
SPECIAL ARTICLE

Adjuvant Chemotherapy for Malignant Ovarian Germ Cell Tumors in Pregnancy

Jitti Hanprasertpong, M.D.*,**,
Kriengsak Dhanaworavibul, M.D.*,
Thanasak Sueblinvong, M.D.***

* Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand

** Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand

*** Department of Obstetrics and Gynecology, Kaiser Permanente, Honolulu, USA

ABSTRACT

Malignant ovarian germ cell tumors (MOGCTs) are uncommon in pregnancy, and therefore few gynecologic oncologists obtain expertise in this area. Management of MOGCTs in pregnancy is complicated and complex, requiring a multidisciplinary team in a specialized center. Fertility-sparing surgery is the first choice treatment of MOGCTs, while adjuvant chemotherapy is reserved for high risk cases. The indications for adjuvant chemotherapy after surgery are similar to those for non-pregnant women. Due to the low incidence and insufficient published data, the decision concerning adjuvant chemotherapy is based on case reports or small retrospective cohort studies. Following is a brief review of current knowledge concerning the MOGCTs in pregnancy and its management, especially, adjuvant chemotherapy.

Keywords: malignant ovarian germ cell tumor, ovarian cancer, pregnancy, management, chemotherapy.

Correspondence to: Jitti Hanprasertpong, M.D., Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand, Email address: hjitti@yahoo.com

Received: 1 September 2019, **Revised:** 15 September 2019, **Accepted:** 28 September 2019

Introduction

Malignant ovarian germ cell tumors (MOGCTs) are infrequent form of ovarian tumors, arising from germ cells of the embryonic gonad. These tumors often grow rapidly, causing acute abdominopelvic pain that lead to early detection and treatment, thus these tumors are most often diagnosed in their early stages. They also usually occur in young women

and are often unilateral. Nowadays, fertility-sparing surgery is the cornerstone primary treatment for MOGCTs, while adjuvant chemotherapy is kept for selected or high risk cases (generally indicated in all cases except for stage IA dysgerminoma or grade 1 immature teratoma)⁽¹⁾.

The incidence of MOGCTs in pregnancy is estimated at 1 in 12,500-25,000 pregnancies⁽²⁾.

With the increasing use of routine ultrasonographic screening in pregnant women, it is forecast that more pregnant women will be diagnosed with ovarian cancer, especially MOGCTs, in the future.

When management of MOGCTs in pregnancy is considered, the gynecologic oncologist needs to carefully balance fetal (fetal loss, treatment-related complications to the fetus), maternal (potential loss of the reproductive function after cancer treatment, anxiety) and malignancy (oncological outcomes) concerns⁽³⁾. The management of MOGCTs in pregnancy, especially the decision whether or not to include adjuvant chemotherapy, is complicated. Due to insufficient data and the lack of randomized clinical studies, the decisions concerning adjuvant chemotherapy are based on a small number of case reports or small retrospective cohort studies⁽⁴⁾. Herein following is a short survey of current knowledge on adjuvant chemotherapy for MOGCTs in pregnancy (including data on safety outcomes for mother and fetus).

Clinical / pathological profiles

In a systematic review covering 102 MOGCTs in pregnancy, the two most common histological types were dysgerminoma and endodermal sinus tumor (EST)⁽³⁾. The median age of these women was 25.8 years, and 35.3% had abdominal/pelvic pain, 19.6% had abdominal distension, and 19% had growing mass. Accidental tumor discovery, such as during routine ultrasound, was reported in 21.6% of the cases⁽³⁾.

Treatment during pregnancy

Fertility-sparing surgery with full peritoneal staging (peritoneal biopsy, omentectomy or omental biopsy, and peritoneal washing) should be done, but routine pelvic and para-aortic lymphadenectomy during surgery are not indicated^(5, 6), although suspicious palpable lymph nodes should be removed. The indications for adjuvant chemotherapy after surgery are similar to those in non-pregnant women^(6, 7).

Adjuvant Chemotherapy

Maternal physiological changes and stage of fetal development (the all-or-none period, organogenesis, and fetal phase) are the two most important factors when considering chemotherapy in pregnant women⁽⁸⁻¹⁰⁾.

Several physiologic changes during pregnancy such as alterations in blood volume, albumin levels, hepatic metabolism and renal elimination may affect the pharmacokinetics of chemotherapeutic drugs, and consequently it is difficult to decide the optimal dose of chemotherapy that will actually be transported to the tumor site, perhaps leading to reduced drug effectiveness⁽⁹⁻¹¹⁾. However, there is no evidence at present that dose adjustments are necessary to improve efficacy⁽¹⁰⁾, and the current guideline recommends dosing chemotherapeutic drugs in pregnancy according to the women's weight⁽⁹⁾.

