PROBIOTICS ON PHYSICAL PERFORMANCE: PHYSIOLOGIC MECHANISMS

Main Article Content

Rungchai Chaunchaiyakul
Kunanya Masodsai
Jatuphorn Phonsen
Pattama Kherdkarn

Abstract

Probiotics play an important role in enhancing the absorption of essential nutrients. Therefore, it can promote energy metabolism and eliminate bacteria that cause problems in the intestines and has an antioxidant effect. In the case of this antioxidant effect, probiotics can be used to treat certain diseases. It has been found that there is an imbalance of beneficial and pathogenic bacteria in the intestines of patients with Alzheimer's. However, probiotics have been used in sports and exercise. Previous studies have found that probiotics can improve exercise performance and decrease muscle fatigue and inflammation. This article summarizes the link between probiotics and physical performance which is related to the functioning of the digestive system and the nervous system and brain including the involved physiological mechanisms for the benefit of choosing to use appropriately, worthy and safe.

Article Details

How to Cite
Chaunchaiyakul, R., Masodsai, K., Phonsen, J., & Kherdkarn, P. (2024). PROBIOTICS ON PHYSICAL PERFORMANCE: PHYSIOLOGIC MECHANISMS. Journal of Sports Science and Health, 25(2), 16–29. Retrieved from https://he02.tci-thaijo.org/index.php/spsc_journal/article/view/268143
Section
บทความวิชาการ (Review Article)

References

Atsawarungruangkit, A., and Hussain, Z. (2018). Relationship between constipation and physical activity: results from the national health and nutrition examination survey (NHANES): 459. The American College of Gastroenterology, 113, 266-267.

Bonomini-Gnutzmann, R., Plaza-Díaz, J., Jorquera-Aguilera, C., Rodríguez-Rodríguez, A., and Rodríguez-Rodríguez, F. (2022). Effect of intensity and duration of exercise on gut microbiota in humans: a systematic review. International Journal of Environmental Research and Public Health, 19(15), 9518-9535.

Carabotti, M., Scirocco, A., Maselli, M. A., and Severi, C. (2015). The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, 28(2), 203-209.

Chen, Y., Xu, J., and Chen, Y. (2021). Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients, 13(6), 2099-2119.

Clarke, G., Stilling, R. M., Kennedy, P. J., Stanton, C., Cryan, J. F., and Dinan, T. G. (2014). Minireview: gut microbiota: the neglected endocrine organ. Molecular Endocrinology (Baltimore, Md.), 28(8), 1221-1238.

Cox, L. M., and Weiner, H. L. (2018). Microbiota signaling pathways that influence neurologic disease. Neurotherapeutics, 15(1), 135-145.

Costa, R. J. S., Snipe, R. M. J., Kitic, C. M., and Gibson, P. R. (2017). Systematic review: exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Alimentary Pharmacology & Therapeutics, 46(3), 246-265.

Crossland, H., Skirrow, S., Puthucheary, Z. A., Constantin-Teodosiu, D., and Greenhaff, P. L. (2019). The impact of immobilisation and inflammation on the regulation of muscle mass and insulin resistance: different routes to similar end-points. The Journal of Physiology, 597(5), 1259-1270.

Cryan, J. F., O'Riordan, K. J., Sandhu, K., Peterson, V., and Dinan, T. G. (2020). The gut microbiome in neurological disorders. The Lancet Neurology, 19(2), 179-194.

Dardevet, D., Mosoni, L., Savary-Auzeloux, I., Peyron, M. A., Polakof, S., and Rémond, D. (2021). Important determinants to take into account to optimize protein nutrition in the elderly: solutions to a complex equation. The Proceedings of the Nutrition Society, 80(2), 207-220.

Gasbarrini, G., Bonvicini, F., and Gramenzi, A. (2016). Probiotics History. Journal of Clinical Gastroenterology, 50(Suppl 2), proceedings from the 8th probiotics, prebiotics & new foods for microbiota and human health meeting held in rome, italy on september 13-15, 2015, 116-119.

Georges, J., Lowery, R. P., Yaman, G., Kerio, C., Ormes, J., McCleary, S. A., Sharp, M., Shields, K., Rauch, J., Silva, J., Arick, N., Purpura, M., Jäger, R., and Wilson, J. M. (2014). The effects of probiotic supplementation on lean body mass, strength, and power, and health indicators in resistance trained males: a pilot study. Journal of the International Society of Sports Nutrition, 11(Suppl 1), 38.

Grosicki, G. J., Fielding, R. A., and Lustgarten, M. S. (2018). Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis. Calcified Tissue International, 102(4), 433-442.

Huang, W. C., Wei, C. C., Huang, C. C., Chen, W. L., and Huang, H. Y. (2019). The beneficial effects of lactobacillus plantarum ps128 on high-intensity, exercise-induced oxidative stress, inflammation, and performance in triathletes. Nutrients, 11(2), 353-365.

Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A., and Kimura, I. (2015). Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients, 7(4), 2839-2849.

Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., and Fakiri, E. M. (2013). Health benefits of probiotics: a review. ISRN nutrition, 2013, 481651. https://doi.org/10.5402/2013/481651

Klaenhammer, T. R., Kleerebezem, M., Kopp, M. V., and Rescigno, M. (2012). The impact of probiotics and prebiotics on the immune system. Nature Reviews Immunology, 12(10), 728-734.

