

OBSTETRICS

Reference Centile Charts for Fetal Umbilical Artery Doppler Velocimetry Waveform of Thai Fetuses

Prasert Sunsaneevithayakul MD,*
Teera Siwadune MD,**
Dittakarn Boriboonhirunsarn MD, M.P.H.*
Vittaya Titapant MD,*
Anuwat Sutanthavibul MD,*

* Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

** Division of Obstetrics, Chonburi Hospital, Chonburi 20000, Thailand.

ABSTRACT

Objective To create reference centile charts for fetal umbilical arteries Doppler velocimetry waveforms of Thai fetuses.

Design Prospective, cross-sectional study.

Setting Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Siriraj Hospital, Mahidol University.

Subjects and Methods A total of 621 pregnant women, who attended the antenatal clinic at Siriraj Hospital, Mahidol University, Bangkok, were recruited between 12 and 41 weeks of gestation. Each fetus was measured only once for the purpose of this study. Using a Duplex pulsed wave Doppler Ultrasound with a 3.5 MHz convex transducer, we measured systolic/diastolic ratio (S/D ratio), pulsatility index (PI), and resistance index (RI) of fetal umbilical arteries. The mean and standard deviation (SD) of each Doppler indices were estimated at each week of gestation using stepwise linear regression modeling.

Results A total of 617 fetuses were measured for systolic/diastolic ratio (S/D ratio), pulsatility index (PI), and resistance index (RI) of fetal umbilical arteries. Regression models were fitted to estimate the mean and standard deviation for each parameter at each gestational age. The centile charts of each parameter were derived from regression equations and are presented.

Conclusion We have presented reference centile charts for systolic/diastolic ratio (S/D ratio), pulsatility index (PI), and resistance index (RI) of fetal umbilical arteries of Thai fetuses.

Key words: Doppler, umbilical artery, centile chart

To date, the utility of Doppler ultrasonography as a mean of assessing potential alterations of vascular resistance prior to fetal or maternal compromise is very attractive. Since umbilical arteries carry fetal blood to the placenta, obstetricians studied

flow velocity waveforms in these vessels to assess placental blood flow. There are three main indices in use for assessment of Doppler ultrasound umbilical artery waveforms. These are the systolic/diastolic ratio (S/D ratio), the pulsatility index (PI), and the resistance

index (RI)

In normal pregnancy, Doppler studies have shown a progressive fall in peripheral vascular resistance comparing with gestational age.⁽¹⁻²⁾ There is no doubt that there is a correlation between Doppler indices of umbilical arteries and adverse perinatal outcome especially in growth-retarded fetuses.⁽³⁾ In this group, abnormal Doppler measurements precede the ultrasonic diagnosis of growth retardation,⁽⁴⁾ therefore, we can use Doppler studies for early detection abnormal conditions in antepartum fetal surveillance in high-risk pregnancies.

Normal reference values for umbilical artery waveforms have been published by several groups in Western countries. Unfortunately, there is no standard reference of this for Thai fetuses. In this study we established reference ranges throughout pregnancy from 12-41 weeks of gestation in order to use indices in clinical management.

Materials and Methods

Data collection procedures were designed specifically for the purpose of this study that each fetus was measured only once. We recruited pregnant women and their fetuses between 12 and 41 weeks of gestation, who attended the antenatal clinic at Siriraj Hospital, Mahidol University, Bangkok, Thailand. We identified pregnant women who had previous regular menstrual period for at least 3 months without contraception prior to current pregnancy, and uterine size at that time of examination was compatible with menstrual age. Exclusion criteria were as follow:

1. Uncertain date of last menstrual period
2. Maternal conditions which may affect fetal growth (i.e., diabetes mellitus, hypertension, etc.)
3. Multiple pregnancies
4. Fetal or neonatal malformation or abnormal karyotype

A total of 621 pregnant women were recruited. Measurements were made at randomly assigned gestational age so that approximately equal number of fetuses were measured at each week of gestation.

