

Original Articles

In vitro Cytotoxic and Genotoxic Effects of Ethanolic Extract of Pikutbenjakul on Human Lymphocytes

Treetip Ratanavalachai*, Sumon Thitiorul**, Semkiat Tanuchit***,
Intouch Sakpakdeejaroen****, Arunporn Itharat****

Abstract

Pikutbenjakul (PBE) is an adaptogen widely used among patients with cancer. This study aimed to assess *in vitro* genotoxic and cytotoxic effects of ethanolic extract of PBE on human lymphocytes using sister chromatid exchange (SCE) assay. PBE was prepared by macerating its herbal constituents with 95% ethanol for three days, filtered and dried. PBE (dissolved in DMSO) at 50, 100, 200, 400, and 500 $\mu\text{g}/\text{ml}$ was used to treat human lymphocytes for three hours. SCE was then scored and analyzed. Plain RPMI and 0.4% (V/V) DMSO were used as the negative controls whereas doxorubicin (0.1 $\mu\text{g}/\text{ml}$) was used as the positive control. Results indicated that PBE $\geq 500 \mu\text{g}/\text{ml}$ was cytotoxic as very few mitotic cells were found. PBE at 100, 200 and 400 $\mu\text{g}/\text{ml}$ could significantly increase SCE level ($p<0.05$). Their mitotic index (MI) and proliferation index (PI) were not significantly different from those of the controls. Results clearly showed that PBE was genotoxic and cytotoxic against human lymphocytes at concentrations of $\geq 100 \mu\text{g}/\text{ml}$ and $\geq 500 \mu\text{g}/\text{ml}$ respectively. These toxic effects are possibly due to plumbagin, one of the major compounds in PBE. The usage of PBE was safe at the concentration of $\leq 50 \mu\text{g}/\text{ml}$. However, the additional *in vivo* studies are needed to clarify the proper dosage for the safety of use in cancer patients.

Key words: Pikutbenjakul, Sister chromatid exchange, Doxorubicin, Genotoxicity, Cytotoxicity

Introduction

Pikutbenjakul (PBE) is one of the most widely used Thai traditional herbs as an adaptogen to enhance normal physiological function, especially for cancer patients. It comprises five important herbs including *Piper chaba* fruit, *Piper sarmentosum* root, *Piper interruptum* stem, *Plumbago indica* root and *Zingiber officinale* rhizome. Each herb has been widely used in Oriental traditional medicine. For example, *P. chaba* (called Di-pli in Thai) is used as an anti-diarrhea and expectorant. *P. sarmentosum* (called Cha-phlu in Thai) is used to stimulate intestinal movement and also used as an expectorant. *P. interruptum* (called Sa-kan in Thai) is used as an anti-flatulant and element tonic.

P. indica (called Chettamun-Phloeng-Daeng in Thai) is used to treat hemorrhoids and also used as a carminative agent. *Z. officinale* (called Khing in Thai) is used as an antiemetic, antispasmodic, expectorant and also carminative agent.

In recent years, there are a number of scientific studies supporting the use of the aforementioned herbs. The aqueous acetone extract from the fruit of *P. chaba* was found to have protective effects on ethanol- and indomethacin-induced gastric lesions in rats¹. The ethanolic extract of this fruit had potent cytotoxic activities against the cholangiocarcinoma CL-6 cell line while its methanolic extract had a hepatoprotection over lipopolysaccharide

* Division of Biochemistry, Preclinical Science Department, Faculty of Medicine, Thammasat University

** Division of Anatomy, Preclinical Science Department, Faculty of Medicine, Thammasat University

*** Research Center, Faculty of Medicine, Thammasat University

**** Division of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University

Correspondent Author : treetip2000@hotmail.com

(LPS)-induced liver injury in mice^{2,3}. This hepatoprotective effect was proved to be the function of piperine, the principal constituent in *P. chaba*⁴. The ethanolic extract of *P. sarmentosum* root was found to prevent the hydrogen peroxide-induced oxidative cell damages in cultured human umbilical vein endothelial cells (HUVECs), and to have anti-inflammatory, anti-nociceptive and antipyretic activities in mice^{5,6}. *P. indica* and its major compound, plumbagin, showed the anti-proliferative and apoptotic activities in human colonic cancer cell lines, HT29 and HCT15⁷. The ethyl acetate fraction of *Z. officinale* extract was found to inhibit the expression of the human telomerase reverse transcriptase (hTERT) and c-Myc, two important molecular targets for cancer, in A549 lung cancer cells⁸. In addition, 6-gingerol, a major component of the *Z. officinale* extract, showed apoptotic potential in mouse skin tumors⁹ and inhibited metastasis of MDA-MB-231 human breast cancer cell line¹⁰.

