

## GYNAECOLOGY

# Sperm Separation Technique Using Iodixanol Compare to Percoll Gradient

Chartchai Srisombut MD,\*

Anna Wongkularb MS,\*

Somporn Chinsomboon MS,\*\*

Surapee Sangtong BSc,\*\*

Seesiri Chatasingh MS.\*\*

\*Department of Obstetric and Gynecology,

\*\*Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

## ABSTRACT

**Objective** To evaluate the use of iodixanol for the separation of sperm motile fraction and the effect on sperm morphology comparing to Percoll gradient.

**Design** Experimental study.

**Setting** Research center, Ramathibodi Hospital.

**Methods** Thirty semen samples from infertile patients were studied. The initial evaluation of sperm count and morphology was performed. The samples were then equally aliquoted into 2 parts and were separately prepared by discontinuous gradient using Percoll and iodixanol. The yielded sperm from the two preparations were compared under the following parameters: motile and non-motile sperm count, progressive motion and percentage of normal morphology.

**Results** Concentrations of motile sperm after sperm preparation by both Percoll and iodixanol were comparable ( $17.4 \pm 11.7$  VS  $16.3 \pm 14.0 \times 10^6/ml$ ). Non-motile sperm count from Percoll and iodixanol were lower than the initial sperm ( $6.2 \pm 9.9$ ,  $18.1 \pm 19.1$ , and  $24.2 \pm 15.9 \times 10^6/ml$ , respectively). Iodixanol produced higher non-motile sperm concentration compared to Percoll. Both gradient materials gave comparable improvement of progressive movement from  $2.2 \pm 0.3$  in initial sperm to  $2.9 \pm 0.2$  by Percoll and  $2.8 \pm 0.2$  by iodixanol. Percoll gradient gave a significant improvement of the percentage of normal sperm morphology from  $14.1 \pm 3.3\%$  in initial sperm to  $16.8 \pm 5.3\%$ , while there was no change after iodixanol gradient. Percentages of head and tail defects were not changed after preparation by either gradient but midpiece defect was significantly decreased from  $11.1 \pm 3.6\%$  to  $7.8 \pm 4.3\%$  after Percoll process.

**Conclusion** Although motile sperm yielded by Percoll and iodixanol were comparable, Percoll gradient gave a better percent motility because it could separate more non-motile sperm. Percoll gradient also gave a better percentage of morphologically normal spermatozoa compared to iodixanol gradient. This new medium could replace Percoll if some preparation procedures are adjusted.

**Key words:** iodixanol, Percoll, sperm separation, density gradient centrifugation

Smith et al.<sup>(8)</sup> demonstrated that by modifying the iodixanol gradient volumes, the centrifugal force, and the duration of the centrifugation can dramatically improve the yield of motile and morphologically normal spermatozoa.

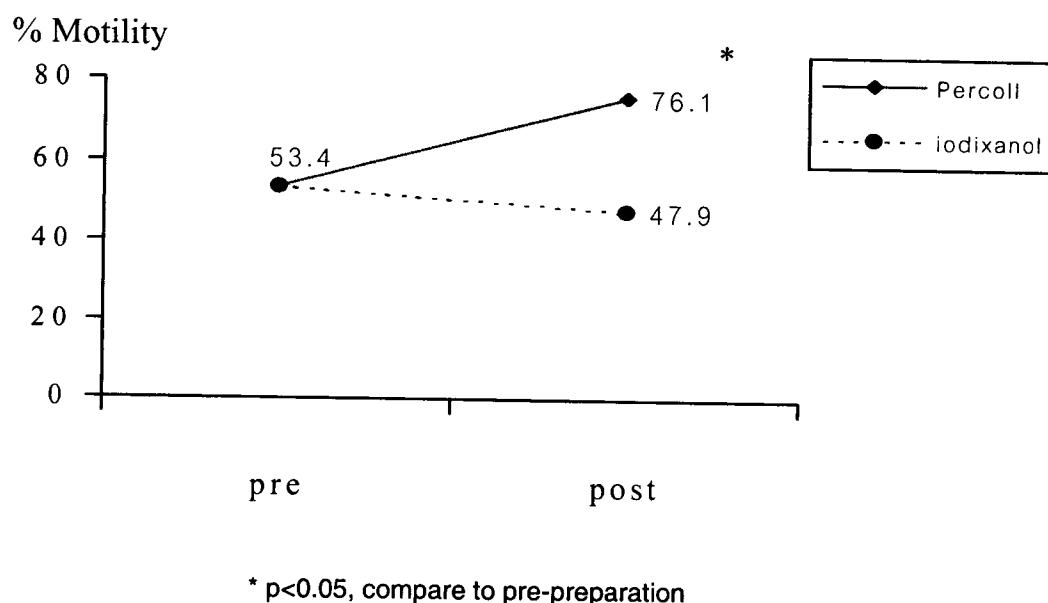
While the motile sperm counts were comparable, the percent motility was not improved following iodixanol density gradient centrifugation but significantly improved following Percoll gradient centrifugation. The finding indicates that separation of the non-motile fraction by using Percoll gradient is better than by using iodixanol gradient. This can be explained by the lower density of the medium and the lower differential gradient between upper and lower layers of the Ixaprep, compared to 40%, 90% Percoll gradient. The lower layer of IxaPrep had a density of 1.09 g/ml, which was less than that of 90% Percoll (1.12 g/ml). The upper layer of IxaPrep had a density of 1.05 g/ml, which was a little bit less than that of 40% Percoll (1.052 g/ml). The lower density of IxaPrep might be responsible for the passage of both lower motile and non-motile spermatozoa into the resultant pellet. The low differential gradient of IxaPrep made an inefficient separation of non-motile spermatozoa at the interface of the upper and lower layer.

