EXERCISE AS AN ANTI-HYPERTENSIVE TOOL: SCIENTIFIC MECHANISMS

Main Article Content

Kunanya Masodsai
Pattama Kerdkarn
Rungchai Chaunchaiyakul

Abstract

โรคความดันโลหิตสูง (hypertension) เป็นโรคทางระบบหัวใจและหลอดเลือด (cardiovascular diseases; CVD) ที่มีความบกพร่องของทั้งโครงสร้างและการทางานของหัวใจและหลอดเลือด การออกกำลังกายถือเป็นวิธีหนึ่งของการรักษาโรคความดันโลหิตสูงแบบไม่ใช้ยา (non-pharmacologic intervention) ที่ได้รับการยอมรับอย่างแพร่หลาย โดยแบ่งเป็นสองชนิดหลักๆ คือ การออกกำลังกายแบบแอโรบิก (aerobic exercise) และแบบใช้แรงต้าน (resistance exercise) แต่อย่างไรก็ตาม กลไก (mechanism) ที่อธิบายผลของการออกกำลังกายต่อการลดความดันโลหิตนี้ ยังไม่มีความชัดเจนและยังมีข้อขัดแย้งในบางประเด็น บทความนี้จึงมุ่งเน้นทบทวนงานวิจัยที่ศึกษากลไกที่อธิบายผลของการออกกาลังกายทั้งเฉียบพลันและการฝึกต่อร่างกายทั้งระดับระบบต่างๆจนถึงระดับโมเลกุล

Article Details

How to Cite
Masodsai, K., Kerdkarn, P., & Chaunchaiyakul, R. (2022). EXERCISE AS AN ANTI-HYPERTENSIVE TOOL: SCIENTIFIC MECHANISMS. Journal of Sports Science and Health, 23(1), 1–21. Retrieved from https://he02.tci-thaijo.org/index.php/spsc_journal/article/view/257584
Section
บทความวิชาการ (Review Article)

References

Barton, M. (2010). Obesity and aging: determinants of endothelial cell dysfunction and atherosclerosis. Pflugers Arch, 4 6 0 (5), 825-837. https://doi.org/10.1007/s00424-010-0860-y

Bocalini, D. S., Bergamin, M., Evangelista, A.L., Rica, R. L., Pontes, F. L. J., Figueira, A. J., Dos Santos, L. (2017). Post-exercise hypotension and heart rate variability response after wate andnland-ergometry exercise in hypertensive patients. PLoS One, 1 2(6), e0180216. https://doi.org/10.1371/journal.pone.0180216

Borjesson, M., Onerup, A., Lundqvist, S., & Dahlof, B. (2016). Physical activity and exercise lower blood pressure in individuals with hypertension: narrative review of 27 RCTs. Br J Sports Med, 5 0(6) , 356-361. https://doi.org/10.1136/bjsports-2015-095786

Brown, M. J., & Haydock, S. (2000). Pathoaetiology, epidemiology and diagnosis of hypertension. Drugs, 59(Suppl 2), 1-12; discussion 39-40. https://www.ncbi.nlm.nih.gov/pubmed/10678592

Cahill, P. A., & Redmond, E. M. (2016). Vascular endothelium - Gatekeeper of vessel health. Atherosclerosis, 248, 97-109. http://www.ncbi.nlm.nih.gov/pubmed/26994427

Cardoso, C. G., Jr., Gomides, R. S., Queiroz, A. C., Pinto, L. G., da Silveira Lobo, F., Tinucci, T., de Moraes Forjaz, C.L. (2010). Acute and chronic effects of aerobic and resistance exercise on ambulatory blood pressure. Clinics (Sao Paulo), 65(3), 317-325. https://doi.org/10.1590/S1807-59322010000300013

Carretero, O. A., & Oparil, S. (2000(. Essential hypertension. Part I: definition and etiology. Circulation, 101(3), 329-335. http://www.ncbi.nlm.nih.gov/pubmed/10645931

Charkoudian, N., Joyner, M. J., Johnson, C.P., Eisenach, J. H., Dietz, N. M., & Wallin, B. G. (2005). Balance between cardiac output and sympathetic nerve activity in resting humans: role in arterial pressure regulation. J Physiol, 568(Pt1) , 315-321. https://doi.org/10.1113/jphysiol.2005.090076