While there are several reports supporting the beneficial effects of each individual herbs, the safety of using the combined these five herbs as in the form of PBE has rarely been explored. Itharat et al. (2008) found that PBE exhibited potent cytotoxic activities against lung cancer cell lines (COR-L23) but less active against normal lung fibroblast cell line (MRC-5)¹¹. Major compounds isolated

from PBE were piperine, plumbagin and 6-gingerol^{12,13}. The latter has been reported as a potent mutagen^{14,15} which induces DNA strand breaks and chromosome damage in human hepatoma G2 (HepG2) cells by comet assay¹⁶. Piperine was found to induce selective neurotoxicity in cultured rat hippocampal neurons by inducing lysosomal and mitochondrial damage¹⁷, and plumbagin had been reported to have genotoxic activity in mouse lymphoma L5178Y cells by comet assay¹⁸. With the cytotoxic actions of these three substances, the safety level of using PBE as the adaptogen and as a chemotherapeutic drug in traditional medicine is of concern. To date, there are few studies exploring the genotoxic and cytotoxic activities regarding to various doses against human cells. This study thus attempted to assess genotoxic and cytotoxic potentials of the PBE at various concentrations in human lymphocytes *in vitro* by sister chromatid exchange (SCE) assay.

Materials and Methods

2.1 Materials

PBE was prepared from five dried herb materials which are *P. chaba* fruit, *P. sarmentosum* root, *P. interruptum* stem, *P. indica* root and *Z. officinale* rhizome. All these herbs were collected and identified by the herbarium unit of the Department of Forestry, Ministry of Agriculture, Thailand. The herbarium vouchers were shown in Table 1.

Table 1 Sources of plant materials in Pikutbenjakul

Plants in Pikutbenjakul	Part of plants	Voucher number	Province	Part of Thailand
<i>Piper Chaba</i> Linn.	Fruit	SKP 146160301	Chonburi	East
<i>Piper sarmentosum</i> Roxb	Root	SKP 146161901	Ratchaburi	Middle
<i>Piper interruptum</i> Opiz.	Stem	SKP 146160901	Sakonnakorn	Northeast
<i>Plumbago indica</i> Linn.	Root	SKP 148160901	Bangkok	Middle
<i>Zingiber officinale</i> Roscoe.	Rhizome	SKP 206261561	Pechaboon	Northeast

2.2 Preparation of PBE

All ground herb materials (100 g each) were mixed and percolated with 95% ethanol for three days. Percolated extract was filtered and dried under the reduced pressure. The dried material or PBE was kept at -20°C and dissolved in DMSO before use.

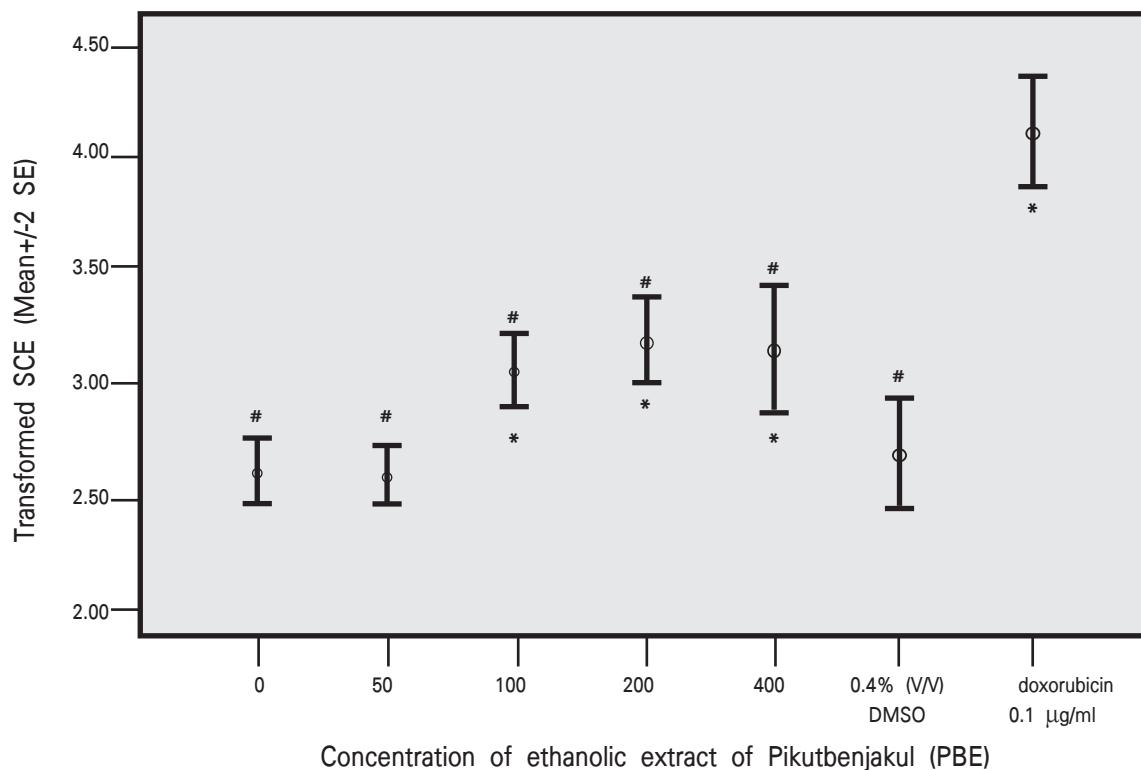
2.3 Sister chromatid exchange (SCE) assay