Komano, Y., Shimada, K., Naito, H., Fukao, K., Ishihara, Y., Fujii, T., Kokubo, T., & Daida, H. (2018). Efficacy of heat-killed Lactococcus lactis JCM 5805 on immunity and fatigue during consecutive high intensity exercise in male athletes: a randomized, placebo-controlled, double-blinded trial. Journal of the International Society of Sports Nutrition, 15(1), 39. https://doi.org/10.1186/s12970-018-0244-9

Lei, M., Hua, L. M., and Wang, D. W. (2016). The effect of probiotic treatment on elderly patients with distal radius fracture: a prospective double-blind, placebo-controlled randomised clinical trial. Beneficial Microbes, 7(5), 631-637.

Li, P., Li, X., Gu, Q., Lou, X. Y., Zhang, X. M., Song, D. F., and Zhang, C. (2016). Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles. Journal of Zhejiang University. Science, 17(8), 569-579.

Marlicz, W., and Loniewski, I. (2015). The effect of exercise and diet on gut microbial diversity. Gut, 64(3), 519-520.

Marttinen, M., Ala-Jaakkola, R., Laitila, A., and Lehtinen, M. J. (2020). Gut microbiota, probiotics and physical performance in athletes and physically active individuals. Nutrients, 12(10), 2936-2967.

Michalickova, D., Minic, R., Dikic, N., Andjelkovic, M., Kostic-Vucicevic, M., Stojmenovic, T., Nikolic, I., and Djordjevic, B. (2016). Lactobacillus helveticus Lafti L10 supplementation reduces respiratory infection duration in a cohort of elite athletes: a randomized, double-blind, placebo-controlled trial. Applied Physiology, Nutrition, and Metabolism, 41(7), 782-789.

Midtvedt, T., and Norman, A. (1972). Adsorption of bile acids to intestinal microorganisms. Acta pathologica et microbiologica Scandinavica. Section B: Microbiology and Immunology, 80(2), 202-210.

Mora-Villalobos, J. A., Montero-Zamora, J., Barboza, N., Rojas-Garbanzo, C., Usaga, J., Redondo-Solano, M., Schroedter, L., Olszewska-Widdrat, A., López-Gómez, J. P. (2020). Multi-product lactic acid bacteria fermentations: a review. Fermentation, 6(1), 23-43.

Morella, I., Negro, M., Dossena, M., Brambilla, R., & D'Antona, G. (2023). Gut-muscle-brain axis: Molecular mechanisms in neurodegenerative disorders and potential therapeutic efficacy of probiotic supplementation coupled with exercise. Neuropharmacology, 240, 109718. https://doi.org/10.1016/j.neuropharm.2023.109718

Nay, K., Jollet, M., Goustard, B., Baati, N., Vernus, B., Pontones, M., Lefeuvre-Orfila, L., Bendavid, C., Rué, O., Mariadassou, M., Bonnieu, A., Ollendorff, V., Lepage, P., Derbré, F., and Koechlin-Ramonatxo, C. (2019). Gut bacteria are critical for optimal muscle function: a potential link with glucose homeostasis. American journal of physiology - Endocrinology and Metabolism, 317(1), 158-171.

Nilsson, A. G., Sundh, D., Bäckhed, F., and Lorentzon, M. (2018). Lactobacillus reuteri reduces bone loss in older women with low bone mineral density: a randomized, placebo-controlled, double-blind, clinical trial. Journal of Internal Medicine, 284(3), 307-317.

Piwowarek, K., Lipińska, E., Hać-Szymańczuk, E., Kieliszek, M., and Ścibisz, I. (2018). Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Applied Microbiology and Biotechnology, 102(2), 515-538.

Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R., and Rastall, R. A. (2019). Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Gastroenterology & Hepatology, 16(10), 605-616.

Sedgeman, L. R., Beysen, C., Allen, R. M., Ramirez Solano, M. A., Turner, S. M., and Vickers, K. C. (2018). Intestinal bile acid sequestration improves glucose control by stimulating hepatic miR-182-5p in type 2 diabetes. American Journal of Physiology - Gastrointestinal and Liver Physiology, 315(5), 810-823.

Sochocka, M., Donskow-Łysoniewska, K., Diniz, B. S., Kurpas, D., Brzozowska, E., and Leszek, J. (2019). The gut microbiome alterations and inflammation-driven pathogenesis of alzheimer's disease-a critical review. Molecular neurobiology, 56(3), 1841-1851.

Soares, A. D. N., Wanner, S. P., Morais, E. S. S., Hudson, A. S. R., Martins, F. S., and Cardoso, V. N. (2019). Supplementation with saccharomyces boulardii increases the maximal oxygen consumption and maximal aerobic speed attained by rats subjected to an incremental-speed exercise. Nutrients, 11(10), 2352-2562.

Toohey, J. C., Townsend, J. R., Johnson, S. B., Toy, A. M., Vantrease, W. C., Bender, D., Crimi, C. C., Stowers, K. L., Ruiz, M. D., VanDusseldorp, T. A., Feito, Y., and Mangine, G. T. (2020). Effects of probiotic (Bacillus subtilis) supplementation during offseason resistance training in female division I athletes. Journal of Strength and Conditioning Research, 34(11), 3173-3181.

Yamashita, H., Wang, Z., Wang, Y., Segawa, M., Kusudo, T., and Kontani, Y. (2008). Induction of fatty acid-binding protein 3 in brown adipose tissue correlates with increased demand for adaptive thermogenesis in rodents. Biochemical and Biophysical Research Communications, 377(2), 632-635.

Zhao, J., Huang, Y., & Yu, X. (2021). A Narrative Review of Gut-Muscle Axis and Sarcopenia: The Potential Role of Gut Microbiota. International journal of general medicine, 14, 1263–1273. https://doi.org/10.2147/IJGM.S301141