Although there are evidences that preparation of sperm by differential gradient centrifugation can select better population of morphologically normal sperm compared to other method,<sup>(5,14)</sup> we did not find any improvement of normal sperm morphology by using iodixanol. However, we found that by using Percoll gradient the morphologically normal sperm was significantly improved and the improvement in the percentage of midpiece defects was the only

contributing factor in the overall improvement in the normal sperm morphology. Prakash et al.<sup>(5)</sup> also found that the percentage of sperm with normal head morphology was not improved by using Percoll gradient centrifugation but midpiece and tail morphology were improved. As it is believed that differential gradient centrifugation separates sperm on the basis of density, the sperm orient themselves down into the gradient solution as long as their specific gravity is higher than that of the surrounding medium. The sperm with midpiece defects loss its specific density to go down into the lower layer so the percentage of midpiece defects is decrease. In contrast, the lower density of iodixanol both upper and lower layer together with the lower differential gradient between the layers compared to Percoll gradient might be the cause of failure to separate the morphologically abnormal spermatozoa.

Although these data demonstrated no advantage from the use of iodixanol over Percoll for the separation of spermatozoa with respect to sperm recovery, sperm motility and sperm morphology, its safety has been confirmed through a series of clinical trials.<sup>(15-17)</sup> As iodixanol is a dimeric form of iohexol, the desired densities can be achieved by lower amount of the gradient substance. This factor may give an additional safety compared to other mediums. The better sperm recovery, motility and morphologically normal spermatozoa of the yield pellet prepared by iodixanol gradient may be achieved by increasing the density of the upper and lower layers and adjust the appropriate differential gradient between the layers which need further investigation.

**Table 1.** Concentration of motile sperm, non-motile sperm concentration, progressive motion and percent of normal sperm morphology from initial sample and after sperm preparation by Percoll and iodixanol gradient centrifugation. (value presented as mean  $\pm$  SD)


|                | <b>motile<br/>(<math>\times 10^6</math>/ml)</b> | <b>non-motile<br/>(<math>\times 10^6</math>/ml)</b> | <b>Progression</b>         | <b>Morphology<br/>(%)</b>   |
|----------------|-------------------------------------------------|-----------------------------------------------------|----------------------------|-----------------------------|
| Initial sample | 28.3 $\pm$ 17.1 <sup>a</sup>                    | 24.2 $\pm$ 15.9 <sup>a</sup>                        | 2.2 $\pm$ 0.3 <sup>a</sup> | 14.1 $\pm$ 3.3 <sup>a</sup> |
| Post-Percoll   | 17.4 $\pm$ 11.7 <sup>b</sup>                    | 6.2 $\pm$ 9.9 <sup>b</sup>                          | 2.9 $\pm$ 0.2 <sup>b</sup> | 16.8 $\pm$ 5.3 <sup>b</sup> |
| Post-iodixanol | 16.3 $\pm$ 14.0 <sup>b</sup>                    | 18.1 $\pm$ 19.1 <sup>c</sup>                        | 2.8 $\pm$ 0.2 <sup>b</sup> | 12.5 $\pm$ 4.2 <sup>a</sup> |

Different superscription in the corresponding parameter means  $P<0.05$ . The same superscription in the corresponding parameter means there is no statistical significance.

