

The Effects of Thymus Peptides and Oxytocin on Motility and Vitality of In Vitro Cultivated Human Spermatozoa

M Jevremovic*,

M Stanic#,

M Terzic*,

M Pesic†.

*University Clinical Center, Clinic of Gynaecology, and Obstetrics,
Belgrade, Yugoslavia

#Institute of Biology and Human Genetics, Belgrade, Yugoslavia

†Institute for Immunology and Thymus Research, Bad Harzburg, Germany

Abstract : *The thymus is, according to the contemporary opinion, a part of the hypothalamus-pituitary-thymus-gonadal axis and participates in the regulation of the endocrine reproductive functions in human organisms. Besides specific hormone synthesis, neurohormone substances are made in the subcapsular zone (oxytocin, vasopressin). In human seminal plasma of fertile males, high levels of thymic hormone thymosin α 1 have been found, which influence the maturation processes and germinal cells function. High concentrations of neurohormone oxytocin (OT) have been recorded in the male reproductive tract. The results of the investigations confirm the influence of human fetal thymus extract (FTH) and juvenile calf thymus extract (JCTH) on the motility and vitality of human sperm. These extracts, which beside other biologically active substances, contain thymosin α 1 and oxytocin, were added to human sperm as a medium addition for sperm washing (SWM); after that, the investigation of their number and some vitality parameters was done: motility (M), progressive motility (PM), velocity motility (VM) and velocity of the progressive motility (VPM). Preliminary results of these studies indicate that the thymic factors application can be of use in the investigation and clinical treatment of male infertility, as well as in in vitro fertilization (IVF) procedures. (Thai J Obstet Gynaecol 1991; 3:13-19.)*

Key words : human spermatozoa, motility, sperm washing medium (SWM), fetal thymus extract (FTH), juvenile calf thymus extract (JCTH), oxytocin

The thymus is an important organ of the immunologic and endocrinologic system of the human organism. It has been proved that it plays an important role in the reproductive function of female and male gonads.

A series of peptide substances are produced in the thymus and hormone bioactivity is the subject of intensive investigations. The most important among them are: thymosin α 1, thymosin β 4 and thymulin ^(1,2). In the

subcapsular zone of the human and animal thymus neurohormones oxytocin and vasopressin have been found in relatively high concentrations⁽³⁻⁵⁾. Hall and McGillis⁽⁶⁾ noted in their investigations the thymus-pituitary-gonadal axis existence. Neonatal thymectomy of experimental animals leads to gonadal dysgenesis⁽⁷⁾. Findings of the significantly decreased thymosin β 4 concentrations in postmenopausal females and in those with surgically removed ovaries are very interesting⁽⁸⁾. Of special importance are the investigations which confirmed the presence of significantly higher thymosin concentrations in seminal plasma of fertile males in relation to the group of infertile ones, that is the confirmation of thymosin α 1 and fertility correlation⁽⁹⁾. Knowing that the thymus can be of the utmost importance in clinical andrology and reproductive endocrinology, we started an investigation of the influence of the thymus peptides from the extracts of human and juvenile calf thymus, and of the oxytocin on spermatozoa in *in vitro* conditions.

Materials and Methods

In cooperation with the Clinic of Gynaecology and Obstetrics, University Clinical Center in Belgrade, Institute of Biology and Human Genetics in Belgrade and Institute for Immunology and Thymus Research in Bad Harzburg, Federal Republic of Germany, we studied the influence of bioactive peptides (and neuropeptides) of human fetal and juvenile calf thy-

mus extracts, and of synthetic oxytocin on 50 semen samples in *in vitro* conditions. Semen analysis was made after ejaculation of liquefaction⁽¹⁰⁾. Sperm washing media containing a series of substances such as enzymes, amino acids, antibiotics, hormones, serum, etc., were used in the investigation. Spermatozoal washing was performed twice and then centrifugation on 300 g. All testings were done in an incubator with controlled temperature, humidity and gaseous content, under the same conditions⁽¹¹⁾. Hemocytometry was used for separation of motile and nonmotile spermatozoa. Such a "swim up" procedure enables separation of highly motile spermatozoa from the ones with less satisfactory vital abilities although it has been found that this procedure is definitely harmful for a certain number of spermatozoa, and their number was decreased after the washing⁽¹²⁾. The following parameters were determined in washed semen: number of vital spermatozoa, motility (M%), progressive motility (PM%), velocity motility (VM $\mu\text{m/s}$) and velocity progressive motility (VPM $\mu\text{m/s}$).

For our investigations we used a) standard medium, b) standard medium (10 ml) and juvenile calf peptide thymus extract (1.5 mg), c) standard medium (10 ml) and lyophilization preparation of human fetal thymus extract (1.5 mg), and d) standard medium (10 ml) and oxytocin (Syntocinon) 1 IU.