The lymphocyte-enriched buffy coat was cultured in 5 ml culture medium containing RPMI 1640 (Hyclone, U.S.A.), fetal bovine serum (Hyclone, U.S.A.), autologous plasma, penicillin-streptomycin (Seromed, Germany), phytohemagglutinin (Seromed, Germany) and L-glutamine

(Hyclone, U.S.A.) using standard blood culture conditions as previously described¹⁹. The present assay had been approved by the institutional ethical committee of Faculty of Medicine, Thammasat University before running the experiment. At 24 hours after initiation of the culture, the lymphocyte cultures were centrifuged for packed cells, and the supernatant medium was removed and saved for reuse after treatment. The remaining lymphocytes were treated with PBE at concentrations of 50, 100, 200, 400, and 500 $\mu\text{g}/\text{ml}$ in plain RPMI 1640 culture medium for three hours at 37°C. After treatment, all cultures were centrifuged and the treated lymphocytes were continued to be cultured at 37°C in the dark with the previously saved medium. Bromodeoxyuridine (BrdU) (Sigma-aldrich, U.S.A.) was then added in the culture medium to give the final concentration of 5 μM . Doxorubicin (0.1 $\mu\text{g}/\text{ml}$) (Roche, Switzerland) was used as the positive control. Plain RPMI 1640 and 0.4% (V/V) DMSO were used as the negative controls. At seventy-seven hours after initiation, cells were harvested and prepared the treated and non-treated cells on slides. These prepared slides were stained with the Fluorescent plus Giemsa technique according to the standard protocol¹⁹. Twenty-five cells per dose per experiment showing the second metaphase-staining pattern were scored from coded slides for the frequencies of SCEs. Proliferation index (PI) and mitotic index (MI) were also evaluated to clarify the cytotoxicity. PI was determined as $(\text{MI}+2\text{MII}+3\text{MIII})/100$ cells, and MI was determined as number of mitotic cells/1,000 cells. Three independent experiments were performed for each concentration of the tested compounds.

2.4 Statistical analysis

Raw data obtained from the SCE assay were transformed to stabilize the variance by the procedures of Whorton et al. (1984)²⁰. Dunnett's t-test was performed to analyze the difference between the means of the treated and control groups using the transformed data.


Results

3.1 The PBE Preparation

All five studied Thai plant materials were collected from five provinces of the country. These herbal vouchers, identified by Department of Forestry, Ministry of Agriculture, Thailand, are shown in Table 1. The yield of PBE was 11.1% (w/w) determined from 100g each dried plant material used for Pikutbenjakul preparation.

3.2 Genotoxic activity determined by sister chromatid exchange assay

Figure 1 showed that only the PBE at 50 $\mu\text{g}/\text{ml}$ did not significantly induce SCEs above that of the negative controls (both plain RPMI 1640 and 0.4% DMSO treated) while PBE at other concentrations i.e. 100, 200, and 400 $\mu\text{g}/\text{ml}$ could significantly increase SCEs ($p<0.05$). PBE at the highest concentration, 500 $\mu\text{g}/\text{ml}$, induced potent cytotoxic to the cells since only few mitotic cells were seen under microscopic observation.

* $p<0.05$ significantly different from the RPMI1640-treated negative control

$p<0.05$ significantly different from the doxorubicin-treated positive control

Figure 1 Sister chromatid exchanges induced by various concentrations of ethanolic extract of pikutbenjakul (PBE)

3.3 Cytotoxic activity determined by MI and PI values

The MI and PI of PBE treatments at concentrations of 50-400 $\mu\text{g/ml}$ on cultured human lymphocytes tended to increase above those from both negative controls as

shown in Table 2, although these values were not significantly different. The MI and PI of 0.4% DMSO treatment were lower than that of RPMI 1640 treatment.