Collier, S. R., Kanaley, J. A., Carhart, R., Jr,Frechette, V., Tobin, M. M., Hall, A. K.,Luckenbaugh, A. N., & Fernhall, B. (2008). Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1hypertensives. Journal of human hypertension, 22(10), 678–686. https://doi.org/10.1038/jhh.2008.36

Cornelissen, V. A., & Smart, N. A. (2 0 1 3). Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc, 2(1), e004473. https://doi.org/10.1161/JAHA.112.004473

Davis, M. E., Cai, H., McCann, L., Fukai, T., &Harrison, D. G. (2003). Role of c-Srcin regulation of endothelial nitric oxide synthase expression during exercise training. Am J Physiol Heart Circ Physiol, 2 8 4(4), H1449-1453. https://doi.org/10.1152/ajpheart.00918.2002

dela Paz, N. G., Walshe, T. E., Leach, L. L., Saint-Geniez, M., & D'Amore, P. A. (2012). Role of shear-stress-induced VEGF expression in endothelial cell survival. J Cell Sci, 125(Pt 4), 831-843. https://doi.org/10.1242/jcs.084301

Egan, B. M., Li, J., Hutchison, F. N., & Ferdinand, K. C. (2014). Hypertension in the United States, 1 9 9 9 to 2 0 1 2: progress toward Healthy People 2020 goals. Circulation, 130(9), 1692-1699. https://doi.org/10.1161/CIRCULATIONAHA.114.010676

Endemann, D. H., & Schiffrin, E. L. (2004). Endothelial dysfunction. J Am SocNephrol, 15(8), 1983-1992. https://doi.org/10.1097/01.ASN.0000132474.50966.DA

Esler, M., Rumantir, M., Kaye, D., Jennings,G., Hastings, J., Socratous, F., & Lambert, G. (2001). Sympathetic nerve biology in essential hypertension. Clin Exp Pharmacol Physiol, 28(12), 986-989. https://www.ncbi.nlm.nih.gov/pubmed/11903299

Feletou, M., & Vanhoutte, P. M. (2006). Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol, 291(3), H985-1002. http://www.ncbi.nlm.nih.gov/pubmed/16632549

Fitzgerald, W. (1981). Labile hypertension and jogging: new diagnostic tool or spurious discovery? Br Med J (Clin Res Ed), 282(6263), 542-544. https://doi.org/10.1136/bmj.282.6263.542

Frommer, K. W., & Muller-Ladner, U. (2008). Expression and function of ETA and ETB receptors in SSc. Rheumatology (Oxford), 47(Suppl 5), v27-28. https://doi.org/10.1093/rheumatology/ken274

Furchgott, R. F., & Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288(5789), 373-376. https://doi.org/10.1038/288373a0

Garcia-Cardena, G., Fan, R., Shah, V., Sorrentino, R., Cirino, G., Papapetropoulos, A., & Sessa, W. C. (1998). Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature, 392(6678), 821-824. https://doi.org/10.1038/33934

Ghadieh, A. S., & Saab, B. (2015). Evidence for exercise training in the management of hypertension in adults. Canadian family physician Medecin de famille canadien, 61(3), 233-239. https://www.ncbi.nlm.nih.gov/pubmed/25927108

Gielen, S., Schuler, G., & Adams, V. (2010). Cardiovascular effects of exercise training: molecular mechanisms. Circulation, 122(12), 1221-1238. https://doi.org/10.1161/CIRCULATIONAHA.110.939959

Giles, T. D., Sander, G. E., Nossaman, B. D., & Kadowitz, P. J. (2012). Impaired vasodilation in the pathogenesis of hypertension: focus on nitric oxide,endothelial-derived hyperpolarizing factors, and prostaglandins. J Clin Hypertens (Greenwich), 14(4), 198-205. https://doi.org/10.1111/j.1751-7176.2012.00606.x

Graham, D. A., & Rush, J. W. (2004). Exercise training improves aortic endothelium dependent vasorelaxation and determinants of nitric oxide bioavailability in spontaneously hypertensive rats. J Appl Physiol (1985), 96(6), 2088-2096. https://doi.org/10.1152/japplphysiol.01252.2003