These parameters were determined in washed sperm after 1hr,

24hr, and 48hr and the samples labelled with (a.) represented the control group to the standard medium for cultivated sperm.

The obtained information was numerically expressed and analyzed by X^2 and Student t-test on an IBM computer.

Results

Spermatozoa counting was determined in 50 analyzed ejaculations of 50 patients after the use of standard medium for spermatozoa washing (cultivation). After an hour, their number was $35 \pm 15 \times 10^6$ ml, while higher values were found in native preparation (before sperm washing, $45 \pm 10 \times 10^6$ ml, Table 1, Figure 1). Spermatozoa count was somewhat lower in samples cultivated in media added with juvenile calf (JCTH) or human fetal thymus extract (FTH) or synthetic oxytocin ($30 \pm 9 \times 10^6$ ml, Table 1, Figure 1). The increase of spermatozoal motility was observed in the medium with oxytocin ($M=56 \pm 11\%$) as well as human fetal thymus extract ($M=55 \pm 11\%$) (Table 1, Figure 2). Progressive motility (PM) was of higher values with oxytocin application ($40 \pm 12\%$) than with FTH ($32 \pm 15\%$, Table 1, Figure 3). Velocity motility (VM) was the highest in samples cultivated with oxytocin ($39 \pm 6 \mu\text{m/s}$) and FTH ($39 \pm 11 \mu\text{m/s}$, Table 1, Figure 4). Statistical analysis indicates borderline significance of these values. Special attention was paid to the investigation of progressive

velocity motility (VPM). We found no significant differences between VPM of spermatozoa cultivated in standard medium and in native sperm ($47 \pm 12 \mu\text{m/s}$, $40 \pm 8 \mu\text{m/s}$, respectively), while the oxytocin initiated a significant increase of this parameter ($49 \pm 5 \mu\text{m/s}$, $p<0.05$, Table 1, Figure 5).

The values of the investigated parameters decreased 24 hours after the cultivation. However, it is interesting to point out that the motility was significantly higher in samples with JCTH ($20 \pm 6\%$ and FTH ($17 \pm 5\%$), than in those with standard medium ($9 \pm 7\%$) and oxytocin ($5 \pm 2\%$) ($p<0.05$, Table 1, Figure 2). Progressive motility (PM) had almost the same values in all of the media, except in FTH application, where it was somewhat increased ($10 \pm 4\%$, Table 1, Figure 3). Spermatozoa cultivation in the media with JCTH and FTH caused increased velocity motility (VM) in comparison to oxytocin and standard medium (Table 1, Figure 4). Velocity of the progressive motility (VPM) was higher in samples with JCTH and FTH ($22 \pm 10 \mu\text{m/s}$ and $25 \pm 9 \mu\text{m/s}$, respectively), than in those with standard medium and oxytocin ($18 \pm 12 \mu\text{m/s}$ and $15 \pm 8 \mu\text{m/s}$, Table 1, Figure 5).

The fact that the greatest spermatozoa count was recorded 48 hours after the cultivation in samples with JCTH ($7 \pm 1 \times 10^6$ ml), with significance of $p<0.05$, is of particular interest (Table 1). Motility was the highest in preparations with FTH and JCTH ($7 \pm 2\%$ and $10 \pm 4\%$), especially in

Table 1 Influence of medium ingredients on the main spermatozoa features

		ST	JCTH	FTH	OT
Number $\bar{X} \pm SD$ ($\times 10^6$ / ml)	0h	45 ± 10	45 ± 10	45 ± 10	45 ± 10
	1h	35 ± 15	27 ± 16	30 ± 9	30 ± 9
	24h	12 ± 6	8 ± 2	9 ± 3	2 ± 1
	48h	5 ± 2	7 ± 1	2 ± 2	2 ± 2
M $\bar{X} \pm SD$ (%)	0h	46 ± 5	46 ± 5	46 ± 5	46 ± 5
	1h	52 ± 12	50 ± 7	55 ± 11	56 ± 9
	24h	9 ± 7	20 ± 6	17 ± 5	5 ± 2
	48h	5 ± 1	10 ± 4	7 ± 2	2 ± 1
PM $\bar{X} \pm SD$ (%)	0h	27 ± 8	27 ± 8	27 ± 8	27 ± 8
	1h	30 ± 15	29 ± 13	32 ± 15	40 ± 12
	24h	6 ± 5	9 ± 3	10 ± 4	5 ± 1
	48h	7 ± 2	8 ± 2	9 ± 2	4 ± 1
UM $\bar{X} \pm SD$ ($\mu M/s$)	0h	31 ± 7	31 ± 7	31 ± 7	31 ± 7
	1h	36 ± 10	35 ± 10	39 ± 11	39 ± 6
	24h	11 ± 4	15 ± 6	20 ± 7	11 ± 5
	48h	11 ± 5	20 ± 7	19 ± 2	15 ± 7
UPM $\bar{X} + SD$ ($\mu M/s$)	0h	40 ± 8	40 ± 8	40 ± 8	40 ± 8
	1h	47 ± 12	45 ± 9	35 ± 7	49 ± 5
	24h	18 ± 12	22 ± 10	25 ± 9	15 ± 8
	48h	18 ± 9	25 ± 6	11 ± 6	15 ± 1