The first trimester is the period of organogenesis of the fetus, and chemotherapy is contraindicated during this trimester to avoid interference with organogenesis, as early chemotherapy treatment has been correlated with a 10% to 20% risk of malformation^(8, 9, 12, 13). The risk of malformation drops to 1.3% in the third trimester⁽¹³⁾. From several previous studies and reviews, it appears that administration of some chemotherapeutic agents (such as bleomycin, platinum agents, anthracyclines, and taxanes) after the first trimester is relatively safe. However, there are also relatively higher risks of premature rupture of membranes, preterm labor, low birth weight, intrauterine growth restriction, and still birth^(3, 8, 9, 11, 13-15). Thus, in general the fetal benefits of delaying chemotherapy treatment until the second trimester counterbalance the increased maternal risks⁽⁹⁾.

Chemotherapy should be avoided after 35 weeks of gestation or stopped 3 weeks before the expected date of delivery to allow recovery from possible bone marrow suppression of both mother and newborn, and to reduce the maternal risk of bleeding and infection⁽⁸⁻¹⁰⁾.

Chemotherapy drugs and combination regimens

In pregnant women with MOGCTs, the indications for adjuvant chemotherapy after surgery are mostly similar to those in non-pregnant women with MOGCTs^(4, 7). From the 1990s until now, the combination of bleomycin, etoposide and cisplatin (BEP) has been considered the first line or standard regimen for adjuvant chemotherapy for non-pregnant women with MOGCTs⁽¹⁾. For MOGCTs during pregnancy. There are conflicting data in using BEP as a first line standard of treatment⁽⁷⁾.

In 1999, Elit et al. reported a case of neonatal complications after BEP treatment of an EST during pregnancy. The neonate was born with significant ventriculomegaly with cerebral atrophy after 1 cycle of BEP during the third trimester⁽¹⁶⁾. In another case, a neonate suffered hearing impairment after being exposed to BEP treatment in utero^(4, 17). Based on this poor neonatal outcome and given the paclitaxel activity in MOGCTs^(4, 18), paclitaxel and carboplatin (PC) is becoming a point of interest⁽¹⁵⁾. In 2007, Hubalek et al., reported the first case of dygerminoma in a pregnant woman treated with PC during the third trimester with good response, and no adverse effects on the fetus⁽¹⁵⁾. Vinca alkaloids (especially vinblastin) has been in use for a long period of time, and the oncological outcome of patients with stage I MOGCTs treated with bleomycin, vinblastin and cisplatin (BVP) is nearly similar to that of those treated with BEP^(3, 4, 19). In addition, many case reports have found their use relatively safe in pregnancy^(3, 4, 20, 21). Based on the possible fetal risk and the high risk of secondary leukemia after etoposide treatment, two international consensus meetings (3rd of July 2008 and 17th of May 2013, both in Leuven, Belgium) suggested that PC or BVP should be considered in pregnant women with MOGCTs^(4, 22).

Also, since 2000, several studies, including a systematic review of the literature, have reported that etoposide use during pregnancy (after the first trimester) in combination with cisplatin with or without bleomycin appeared to be safe^(3, 23-26). Consequently, in 2019, a third international consensus meeting suggested that

BEP or etoposide with cisplatin (EP) should be preferred as adjuvant chemotherapy for pregnant women with MOGCTs⁽⁹⁾.

Conclusion

MOGCTs during pregnancy are rare. Management of this cancer is an especially difficult issue as both the mother and fetus may be influenced. Unfortunately, decision concerning the optimal therapeutic management including adjuvant chemotherapy for this cancer is mainly based on case reports and small retrospective studies. In addition, data regarding long term outcomes of individuals exposed to adjuvant chemotherapy during pregnancy are limited. Thus, therapeutic decisions and treatment should be undertaken in specialized centers, and with personalized counselling.

References

1. Tangjittgamol S, Hanprasertpong J, Manusirivithaya S, Wootipoom V, Thavaramara T, Buhachat R. Malignant ovarian germ cell tumors: clinico-pathological presentation and survival outcomes. *Acta Obstet Gynecol Scand* 2010;89:182-9.
2. Peccatori FA, Azim HA Jr, Orecchia R, Hoekstra HJ, Pavlidis N, Kesic V, et al. Cancer, pregnancy and fertility: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol* 2013;24 Suppl 6:vi160-70.
3. Kodama M, Grubbs BH, Blake EA, Cahoon SS, Murakami R, Kimura T, et al. Feto-maternal outcomes of pregnancy complicated by ovarian malignant germ cell tumor: a systematic review of literature. *Eur J Obstet Gynecol Reprod Biol* 2014;181:145-56.
4. Amant F, Van Calsteren K, Halaska MJ, Beijnen J, Lagae L, Hanssens M, et al. Gynecologic cancers in pregnancy: guidelines of an international consensus meeting. *Int J Gynecol Cancer* 2009;19 Suppl 1:S1-12.
5. Mangili G, Sismondi C, Lorusso D, Cormio G, Candiani M, Scarfone G, et al. The role of staging and adjuvant chemotherapy in stage I malignant ovarian germ cell tumors (MOGCTs): the MITO-9 study. *Ann Oncol* 2017;28:333-8.
6. Morice P, Uzan C, Gouy S, Verschraegen C, Haie-Meder C. Gynaecological cancers in pregnancy. *Lancet* 2012;379:558-69.
7. Han SN, Van Calsteren K, Amant F. Use of chemotherapy during pregnancy in the treatment of ovarian

malignancies. *Eur J Obstet Gynecol Reprod Biol* 2011;156:237.

