use of AI-based ocular scans in Hepatobiliary conditions
	 A ground-breaking study has unveiled a strong 
correlation between major hepatic diseases and ocular 
features, paving the way for automated screening and 
identification of these conditions through fundus or 
slit-lamp images. The study’s models demonstrated 
impressive performance in detecting liver cirrhosis and 
cancer, even in cases where these conditions manifested 
subtly, such as through yellowing of the sclera and 
conjunctiva due to elevated bilirubin accumulation.71 

Surprisingly, the fundus models performed as effectively as 
the slit-lamp models, revealing minute retinal alterations 
imperceptible to the human eye. Researchers speculated 
that these modifications were linked to advanced liver 
disease characteristics, including hyperammonaemia, 
hypoalbuminemia, imbalanced estrogen, and pathological 
changes like splenomegaly and portal hypertension.72 

	 Hyperammonaemia, a common liver disease 
condition, damages retinal Müller cells, leading to hepatic 
retinopathy, while hypoalbuminemia causes fluid leakage 
into retinal tissues, forming retinal exudates.73 Imbalanced 
estrogen can induce retinopathy74, and complications 
of decompensated cirrhosis result in thinning retinal 
arteries and tortuous vessels.75 Splenomegaly leads to 
observable blood cell sequestration in fundus images, 
aiding hepatobiliary disease diagnosis, even in mild cases. 
These ocular changes offer valuable diagnostic insights, 
enhancing disease identification and understanding, 
even for milder hepatobiliary diseases like chronic viral 
hepatitis and non-alcoholic fatty liver disease.72 
	 The study employed deep neural networks (ResNet-101) 
to develop screening models for hepatobiliary diseases 
using OCT and fundus images.72 Notably, the iris, an 
unexplored area in hepatobiliary diseases, emerged as 
a significant diagnostic contributor. The models enable 
early detection and extensive, non-invasive screening, 
outperforming traditional approaches based on serum 
markers or systemic risk factors. These models can be 
integrated into existing fundus camera or slit-lamp systems, 
offering practical and effective opportunistic screening 
tools as quick and extensive screening is necessary because 
major hepatobiliary diseases are thought to be the cause 
of about two million deaths globally each year.76 While 
the study acknowledges limitations such as sample size 
and potential biases, the authors emphasize the need 
for larger, diverse datasets to enhance accuracy and 
generalizability.72 

CONCLUSION
	 The utility of AI in medical diagnosis is growing as 
more links between ocular and systemic disorders are 

discovered. Ocular pictures are being employed in the 
identification of endocrine, cardiovascular, neurological, 
renal, hematological, and many other disorders thanks 
to the development of AI, ML, DL, and medical big 
data. Although there is still much to learn about the 
fundamental connections between the eyes and other 
diseases, doing so will require continuing advancements 
in AI algorithms and our understanding of physiological 
and pathological mechanisms. Only then will we be able 
to fully comprehend the relationships between ocular 
and systemic health. AI is expected to revolutionize 
illness identification and patient treatment in the medical 
industry in the future.
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