ST - Standard medium

FTH - Fetal thymus extract

Number - Number of spermatozoa

PM - Spermatozoa progressive motility

VPM - Spermatozoa velocity progressive motility

0h - Before adding ingredients

1h - One hour after adding ingredients

JCTH - Juvenile calf thymus extract

OT - Oxytocin

M - Spermatozoa motility

VM - Spermatozoa velocity motility

24h - hours after adding ingredients

48h - hours after adding ingredients

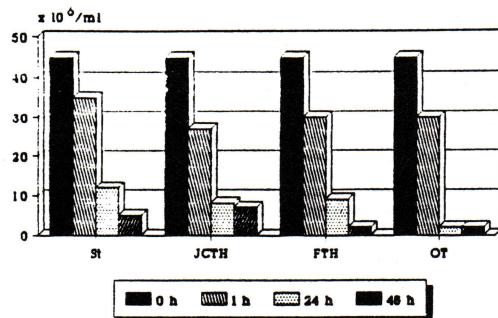


Fig. 1 Number of spermatozoa.

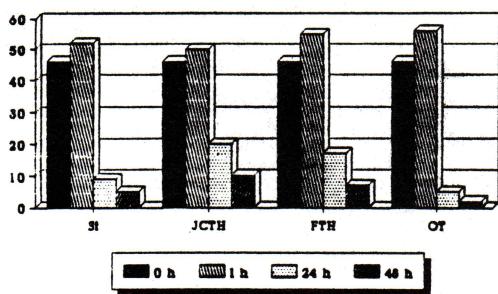


Fig. 2 Spermatozoa motility.

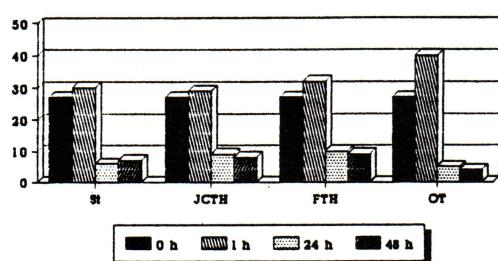


Fig. 3 Spermatozoa progressive motility.

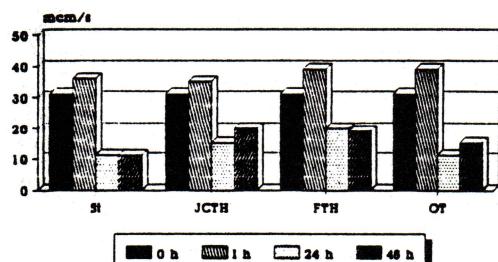


Fig. 4 Spermatozoa velocity motility.

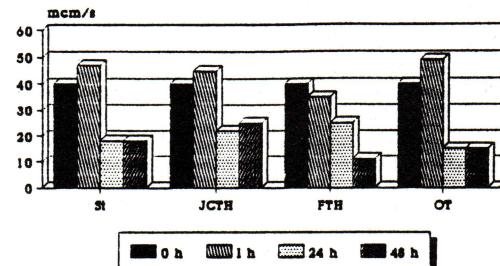


Fig. 5 Spermatozoa velocity progressive motility.

relation to the values in oxytocin media ($2 \pm 1\%$), (Table 1). PM and VM were of higher values with JCTH and FTH presence. VPM was statistically significantly higher in preparations treated with JCTH ($25 \pm 6 \mu\text{m}/\text{s}$), than in other media ($p<0.05$) (Table 1, Figures 4, 5).

Discussion

Parameters of functioning or to be more precise of spermatozoal vitality investigated in this study are of crucial importance for *in vitro* and *in vivo* fertilization. Today, when we have knowledge of numerous physiological properties and constituents of seminal fluid in the procedures of spermatozoal preparation for intrauterine insemination (IUI), in vitro fertilization (IVF), gamete intra-Fallopian tubes transfer (GIFT), media containing different bioactive substances (amino acids, enzymes, antibiotics, nutritive factors, hormones, etc.) are used for "swim up" (13, 14, 15). Recent studies proved high thymosin α 1 levels in seminal plasma, in correlation to the spermatozoal count, viability and

motility in fertile males, in comparison to infertile ones, having more prominently decreased parameters⁽⁹⁾.