Using a Duplex pulsed wave Doppler ultrasound scanner (Acuson 128XP4) with a 3.5 MHz convex transducer we measured the S/D ratio, PI, and RI of the umbilical arteries at the free loop of umbilical cord. Peak systolic to end diastolic velocities of four or five cardiac cycle were measured by electronic calipers. Recording were made during periods of fetal apnea because fetal breathing movements are known to have marked effect on fetal blood flow.⁽⁵⁾ Breathing movements at the time of umbilical artery recording were early recognized by fluctuation or irregular traces in the spectral waveforms.

Statistical analysis

The mean of each index measurement (S/D ratio, PI, and RI) is estimated at each week of gestation using stepwise linear regression modeling. This is based on the assumption that the data in each gestational age are normally distributed. The standard deviation (SD) is then modeled as a function of gestational age using linear regression model. All the final models chosen are the simplest ones which provide a good fit to the observed data. Reference centiles for each gestational age are then derived from the fitted mean and SD.

Reference centiles for each resistance index parameter are then derived from the fitted mean and SD. The 100th centile can be estimated from mean + $Z\alpha$ (SD), where $Z\alpha$ is the corresponding value from the standard normal distribution.

Results

Fetal umbilical artery data were available from 617 of 621 measurements due to unfavorable position in 4 fetuses. The number of fetuses measured at each weeks of gestation is shown in Table 1.

Table 1. Number of fetuses measured at each week of gestation

Gestational ages (weeks)	Number of fetuses	Percentage
12	12	1.9
13	14	2.3
14	14	2.3
15	19	3.1
16	22	3.6
17	22	3.6
18	21	3.4
19	22	3.6
20	21	3.4
21	21	3.4
22	24	3.9
23	26	4.2
24	22	3.6
25	26	4.2
26	27	4.4
27	23	3.7
28	22	3.6
29	21	3.4
30	26	4.2
31	20	3.2
32	21	3.4
33	22	3.6
34	19	3.1
35	17	2.8
36	23	3.7
37	21	3.4
38	19	3.1
39	18	2.9
40	16	2.6
41	16	2.6
Total	617	100.0

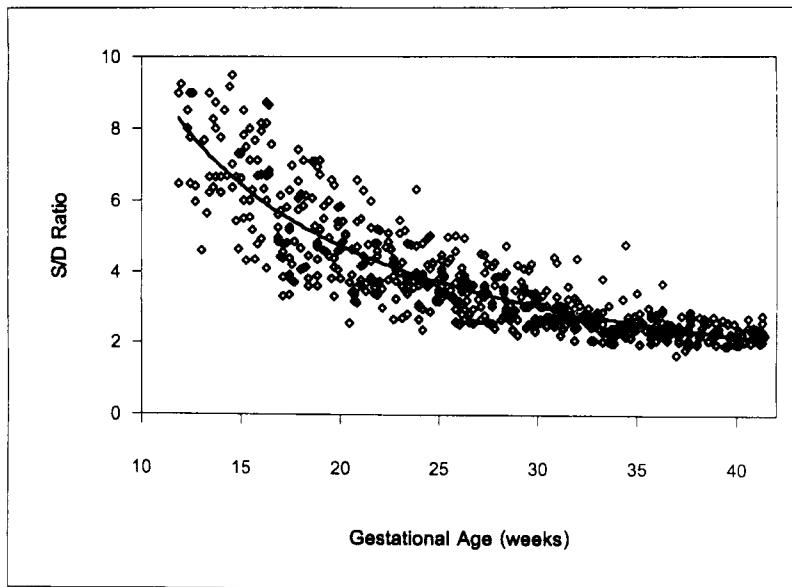
The models for the mean fetal umbilical artery Doppler indices were estimated using the stepwise linear regression technique. Standard deviations (SD) were modeled as a function of gestational age using the same regression technique. The regression equations for mean and SD are