**Table 2.** Head, midpiece and tail abnormalities in initial sperm and after sperm preparation by Percoll and iodixanol gradient centrifugation. (value presented as mean  $\pm$  SD)

|                | <b>Type of abnormal morphology (%)</b> |                             |                             |
|----------------|----------------------------------------|-----------------------------|-----------------------------|
|                | <b>Head</b>                            | <b>Midpiece</b>             | <b>Tail</b>                 |
| Initial sample | 63.7 $\pm$ 6.5 <sup>a</sup>            | 11.1 $\pm$ 3.6 <sup>a</sup> | 11.0 $\pm$ 4.2 <sup>a</sup> |
| Post-Percoll   | 65.1 $\pm$ 9.1 <sup>a</sup>            | 7.8 $\pm$ 4.3 <sup>b</sup>  | 10.5 $\pm$ 3.7 <sup>a</sup> |
| Post-iodixanol | 66.2 $\pm$ 9.0 <sup>a</sup>            | 10.6 $\pm$ 4.2 <sup>a</sup> | 11.0 $\pm$ 5.2 <sup>a</sup> |

Different superscription in the corresponding parameter means  $P<0.05$ . The same superscription in the corresponding parameter means there is no statistical significance.



**Fig. 1.** Percent motility of pre-preparation and post-preparation by Percoll and iodixanol gradient centrifugation.

## References

1. McClure RD, Nunes L, Tom R. Semen manipulation: Improved sperm recovery and function with a two-layer Percoll gradient. *Fertil Steril* 1989;51:874-7.
2. Gorus FK, Pipeleers DG. Rapid method for the fractionation of human spermatozoa according to their progressive motility. *Fertil Steril* 1981;35:662-5.
3. De Lannou D, Blanchard Y. Nuclear maturity and morphology of human spermatozoa selected by Percoll density gradient centrifugation or swim-up procedures. *J Reprod Fertil* 1988; 84:551-6.
4. Van der Zwalm P, Bertin-Segal G, Geerts L, Debauche C, Schoysman R. Sperm morphology and IVF pregnancy rate: comparison between Percoll gradient centrifugation and swim-up procedures. *Hum Reprod* 1991;6: 581-8.
5. Prakash P, Leykin L, Chen Z, Toth T, Sayegh R, Schiff I, Isaacson K. Preparation by differential gradient centrifugation is better than swim-up in selecting sperm with normal morphology (strict criteria). *Fertil Steril* 1998;69:722-6.
6. Pharmacia Biotech (1996) Important notice : Percoll(r) NOT to be used in Assisted Reproduction Technologies in Humans. Pharmacia Biotech Inc, December 12, 1996.
7. Harrison K. Iodixanol as a density gradient medium for the isolation of motile spermatozoa. *J Assist Reprod Genet* 1997;14:385-7.
8. Smith TT, Byers M, Kaftani D, Whitford W. The use of iodixanol as a density gradient material for separating human sperm from semen. *Arch Androl* 1997;38: 223-30.
9. Claassens OE, Menkveld R, Harrison KL. Evaluation of three substitutes for Percoll in sperm isolation by density gradient centrifugation. *Hum Reprod* 1998;13:3139-43.
10. Kruger TF, Acosta AA, Simmons KF, Swanson RJ, Matta JF, Oehninger S. Predictive value of abnormal sperm morphology in in-vitro fertilization. *Fertil Steril* 1988;49:112-7.
11. Srisombut C, Oehninger S. Sperm preparation for assisted reproduction. *Thai J Obstet Gynaecol* 1998;10:183-92.
12. Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. *J Androl* 1988;9:367-76.
13. Yang JH, Wu MY, Chen CD, Chao KH, Chen SU, Ho HN, et al. Spermatozoa recovered by Ixaprep gradient have improved longevity and better motion characteristics than those by Percoll gradient. *Arch Androl* 1998;40:237-45.
14. Tanphaichitr N, Millette A, Agulnick A, Fitzgerald LM. Egg penetration ability and structural properties of human sperm prepared by Percoll-gradient centrifugation. *Gamete Research* 1988;20:67-81.
15. Bolstad B, Borch KW, Grynne BH, Lundby B, Nossen JOE, Kloster YF, et al. Clinical trials of newer iodinated agents. Safety and tolerability of iodixanol. A dimeric, nonionic contrast medium: an emphasis on European clinical phase I and II. *Invest Radiol* 1991;26:S201-4.
16. Jorgensen NP, Nossen JO, Borch KW, Kristiansen AB, Kristoffersen DT, Lundby B, et al. Safety and tolerability of iodixanol in healthy volunteers with reference to two monomeric X-ray contrast media. *Eur J Radiol* 1992;15:252-7.
17. Harnish PP, Fountaine H, Ebrahimi R. Iodixanol: experience in 1259 patients in the United States. *Invest Radiol* 1994;29(Suppl 2):S236-7.