Halliwill, J. R., Buck, T. M., Lacewell, A. N., & Romero, S. A. (2013). Postexercise hypotension and sustained postexercise vasodilatation: what happens after we exercise? Exp Physiol, 98(1), 7-18. https://doi.org/10.1113/expphysiol.2011.058065

Higashi, Y., Sasaki, S., Kurisu, S., Yoshimizu, A., Sasaki, N., Matsuura, H., Oshima, T. (1999). Regular aerobic exercise augments endothelium dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation, 100(11), 1194-1202. http://www.ncbi.nlm.nih.gov/pubmed/10484540

Inoue, N., Ramasamy, S., Fukai, T., Nerem, R.M., & Harrison, D. G. (1996). Shearstress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells. Circ Res, 79(1), 32-37. https://www.ncbi.nlm.nih.gov/pubmed/8925565

Kapilevich, L. V., Kologrivova, V. V., Zakharova, A. N., & Mourot, L. (2020). Post-exercise Endothelium-Dependent Vasodilation Is Dependent on Training Status. Front Physiol, 11, 348. https://doi.org/10.3389/fphys.2020.00348

Landry, J. F., Despres, J. P., Prud'homme, D., Lamarche, B., Tremblay, A., Nadeau,A., & Bouchard, C. (1992). A study of some potential correlates of the hypotensive effects of prolonged submaximal exercise in normotensive men. Can J Physiol Pharmacol, 70(1), 53-59. https://doi.org/10.1139/y92-008

Legramante, J. M., Galante, A., Massaro, M., Attanasio, A., Raimondi, G., Pigozzi, F., & Iellamo, F. (2002). Hemodynamic and autonomic correlates of post exercise hypotension in patients with mild hypertension. Am J Physiol Regul Integr Comp Physiol, 282(4), R1037-1043. https://doi.org/10.1152/ajpregu.00603.2001

MacDonald, H. V., Johnson, B. T., Huedo-Medina, T. B., Livingston, J., Forsyth, K. C., Kraemer, W. J., . . . Pescatello, L. S. (2016). Dynamic Resistance Training as Stand-Alone Antihypertensive Lifestyle Therapy: A Meta-Analysis. J Am Heart Assoc, 5(10). https://doi.org/10.1161/JAHA.116.003231

MacDonald, J. R. (2002). Potential causes, mechanisms, and implications of post exercise hypotension. Journal of Human Hypertension, 16(4), 225-236. https://doi.org/10.1038/sj.jhh.1001377

Maiorana, A., O'Driscoll, G., Taylor, R., & Green, D. (2003). Exercise and the nitric oxide vasodilator system. Sports Med, 33(14), 1013-1035. http://www.ncbi.nlm.nih.gov/pubmed/14599231

Masodsai, K., Lin, Y. Y., Lee, S. D., & Yang, A. L. (2017). Exercise and Endothelial Dysfunction in Hypertension. Adaptive Medicine, 9(1).

Moriguchi, J., Itoh, H., Harada, S., Takeda, K., Hatta, T., Nakata, T., & Sasaki, S. (2005). Low frequency regular exercise improves flow-mediated dilatation of subjects with mild hypertension. Hypertens Res, 2 8(4), 315-321. https://doi.org/10.1291/hypres.28.315

Newcomer, S. C., Thijssen, D. H., & Green, D. J. (2011). Effects of exercise on endothelium and endothelium/smooth muscle cross talk: role of exercise induced hemodynamics. J Appl Physiol (1985), 111(1), 311-320. https://doi.org/10.1152/japplphysiol.00033.2011

Noone, C., Leahy, J., Morrissey, E. C., Newell, J., Newell, M., Dwyer, C. P., . . . Molloy, G. J. (2020). Comparative efficacy of exercise and antihypertensive Pharmacological interventions in reducing blood pressure in people with hypertension: A network meta-analysis. Eur J Prev Cardiol, 27(3), 247-255. https://doi.org/10.1177/2047487319879786

Oparil, S., Acelajado, M. C., Bakris, G. L., Berlowitz, D. R., Cífková, R., Dominiczak, A. F., . . . Whelton, P. K. (2018). Hypertension. Nature reviews. Disease primers, 4,18014-18014. https://doi.org/10.1038/nrdp.2018.14