$$\text{UA S/D Ratio} = -0.404 + (102.955/W)$$

$$\text{SD} = -0.291 + (21.158/W)$$

$$\text{UA PI} = 1.081 - 0.015 W + (11.23/W)$$

$$\text{SD} = -0.189 - (0.0026/W)$$


$$\text{UA RI} = 1.09 - 0.0175 W - 0.0001 W^2$$

$$\text{SD} = -0.0025 + 0.0032 W - 0.00005 W^2$$

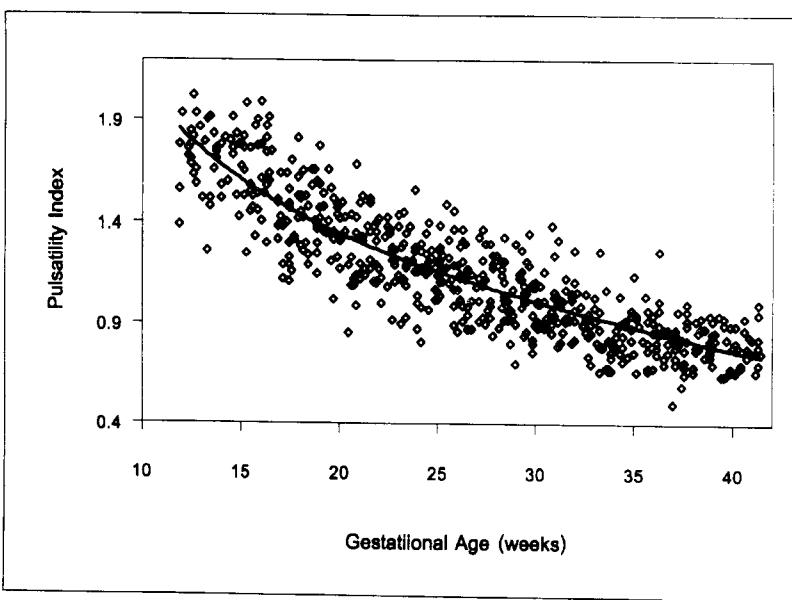

Where UA = umbilical artery, SD = standard deviation, and W = gestational age (weeks)

Figure 1 - 3 show a scatter plot of fetal umbilical artery indices (S/D ratio, PI, and RI, respectively) against gestational age with the fitted line from the

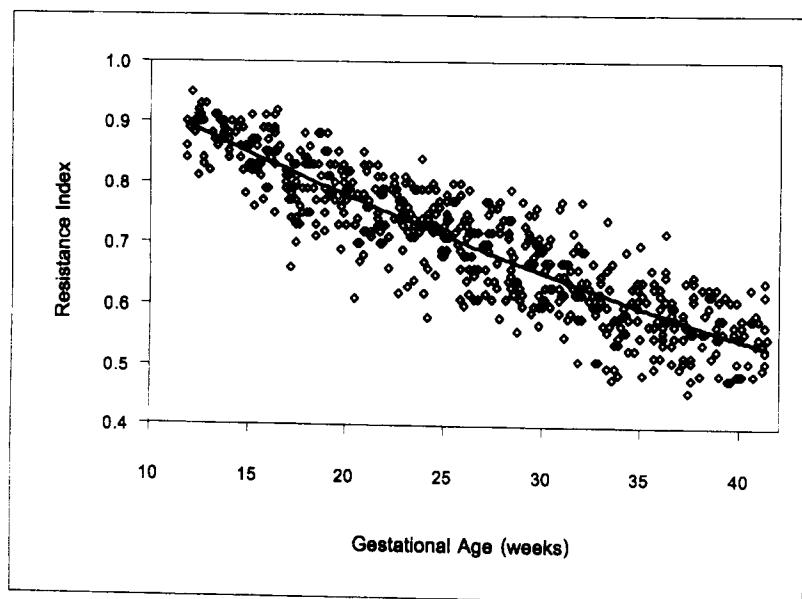

equations above. Reference centiles were calculated from the estimated means and SDs at each week of gestation.

Fig. 1. Scatter plot of S/D ratio and gestational age with the curve of the fitted mean.

Fig. 2. Scatter plot of Pulsatility Index (PI) and gestational age with the curve of the fitted mean.

Fig. 3. Scatter plot of Resistance Index (RI) and gestational age with the curve of the fitted mean.

The fitted centiles are shown in Table 2 - 4. The reference 3rd, 10th, 50th, 90th, and 97th centile lines of S/D ratio, PI, and RI were plotted and are shown in Figure 4 - 6.