8. Ngu SF, Ngan HY. Chemotherapy in pregnancy. *Best Pract Res Clin Obstet Gynaecol* 2016;33:86-101.
9. Amant F, Berveiller P, Boere I, Cardonick E, Fruscio R, Fumagalli M, et al. Gynecologic cancers in pregnancy: guidelines based on a third international consensus meeting. *Ann Oncol* 2019 (In press).
10. Hepner A, Negrini D, Hase EA, Exman P, Testa L, Trinconi AF, et al. Cancer during pregnancy: The oncologist overview. *World J Oncol* 2019;10:28-34.
11. Vandenbroucke T, Verhelle M, Fumagalli M, Lok C, Amant F. Effects of cancer treatment during pregnancy on fetal and child development. *Lancet Child Adolesc Health* 2017;1:302-10.
12. Weisz B, Meirow D, Schiff E, Lishner M. Impact and treatment of cancer during pregnancy. *Expert Rev Anticancer Ther* 2004;4:889-902.
13. Zagouri F, Dimitrakakis C, Marinopoulos S, Tsigginou A, Dimopoulos MA. Cancer in pregnancy: disentangling treatment modalities. *ESMO Open* 2016;1:e000016.
14. Machado F, Vegas C, Leon J, Perez A, Sanchez R, Parrilla JJ, et al. Ovarian cancer during pregnancy: analysis of 15 cases. *Gynecol Oncol* 2007;105:446-50.
15. Hubalek M, Smekal-Schindelwig C, Zeimet AG, Sergi C, Brezinka C, Mueller-Holzner E, et al. Chemotherapeutic treatment of a pregnant patient with ovarian dysgerminoma. *Arch Gynecol Obstet* 2007;276:179-83.
16. Elit L, Bocking A, Kenyon C, Natale R. An endodermal sinus tumor diagnosed in pregnancy: case report and review of the literature. *Gynecol Oncol* 1999;72:123-7.
17. Raffles A, Williams J, Costeloe K, Clark P. Transplacental effects of maternal cancer chemotherapy. Case report. *Br J Obstet Gynaecol* 1989;96:1099-100.
18. McNeish IA, Kanfer EJ, Haynes R, Giles C, Harland SJ, Driver D, et al. Paclitaxel-containing high-dose chemotherapy for relapsed or refractory testicular germ cell tumours. *Br J Cancer* 2004;90:1169-75.
19. Taylor MH, Depetrillo AD, Turner AR. Vinblastine, bleomycin, and cisplatin in malignant germ cell tumors of the ovary. *Cancer* 1985;56:1341-9.
20. Cuvier C, Espie M, Extra JM, Marty M. Vinorelbine in pregnancy. *Eur J Cancer* 1997;33:168-9.
21. Motegi M, Takakura S, Takano H, Tanaka T, Ochiai K. Adjuvant chemotherapy in a pregnant woman with endodermal sinus tumor of the ovary. *Obstet Gynecol* 2007;109:537-40.
22. Amant F, Halaska MJ, Fumagalli M, Dahl Steffensen K, Lok C, Van Calsteren K, et al. Gynecologic cancers in pregnancy: guidelines of a second international consensus meeting. *Int J Gynecol Cancer* 2014;24:394-403.
23. Han JY, Nava-Ocampo AA, Kim TJ, Shim JU, Park CT. Pregnancy outcome after prenatal exposure to bleomycin, etoposide and cisplatin for malignant ovarian germ cell tumors: report of 2 cases. *Reprod Toxicol* 2005;19:557-61.
24. Cardonick E, Usmani A, Ghaffar S. Perinatal outcomes of a pregnancy complicated by cancer, including neonatal follow-up after in utero exposure to chemotherapy: results of an international registry. *Am J Clin Oncol* 2010;33:221-8.
25. Ghaemmaghami F, Abbasi F, Abadi AG. A favorable maternal and neonatal outcome following chemotherapy with etoposide, bleomycin, and cisplatin for management of grade 3 immature teratoma of the ovary. *J Gynecol Oncol* 2009;20:257-9.
26. Benjapibal M, Chaopotong P, Leelaphatanadit C, Jaishuen A. Ruptured ovarian endodermal sinus tumor diagnosed during pregnancy: case report and review of the literature. *J Obstet Gynaecol Res* 2010;36:1137-41.