Oparil, S., Zaman, M. A., & Calhoun, D. A. (2003). Pathogenesis of hypertension. Ann Intern Med, 139(9), 761-776. https://www.ncbi.nlm.nih.gov/pubmed/14597461

Pescatello, L. S., Franklin, B. A., Fagard, R., Farquhar, W. B., Kelley, G. A., Ray, C. A., & American College of Sports, M. (2004). American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc, 36(3), 533-553. https://www.ncbi.nlm.nih.gov/pubmed/15076798

Ramkhelawon, B., Vilar, J., Rivas, D., Mees, B., de Crom, R., Tedgui, A., & Lehoux, S. (2009). Shear stress regulates angiotensin type 1 receptor expression in endothelial cells. Circulation research, 105(9), 869-875. https://doi.org/10.1161/CIRCRESAHA.109.204040

Roque, F. R., Hernanz, R., Salaices, M., & Briones, A. M. (2013). Exercise training and cardiometabolic diseases: focus on the vascular system. Curr Hypertens Rep, 1 5(3), 204-214. https://doi.org/10.1007/s11906-013-0336-5

Rossi, A., Moullec, G., Lavoie, K. L., & Bacon, S. L. (2012). Resistance training, blood pressure, and meta-analyses. Hypertension, 59(3), e22-23; author reply e24. https://doi.org/10.1161/HYPERTENSIONAHA.111.188805

Ruivo, J. A., & Alcantara, P. (2 0 1 2). [Hypertension and exercise]. Rev Port Cardiol, 31(2), 151-158. https://doi.org/10.1016/j.repc.2011.12.012

Schrader, L. I., Kinzenbaw, D. A., Johnson, A. W., Faraci, F. M., & Didion, S. P. (2007). IL-6 deficiency protects against angiotensin II induced endothelial dysfunction and hypertrophy. Arteriosclerosis, thrombosis, and vascular biology, 27(12), 2576–2581. https://doi.org/10.1161/ATVBAHA.107.153080

Su, J. B. (2015). Vascular endothelial dysfunction and pharmacological treatment. World J Cardiol, 7(11), 719-741. https://doi.org/10.4330/wjc.v7.i11.719

Takeshita, S., Inoue, N., Ueyama, T., Kawashima, S., & Yokoyama, M. (2000). Shear stress enhances glutathione peroxidase expression in endothelial cells. Biochem Biophys Res Commun, 273(1), 66-71. https://doi.org/10.1006/bbrc.2000.2898

Tanaka, H. (2015). Effects of Regular Exercise on Arterial Stiffness. In L. S. Pescatello (Ed.), Effects of Exercise on Hypertension: From Cells to Physiological Systems (pp. 185-201). Springer International Publishing. https://doi.org/10.1007/978-3-319-17076-3_8

Tirapelli, C. R., Bonaventura, D., Tirapelli, L. F., & de Oliveira, A. M. (2009). Mechanisms underlying the vascular actions of endothelin 1, angiotensin II and bradykinin in the rat carotid. Pharmacology, 84(2), 111-126. http://www.ncbi.nlm.nih.gov/pubmed/1

Wellman, R. J., Sylvestre, M. P., Abi Nader, P., Chiolero, A., Mesidor, M., Dugas, E. N., O'Loughlin, J. (2020). Intensity and frequency of physical activity and high blood pressure in adolescents: A longitudinal study. J Clin Hypertens (Greenwich), 22(2), 283-290. https://doi.org/10.1111/jch.13806

White, D. W., & Raven, P. B. (2014). Autonomic neural control of heart rate during dynamic exercise: revisited. The Journal of physiology, 592(12), 2491-2500. https://doi.org/10.1113/jphysiol.2014.271858

White, D. W., & Fernhall, B. (2015). Effects of Exercise on Blood Pressure and Autonomic Function and Other Hemodynamic Regulatory Factors. In L. S. Pescatello (Ed.), Effects of Exercise on Hypertension: From Cells to Physiological Systems (pp. 203-225). Springer International Publishing. https://doi.org/10.1007/978-3-319-17076-3_9

Zaros, P. R., Pires, C. E., Bacci, M., Jr., Moraes, C., & Zanesco, A. (2009). Effect of 6-months of physical exercise on the nitrate/nitrite levels in hypertensive postmenopausal women. BMC Womens Health, 9, 17. https://doi.org/10.1186/1472-6874-9-17