Table 2. Fitted centiles of Thai fetal S/D ratio

GA (weeks)	Centile					SD
	3rd	10th	50th	90th	97th	
12	5.41	6.29	8.18	10.06	10.94	1.47
13	5.00	5.80	7.52	9.23	10.03	1.34
14	4.66	5.39	6.95	8.51	9.24	1.22
15	4.35	5.03	6.46	7.89	8.57	1.12
16	4.09	4.71	6.03	7.35	7.97	1.03
17	3.86	4.43	5.65	6.87	7.45	0.95
18	3.65	4.18	5.32	6.45	6.98	0.88
19	3.47	3.96	5.01	6.07	6.56	0.82
20	3.30	3.76	4.74	5.73	6.19	0.77
21	3.15	3.58	4.50	5.42	5.85	0.72
22	3.01	3.42	4.28	5.13	5.54	0.67
23	2.89	3.27	4.07	4.88	5.26	0.63
24	2.78	3.13	3.89	4.64	5.00	0.59
25	2.67	3.00	3.71	4.43	4.76	0.56
26	2.57	2.89	3.56	4.23	4.54	0.52

(Continued)

GA (weeks)	Centile					SD
	3rd	10th	50th	90th	97th	
27	2.48	2.78	3.41	4.04	4.34	0.49
28	2.40	2.68	3.27	3.87	4.15	0.46
29	2.32	2.58	3.15	3.71	3.97	0.44
30	2.25	2.50	3.03	3.56	3.81	0.41
31	2.18	2.42	2.92	3.42	3.65	0.39
32	2.12	2.34	2.81	3.29	3.51	0.37
33	2.06	2.27	2.72	3.16	3.37	0.35
34	2.00	2.20	2.62	3.05	3.25	0.33
35	1.95	2.14	2.54	2.94	3.13	0.31
36	1.90	2.08	2.46	2.84	3.01	0.30
37	1.85	2.02	2.38	2.74	2.91	0.28
38	1.81	1.96	2.31	2.65	2.81	0.27
39	1.76	1.91	2.24	2.56	2.71	0.25
40	1.72	1.87	2.17	2.48	2.62	0.24
41	1.68	1.82	2.11	2.40	2.53	0.23

Table 3. Fitted centiles of Thai fetal pulsatility index

GA (weeks)	Centile					SD
	3rd	10th	50th	90th	97th	
12	1.54	1.64	1.84	2.04	2.14	0.16
13	1.46	1.55	1.75	1.95	2.04	0.16
14	1.39	1.48	1.68	1.87	1.96	0.15
15	1.33	1.42	1.61	1.80	1.89	0.15
16	1.27	1.36	1.55	1.74	1.82	0.15
17	1.22	1.30	1.49	1.68	1.76	0.15
18	1.17	1.26	1.44	1.62	1.71	0.14
19	1.13	1.21	1.39	1.57	1.65	0.14
20	1.09	1.17	1.35	1.52	1.60	0.14
21	1.05	1.13	1.31	1.48	1.56	0.13
22	1.02	1.10	1.27	1.43	1.51	0.13
23	0.99	1.06	1.23	1.39	1.47	0.13
24	0.96	1.03	1.19	1.36	1.43	0.13
25	0.93	1.00	1.16	1.32	1.39	0.12
26	0.90	0.97	1.13	1.28	1.36	0.12
27	0.87	0.95	1.10	1.25	1.32	0.12
28	0.85	0.92	1.07	1.22	1.29	0.12
29	0.83	0.89	1.04	1.18	1.25	0.11
30	0.80	0.87	1.01	1.15	1.22	0.11
31	0.78	0.85	0.98	1.12	1.19	0.11

(Continued)

