

A Study of the Role of Vaso-Active Prostaglandins (PGI₂ and TXA₂) in Pathophysiological Changes in Pre-Eclampsia

Malee Juengjaroen PhD,*
Athiwat Thaworn Cert in MST,†
Sirikul Chotewuttakorn MSc.†

*Department of Microbiology, Faculty of Science,
+Department of Pharmacology, Faculty of Medicine Siriraj Hospital,
Mahidol University, Bangkok 10700, Thailand

Abstract : The plasma levels of 6-keto-PGF_{1α} and TXB₂ were assessed by RIA in 7 severe and 19 mild pre-eclampsia (PE). These levels were compared with the levels in 9 normal pregnancies (NP), both antepartum and postpartum. It was found that the levels of 6-keto-PGF_{1α}, TXB₂ in mild and severe pre-eclampsia were 578.9 ± 26.9, 43.3 ± 16.5 and 517.6 ± 76.6, 26.8 ± 5.0 pg/ml while in normal pregnancy were only 458.4 ± 36.8, 18.6 ± 2.2 pg/ml respectively. However, they did not show any significant difference. (Thai J Obstet Gynaecol 1993;5: 63-66.)

Key words : prostaglandins, pathophysiological changes, pre-eclampsia

Pre-eclampsia (PE) is an obstetric complication of unclarified aetiopathogenesis. It could be considered as a disorder of platelet and vessel wall interaction during pregnancy. Platelet activation and the imbalance of prostacyclin (PGI₂) and thromboxane (TXA₂) in maternal circulation have been suggested as the important roles in this pathology^(1,2). There is evidence not only for deficient PGI₂ production but also exaggerated TXA₂ synthesis in PE^(3,4). Since PGI₂ promotes vasodilatation and opposes platelet aggregation and adhesion while TXA₂ induces vasoconstriction and enhances platelet aggregation and adhesion to the

vascular wall, the combined actions of TXA₂, if unopposed, will lead to maternal hypertension, increased platelet aggregation and decreased utero-placental blood flow which are commonly found in pre-eclamptic patients. Moreover, There is evidence indicating that anti-platelet therapy may protect against PE⁽⁵⁻⁷⁾. The roles of platelets and these 2 prostaglandins are, therefore, more reliable. It is worthwhile to study the activity of platelets as well as the plasma levels of PGI₂ and TXA₂ in parallel. However, both PGI₂ and TXA₂ are labile substances. Their stable metabolites, i.e. 6-keto-PGF_{1α} and TXB₂ were studied instead. Platelet aggregation

and plasma levels of 6-keto-PGF_{1α} and TXB₂ in pre-eclamptic patients were then studied and compared with normal pregnant subjects. The results of the platelet study are presented in a separate paper⁽⁸⁾, but are also discussed in this paper.

Materials and Methods

Pre-eclamptic patients and normal pregnant subjects were screened by an obstetrician from admitted patients and the antenatal care unit (ANC) of Siriraj Hospital. Two kinds of PE, mild and severe PE, were defined by the development of diastolic blood pressure between 90-100 mmHg with edema and/or proteinuria 1⁺ -2⁺ and more than 100 mmHg with edema and proteinuria 2⁺ or more, respectively during the third trimester of pregnancy. Normal pregnancy was normotensive pregnant subjects with the same compatible age and gestational age as the pre-eclamptic groups. None of the subjects had NSAIDs or were taking any drugs known to effect prostaglandins synthesis for at least 2 weeks before the study. They also should not have any history of hypertension, any suspected renal disease or diabetes mellitus.

Plasma levels of 6-keto-PGF_{1α} and TXB₂ of these subjects were assessed by [¹²⁵I] 6-keto-PGF_{1α} and [¹²⁵I] TXB₂ assay system (RIA) after these plasma was extracted by Sep-pak C₁₈ cartridge⁽⁹⁾. Extracted plasma could be kept at -20°C until used if RIA process had not yet been

performed.

Kruskal-Wallis or Wilcoxon Matched-Pair Signed Rank test were employed to test the difference of variable among/or within subject groups.

Results

Thirty-five subjects were recruited in this study. They were 9 NP, 19 mild and 7 severe PE. Their clinical characteristics are shown in Table 1.

Plasma levels of 6-keto-PGF_{1α} and TXB₂ of NP, mild and severe PE, are shown in Table 2. These levels of each metabolite were not significantly different among the 3 groups of subjects and also were not significantly changed after delivery although the levels of 6-keto-PGF_{1α} and TXB₂ were found slightly higher in mild and severe PE than in NP.