After standard medium usage for semen washing, spermatozoal count was of much lower value after 24hr and 48hr since only more vital ones remained (managed to survive). Global motility and velocity of the progressive motility were increased after an hour in relation to the values prior to incubation.

After spermatozoal cultivation in medium with juvenile calf thymus extract (JCTH) was added, a longer period of global motility maintenance was observed, especially of VPM, in respect to the spermatozoa in standard medium.

Addition of human fetal thymus extract stimulates global motility at first, then the progressive one, and also the spermatozoal velocity motility, in all of the testing time intervals. JCTH and FTH represent total thymus extracts, which, besides the specific thymus peptides, contain neuropeptides, such as oxytocin. Therefore, synthetic oxytocin addition in standard medium for spermatozoal washing (cultivation) causes characteristic changes. Significant increase of M, PM and VPM of the spermatozoa values occurred an hour after addition of a medium with oxytocin, while after 24hr and 48hr sudden decrease of spermatozoal vitality developed. Oxytocin stimulates intercellular glucose oxidation initiating a prompt energetic potential release significant for cellular development and activity⁽¹⁷⁾.

Investigations of Maggi et al⁽¹⁶⁾ indicate that oxytocin receptors, which play a very complex role in human reproductive endocrinology, are present in the male genital tract.

Media for spermatozoal cultivation, which contain specific thymus peptides and neuropeptides, manifest influence on their motility and vitality in *in vitro* conditions, and is of great importance for future investigations in reproductive clinical endocrinology.

References

1. Goldstein AL. Current status of thymosin and other hormones of the thymus gland. Recent Prog Horm Res 1981; 37:369-415.
2. Dardenne M, Savino W. Neuroendocrine control of the thymic epithelium. Modulation of thymic endocrine function. Prog Neuroendocrinol 1990; 3:18.
3. Geenen V, Legros JJ, Franchimont P, Baudrihaye M, Defresne MP, Boniver J. The neuroendocrine thymus, coexistence of oxytocin and neuropephsin in the human thymus. Science 1986; 232:508-11.
4. Boniver J, Defresne MP. Thymus nurse cells, complexes between neuroendocrine epithelial cells and immature thymocytes. Per Biol 1987; 89 (Suppl 1) : 75.
5. Jevremovic M, Barbijeri M. Identification of neuroendocrine oxytocic activity of the human fetal thymus. Thymus 1990; 15: 181.
6. Hall NR, McGillis JP, Spangelo BL, Goldstein AL. Evidence that thymosins and other biological response modifiers can function as neuroactive immunotransmitters. J Immunol 1985; 135: 806-11.
7. Nishizuka Y. Ovarian disgenesis induced by neonatal thymectomy. Endocrinol 1974; 98: 886.
8. Suh BY, Naylor PH, Goldstein AL, Rebar RW. Modulation of thymosin β 4 by

estrogen. *Am J Obstet Gynecol* 1985; 151:544-9.

9. Rajesh K. Thymosin α 1 levels in human seminal plasma and follicular fluid. *Int Fertil* 1987; 32:375.
10. Urry RL. Laboratory diagnosis of male infertility. *Clin Lab Med* 1985; 5: 355-70.
11. Ludwing G. Arbeitsanleitung zur Ejakulatanalyse. *Sexualmedizin* 1986; 15:340.
12. Makler A. The improve ten-micrometer chamber for rapid sperm count and motility evaluation. *Fertil Steril* 1980; 33:337-8.
13. Confino E, Friberg J, Dudkiewicz AB, Gleicher N. Intrauterine inseminations with washed human spermatozoa. *Fertil Steril* 1986; 46:55-60.
14. Di Marzo SJ, Rakoff JS. Intrauterine insemination with husbands washed sperm. *Fertil Steril* 1986; 46:470-5.
15. Jevremovic M, Arambasic M. The effects of thymus extract on spermatozoa cultivated in vitro. *J Gynecol Endocrinol* 1990; 4 (Suppl 1):229.
16. Maggi M, Malozowsky S, Kassis S, Guardbasso V, Rodbard D. Identification and characterization of two cases of receptors for oxytocin and vasopressin in tunical albuginea, epididymis and vas deferens. *Endocrinol* 1987 120: 986-94.
17. Knudtzon J. Acute effects of oxytocin and vasopressin on plasma levels of glucagon insulin and glucose in rabbits. *Horm Metab Res* 1983; 15: 103-4.

ROYAL COLLEGE OF OBSTETRICIANS & GYNAECOLOGISTS

The 26th British Congress of Obstetrics & Gynaecology will take place at the University of Manchester Institute of Science and Technology, Manchester, England from 7-10 July 1992. Information available from BCOG Secretariat, 65, West Drive, Cheam, Sutton, Surrey, SM2 7NB, UK