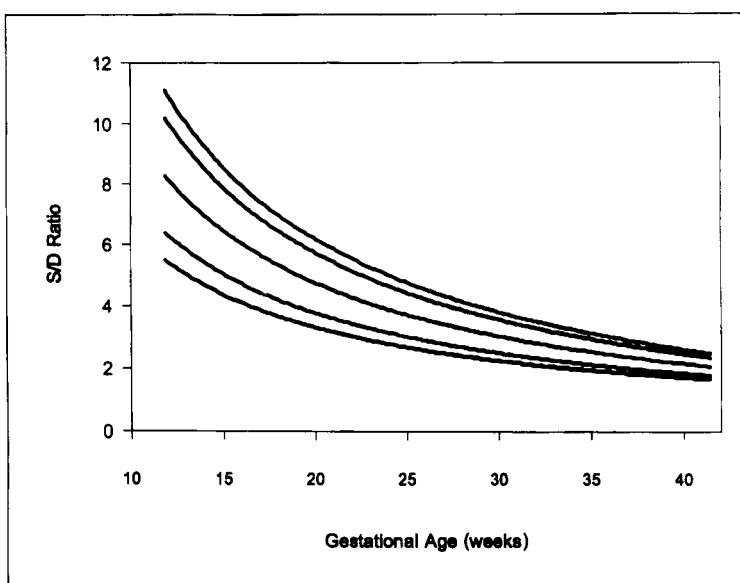

GA (weeks)	Centile					SD
	3rd	10th	50th	90th	97th	
32	0.76	0.82	0.96	1.09	1.16	0.11
33	0.74	0.80	0.93	1.07	1.13	0.10
34	0.72	0.78	0.91	1.04	1.10	0.10
35	0.70	0.76	0.88	1.01	1.07	0.10
36	0.68	0.74	0.86	0.98	1.04	0.10
37	0.66	0.72	0.84	0.96	1.01	0.09
38	0.64	0.70	0.81	0.93	0.98	0.09
39	0.63	0.68	0.79	0.90	0.96	0.09
40	0.61	0.66	0.77	0.88	0.93	0.09
41	0.59	0.64	0.75	0.85	0.90	0.08

Table 4. Fitted centiles of Thai fetal Resistance Index


GA (weeks)	Centile					SD
	3rd	10th	50th	90th	97th	
12	0.841	0.858	0.894	0.929	0.946	0.028
13	0.823	0.841	0.879	0.917	0.934	0.030
14	0.805	0.824	0.864	0.904	0.923	0.031
15	0.787	0.807	0.849	0.891	0.911	0.033
16	0.770	0.791	0.835	0.879	0.899	0.034
17	0.753	0.775	0.821	0.866	0.888	0.036
18	0.737	0.759	0.807	0.854	0.876	0.037
19	0.721	0.744	0.793	0.842	0.865	0.038
20	0.705	0.729	0.779	0.829	0.853	0.039
21	0.690	0.714	0.766	0.817	0.841	0.040
22	0.675	0.700	0.752	0.805	0.830	0.041
23	0.661	0.686	0.739	0.793	0.818	0.042
24	0.647	0.672	0.726	0.781	0.806	0.043
25	0.633	0.659	0.714	0.769	0.795	0.043
26	0.620	0.646	0.701	0.757	0.783	0.043
27	0.607	0.633	0.689	0.745	0.771	0.044
28	0.594	0.621	0.677	0.733	0.760	0.044
29	0.582	0.609	0.665	0.722	0.748	0.044
30	0.571	0.597	0.654	0.710	0.736	0.044
31	0.559	0.586	0.642	0.698	0.725	0.044
32	0.549	0.575	0.631	0.687	0.713	0.044
33	0.538	0.564	0.620	0.675	0.701	0.043
34	0.528	0.554	0.609	0.664	0.690	0.043
35	0.519	0.544	0.598	0.653	0.678	0.042
36	0.509	0.534	0.588	0.641	0.666	0.042

(Continued)