Discussion

The balance between PGI₂/TXA₂ is believed to be important in the control of the hemodynamic changes of pregnancy^(1,10). The imbalance of this ratio in favour of TXA₂ is also thought to be the cause of vasoconstriction of small arteries, activation of platelets and uteroplacental insufficiency in PE as well.^(4,11) However, there is still controversy on this point. Our study is also in disagreement with this because the result of this study showed no significant difference in the levels of 6-keto-

Table 1 Characteristics of studied groups

Characteristics	NP	Mild PE	Severe PE
No. of subjects	9	19	7
Age (yrs)	20 ± 3	24 ± 7	26 ± 6
Gestational age (wks)	29 ± 3	36 ± 2	38 ± 3
Blood pressure:			
Systolic (mmHg)	112 ± 10	136 ± 17	156 ± 11
Diastolic (mmHg)	72 ± 8	91 ± 12	107 ± 8
Proteinuria (No. of positive subjects)	-	4	7
Edema (No. of positive subjects)	-	19	7
Parity:			
Nulliparous	8	13	4
Multiparous	1	6	3
Birth weight (kgs)	3281 ± 323	2601 ± 772	1977 ± 789

Table 2 Plasma levels of TXB₂ and 6-keto-PGE_{1α} in NP, mild and severe PE

	TXB ₂ ($\bar{x} \pm SE$ pg/ml)	6-keto-PGF _{1α} ($\bar{x} \pm SE$ pg/ml)
Normal pregnancy	n = 9	n = 9
Antepartum	18.6 ± 2.2	458.4 ± 36.8
Postpartum	18.9 ± 2.4	474.6 ± 62.8
Mild PE	n = 16	n = 19
Antepartum	43.3 ± 16.5	578.9 ± 26.9
Postpartum	43.7 ± 9.8	560.6 ± 31.5
Severe PE	n = 6	n = 7
Antepartum	26.8 ± 5.0	517.6 ± 76.6
Postpartum	25.6 ± 3.9	537.8 ± 48.6

PGF_{1α} and TXB₂ between NP and the 2 groups of PE. Moreover, the plasma levels of these 2 metabolites in all 3 groups were not significantly changed after delivery even though it was found in the previous study on platelet that maximum aggregation of platelets in NP was significantly decreased after delivery^(8,12). Therefore, it seemed that TXA₂ which was proposed

to be the important factor involving platelet activation during pregnancy may not be considered. However, in this study PGI₂/TXA₂ was still regarded as being an important factor in PE because their plasma levels of TXB₂ were noticeably higher than plasma levels of TXB₂ in NP but it did not show statistically significant difference which may be due to the

small number of subjects.

Based on our result, the use of anti-platelet drugs which have a primary mode of action such as a cyclo-oxygenase inhibitor i.e. acetylsalicylic acid, in preventing PE seemed not to be very impressive. Further studies on pathogenesis of this disorder as well as other anti-platelet drugs which have other mechanisms of action are still very much needed to establish the prevention and management of PE.

Conclusion

During pregnancy, plasma levels of 6-keto-PGF_{1α} and TXB₂ were higher in pre-eclamptic groups than in the normal group but not significantly different. After delivery, plasma levels of 6-keto-PGF_{1α} and TXB₂ were also insignificantly changed.

References

1. Friedman SA. Pre-eclampsia: a review of the role of prostaglandins. *Obstet Gynecol* 1988; 71: 122-37.
2. Lindheimer MD, Katz AI. Pre-eclampsia: pathophysiology, diagnosis and management. *Ann Rev Med* 1989; 40: 233-50.
3. FitzGerald DJ, Rocki W, Murray R, Mayo G, FitzGerald GA. Thromboxane A₂ synthesis in pregnancy-induced hypertension. *Lancet* 1990; 335: 751-4.
4. Walsh SW. Low-dose aspirin: treatment for the imbalance of increased thromboxane and decreased prostacyclin in pre-eclampsia. *Am J Perinatol* 1989; 6: 124-32.
5. Schiff E, Peleg E, Goldenberg M, et al. The use of aspirin to prevent pregnancy-induced hypertension and lower the ratio of thromboxane A₂ to prostacyclin in relatively high risk pregnancies. *N Engl J Med* 1989; 321: 351-6.
6. McParland P, Pearce JM, Chamberlain GVP. Doppler ultrasound and aspirin in recognition and prevention of pregnancy-induced hypertension. *Lancet* 1990; 335: 1552-5.
7. Walsh SW. Physiology of low-dose aspirin therapy for the prevention of pre-eclampsia. *Semin Perinatol* 1990; 14: 152-70.
8. Ketsa-ard K, Chotewuttakorn S, Thaworn A, Anumanrajadhon Y. A study of the role of platelets and fibrinolytic activity in pathophysiological changes in pre-eclampsia. *Thai J Obstet Gynaecol* 1993; 5: 57-62.
9. Juengjaroen M. Determination of thromboxane B₂ in plasma. In: Visudhiphian S, ed. *A laboratory manual of hemostasis*. Bangkok: Ruen Daew Press, 1992.
10. Ylikorkala O, Makila UM. Prostacyclin and thromboxane in gynecology and obstetrics. *Am J Obstet Gyecol* 1985; 152: 318-29.
11. Wang YP, Walsh SW, Guo JD, Zhang JY. The imbalance between thromboxane and prostacyclin in pre-eclampsia is associated with an imbalance between lipid peroxides and vitamin E in maternal blood. *Am J Obstet Gynecol* 1991; 165: 695-700.
12. Norris LA, Sheppard BL, Bonnar J. Increased whole blood platelet aggregation in normal pregnancy can be prevented in vitro by aspirin and dazmegrel (UK 38485). *Br J Obstet Gynaecol* 1992; 99: 253-7.