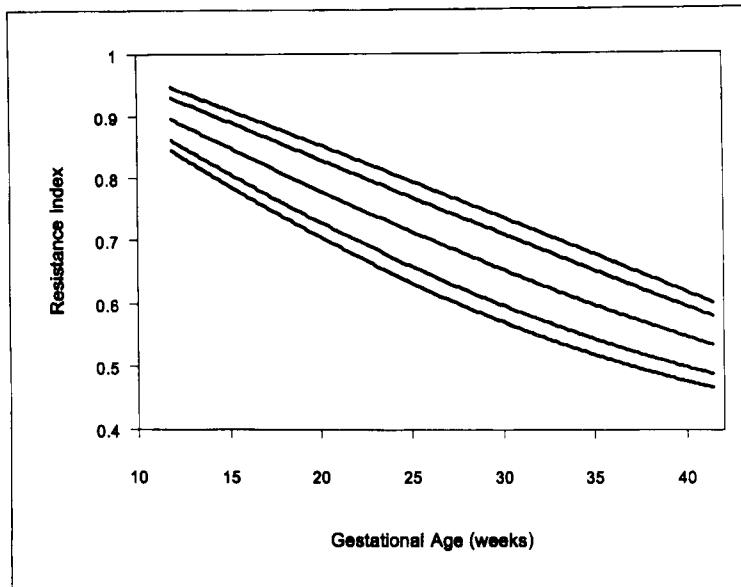

GA (weeks)	Centile					SD
	3rd	10th	50th	90th	97th	
37	0.501	0.525	0.578	0.630	0.655	0.041
38	0.492	0.516	0.567	0.619	0.643	0.040
39	0.484	0.508	0.558	0.608	0.631	0.039
40	0.477	0.499	0.548	0.597	0.619	0.038
41	0.469	0.491	0.538	0.586	0.608	0.037

Fig. 4. The fitted 3rd, 10th, 50th, 90th, and 97th centile lines of S/D ratio.

Fig. 5. The fitted 3rd, 10th, 50th, 90th, and 97th centile lines of Pulsatility Index.

Fig. 6. The fitted 3rd, 10th, 50th, 90th, and 97th centile lines of Resistance Index.

Discussion

Normal reference values for fetal Doppler umbilical artery waveform indices have been studied by many investigators⁽⁶⁻⁸⁾ as a measurement of fetal well-being since original reports by Fitzgerald⁽⁹⁾ and McCallum.⁽¹⁰⁾ Various investigators have found a good correlation between increased Doppler indices of umbilical arteries and intrauterine growth retardation,⁽¹¹⁻¹⁵⁾ subsequent neonatal outcome,⁽¹⁶⁻¹⁷⁾ high-risk pregnancies⁽¹⁸⁻²⁷⁾ (e.g., diabetes mellitus, hypertension, and multifetal pregnancy). Some have found a high predictive value of Doppler indices in predicting fetal distress and chronic hypoxia. There is no doubt that umbilical artery Doppler indices can help obstetricians to manage high-risk pregnancies. However, there is no standard reference chart for Thai fetuses. Knowledge of normal values for umbilical artery Doppler indices in Thai fetuses permit identification and assessment of our high-risk pregnancies at earlier gestational age among our population. This creates the possibility of earlier intervention and therapy to prevent fetal morbidity and mortality.

Many obstetricians use mostly the S/D ratio and RI, however, in this study we present all of the Doppler

indices (S/D ratio, RI and PI) because the PI can be used when there is absence of end diastolic flow or reverse flow.

The data was collected in a cross-sectional fashion, measuring all the indices only once for each fetus, specifically for the purpose of the study. The date of measurement was randomly assigned to each woman, so that approximately the same number of fetuses was measured at each week of gestation. For the analysis, we used regression analysis technique to model the mean of the measurements. Changes in the variability were assessed by examining the residuals and they were modeled as a function of gestational age. Models were selected based on the goodness of fit with the data and whether or not they reached the assumption of normality. Our Methodology is the same as Royston and Wright,⁽²⁸⁾ and Altman's.⁽²⁹⁾ They have published methodology on how to design time-related reference range which change smoothly with gestational age; therefore our data differs from previous reports.⁽⁶⁻⁸⁾ Recent publications of fetal biometries correspond to this kind of methodology.⁽³⁰⁻³⁵⁾

References

1. Trudinger BJ, Gile WB, Cook CM, Bombardieri J, Collins L. Fetal umbilical artery flow waveforms and placental resistance: clinical significant. *Br J Obstet Gynaecol* 1985; 92: 23-30.
2. Erskine RLA, Ritchie JWK. Umbilical artery blood flow characteristics in normal and growth-retarded fetuses. *Br J Obstet Gynaecol* 1985; 92: 605-10.
3. Fleischer A, Guidetti D, Stuhlmuller P. Umbilical artery velocity waveforms in the intrauterine growth retarded fetus. *Clin Obstet Gynecol* 1989; 32: 660-8.
4. Trudinger BJ, Giles WB. Clinical and pathological correlations of umbilical and uterine artery waveforms. *Clin Obstet Gynecol* 1989; 32: 669-78.
5. Hoskins PR, McDicken WN, Johnstone FD, White G, Hoddad NG, Chambers SE. The determination of the presence of fetal apnoea using umbilical artery and umbilical vein Doppler Waveforms. *Ultrasound Med Biol* 1988; 14: 589-92.
6. Hendricks SK, Sorensen TK, Wang KY, Bushnell JM, Seguin EM, Zingheim RW. Doppler umbilical artery waveform indices - normal values from fourteen to forty-two weeks. *Am J Obstet Gynecol* 1989; 161: 761-5.
7. Thompson RS, Trudinger BJ, Cook CM, Giles WB. Umbilical artery velocity waveforms: normal reference values for A/B ratio and Pourcelot ratio. *Br J Obstet Gynaecol* 1988; 95: 589-91.
8. Pearce JM, Campbell S, Cohen-Overbeek T, Hockett G, Hernandez J, Rolston JP. References ranges and sources of variation for indices of pulsed Doppler flow velocity waveforms from the utero placental and fetal circulation. *Br J Obstet Gynaecol* 1988; 95: 248-56.
9. Fitzgerald DE, Drumm JE. Non-invasive measurement of the fetal circulation using ultrasound: a new method. *Br Med J* 1977; 2: 1450-8.
10. McCallum WD, Williams CS, Napel S, Daigle RE. Fetal blood velocity waveforms. *Am J Obstet Gynecol* 1978; 132: 425-9.
11. Craig SD, Beach ML, Hervey-Wilkes-KB, D'Alton ME. Ultrasound predictors of neonatal outcome in intrauterine growth restriction. *Am J Perinatol* 1996; 13: 465-71.
12. Macara L, Kingdom JC, Kaufmann P, Kohnen G, Hair J, More IA. et al. Structural analysis of placental terminal villi from growth-restricted pregnancies with abnormal umbilical artery Doppler waveforms. *Placenta* 1996; 17: 37-48.
13. Bonatz G, Schulz V, Weisner D, Jonat W. Fetal heart rate (FHR) pathology in labor related to preceding Doppler sonographic results of the umbilical artery and fetal aorta in appropriate and small for gestational age babies. a longitudinal analysis. *J Perinat Med* 1997; 25: 440-6.
14. Van-Vugt JM. Validity of umbilical artery blood velocimetry in the prediction of intrauterine growth retardation and fetal compromise. *J Perinat Med* 1991; 19: 15-20.
15. Worrell JA, Fleischer AC, Drolshagen LF, Durmon GR, Shah DM. Duplex Doppler sonography of the umbilical arteries: predictive value in IUGR and correlation with brain weight. *Ultrasound Med Biol* 1991; 17: 207-10.
16. Trudinger BJ, Cook CM, Giles WB, Ng S, Fong E, Connelly A, et al. Fetal umbilical artery velocity waveforms and subsequent neonatal outcome. *Br J Obstet Gynaecol* 1991; 98: 378-84.
17. Gudmundsson S, Marsal K. Blood velocity waveforms in the fetal aorta and umbilical artery as predictors of fetal outcome: a comparison. *Am J Perinatol* 1991; 8: 1-6.
18. Pattinson RC, Norman K, Odendaal HJ. The role of Doppler velocimetry in the management of high-risk pregnancies. *Br J Obstet Gynaecol* 1994; 101: 114-20.
19. Alfirevic Z, Neilson JP. Doppler ultrasonography in high-risk pregnancies: systematic review with meta-analysis. *Am J Obstet Gynecol* 1995, 172: 1379-87.
20. Reece EA, Hagay Z, Assimakopoulos E, Moroder W, Gabrielli S, DeGennaro N. et al. Diabetes mellitus in pregnancy and the assessment of umbilical artery waveforms using pulsed Doppler ultrasonography. *J Ultrasound Med* 1994; 13: 73-80.
21. Johnstone FD, Steel JM, Haddad NG, Hoskins PR, Greer IA, Chambers S. Doppler umbilical artery flow velocity waveforms in diabetic pregnancy. *Br J Obstet Gynaecol* 1992; 99: 135-40.
22. Zimmermann P, Kujansuu E, Tuimala R. Doppler velocimetry of the umbilical artery in pregnancies complicated by insulin-dependent diabetes mellitus. *Eur J Obstet Gynecol Reprod Biol* 1992; 47: 85-93.
23. Grunewald C, Divon M, Lunell NO. Doppler velocimetry in last trimester pregnancy complicated by insulin-dependent diabetes mellitus. *Acta Obstet Gynecol Scand* 1996; 75: 804-8.
24. McCowan LM, Naden RP. Doppler ultrasound in pregnancies with hypertension. *Aust N Z J Obstet Gynaecol* 1992; 32: 225-30.
25. Hecher K, Ville Y, Nicolaides KH. Fetal arterial Doppler studies in twin-twin transfusion syndrome. *J Ultrasound Med* 1995; 14: 101-8.
26. Ohno Y, Ando H, Tanamura A, Kurauchi O, Mizutani S, Tomoda Y. The value of Doppler ultrasound in the diagnosis and management of twin-to-twin transfusion syndrome. *Arch Gynecol Obstet* 1994; 225: 37-42.
27. Kurmanavicius J, Hebisch G, Huch R, Huch A. Umbilical artery blood flow velocity waveforms in twin pregnancies. *J Perinat Med* 1992; 20: 307-12.
28. Royston P, Wright EM. How to construct "normal ranges" for fetal variables. *Ultrasound Obstet Gynecol* 1998; 11: 30-8.
29. Altman D. Construction of age-related reference centiles using absolute residuals. *Stat Med* 1993; 12: 917-24.
30. Altman DG, Chitty LS. New charts for ultrasound dating of pregnancy. *Ultrasound Obstet Gynecol* 1997; 10: 174-91.
31. Siwadune T, Sunsaneevithayakul P, Titapant V, Boriboonhirunsarn D, Kanokpongakdi S. Charts of Thai fetal biometries: 2. biparietal diameter. *J Med Assoc Thai* 2000; 83: 292-8.
32. Sunsaneevithayakul P, Boriboonhirunsarn D, Siwadune T, Titapant V, Vantanasi C. Charts of Thai fetal

biometries: 4. abdominal circumference. *J Med Assoc Thai* 2000; 83: 307-14.

33. Titapant V, Siwadune T, Boriboonhirunsarn D, Sunsaneevithayakul P, Sawasdimongkol S, Sutanthavibul A. Charts of Thai fetal biometries: 3. femur length. *J Med Assoc Thai* 2000; 83: 299-306.

34. Altman DG, Chitty LS. Chart of fetal size: 1. methodology. *Br J Obstet Gynaecol* 1994; 101: 24-34.

35. Boriboonhirunsarn D, Titapant V, Sunsaneevithayakul P, Siwadune T, Thitadilok W, Ruangvutilert P. Charts of Thai fetal biometries: 1. Methodology. *J Med Assoc Thai* 2000; 83: 284-91.

DEPARTMENT OF OBSTETRICS AND GYNECOLOGY, RAJAVITHI HOSPITAL
AND
THE ROYAL THAI COLLEGE OF OBSTETRICIANS AND GYNECOLOGISTS
AND
THAI SOCIETY OF GYNAECOLOGIC ENDOSCOPISTS

*The 50th Anniversary,
Rajavithi Hospital*

Endometriosis 2001

*International Advanced
Laparoscopic Course
On Endometriosis*

Invited International Faculty:

Professor Jacques G. Donnez

The Head of Department of Gynaecology,
Catholic University of Louvain, Belgium

Dr. Michel Canis

Polyclinique de l'Hotel Dieu, Clermont Ferrand France

Professor Michelle Nisolle

Department of Gynaecology,
Catholic University of Louvain, Belgium

March 15-16, 2001

Rajavithi Hospital, Bangkok, Thailand

Venue : EMS Building, 4th Floor, Rajavithi Hospital