Table 2 The mitotic index (MI) and proliferation index (PI) of PBE treatments

Concentration of PBE ($\mu\text{g/ml}$)	MI \pm SE	PI \pm SE
0	12.9 \pm 1.0	2.8 \pm 0.3
50	21.3 \pm 3.6	4.2 \pm 0.5
100	16.1 \pm 6.8	3.5 \pm 1.7
200	20.1 \pm 6.4	3.7 \pm 1.3
400	20.0 \pm 10.2	3.8 \pm 2.8
500	Toxic	Toxic
0.4% (V/V) DMSO	9.8 \pm 3.9	1.9 \pm 0.9
0.1 $\mu\text{g/ml}$ doxorubicin	5.7 \pm 1.7	1.1 \pm 0.4

Discussion and Conclusion

The present study demonstrated that treatment of PBE at concentrations of 100-400 $\mu\text{g/ml}$ significantly induced genotoxic effect in cultured human lymphocytes as shown by a significant increase of the frequencies of SCEs ($p<0.05$). This PBE-induced genotoxicity might be due to the effect of plumbagin. Plumbagin has been shown to be moderately mutagenic in exponential phase cells *E. coli* AQ634 cells and to induce DNA damage in mouse lymphoma L5178Y cells^{7,21}. However, further investigation of the underlying mechanism of action is needed.

Findings that treatment of PBE at 50 $\mu\text{g/ml}$ did not increase SCE level indicated that PBE at this concentration and below was not genotoxic. Interestingly, PBE at all tested concentrations except at 500 $\mu\text{g/ml}$ caused some stimulating effect on cell proliferation as shown by a slight increase of their MI and PI values, in contrast, they were not significantly different from those of the control. PBE at 500 $\mu\text{g/ml}$ showed potent cytotoxicity.

These data confirmed that PBE at the concentration of ≤ 50 $\mu\text{g/ml}$ was not toxic to human lymphocytes and thus should be safe to use as the adaptogen. Still, to use as the chemotherapeutic agent, the higher dose that induces genotoxicity is preferred. According to the genotoxic potential with slight enhancing effect on cell proliferation, PBE tends to be useful for both cancer chemotherapy and an adaptogen in enhancing cell physiology. Nonetheless, the mechanisms of action as well as the study *in vivo* to determine the effective dose and safety use in human of PBE should be further investigated. In addition, individual genetic polymorphism, genetic susceptibility and metabolism are also of concern because these factors might interfere with the efficacy of PBE. Unavoidably the stability of the active compounds in PBE has to be clarified. We showed that piperine and plumbagin were unstable and reduced to 85% and 26% in 120 days after being kept in a refrigerator¹².

In conclusion, the genotoxic potency with slight enhancing cell proliferation of PBE is valuable but more studies are needed to ensure the efficacy and safety of

PBE as the chemotherapeutic agents and the adaptogen. Mechanism of actions; *in vivo* experiments, stability, specifications for quality controls, and some factors that may influence of the activity of PBE, are areas to be explored in the future.

Acknowledgements

The authors gratefully appreciate Prof. Dr. Maitree Suttajit and Prof. Dr. Malyn Chulasiri for their valuable advice. Special thanks to Pholawat Tingpatch, MD, PhD. for his careful editing of our manuscript. This study was supported by the Research Fund, Thammasat University, and the Office of Higher Education Commission and National Research University Project of Thailand, Thailand.

References

1. Morikawa T, Matsuda H, Yamaguchi I, Pongpiriyadacha Y, Yoshikawa M. New amides and gastroprotective constituents from the fruit of *Piper chaba*. *Planta Med* 2004;70:152-9.
2. Mahavorasirikul W, Viyanant V, Chaijaroenkul W, Itharat A, Na-Bangchang K. Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells *in vitro*. *BMC Complement Altern Med* 2010;10:55.
3. Matsuda H, Ninomiya K, Morikawa T, Yasuda D, Yamaguchi I, Yoshikawa M. Protective effects of amide constituents from the fruit of *Piper chaba* on D-galactosamine/TNF-alpha-induced cell death in mouse hepatocytes. *Bioorg Med Chem Lett* 2008;18:2038-42.
4. Morikawa T. Search for TNF-alpha sensitivity degradation principles from medicinal foods-hepatoprotective amide constituents from Thai natural medicine *Piper chaba*. *Yakugaku Zasshi* 2010;130:785-91.
5. Hafizah AH, Zaiton Z, Zulkhairi A, Mohd Ilham A, Nor Anita MM, Zaleha AM. *Piper sarmentosum* as an antioxidant on oxidative stress in human umbilical vein endothelial cells induced by hydrogen peroxide. *J Zhejiang Univ Sci B* 2010;11:357-65.

6. Sireeratawong S, Vannasiri S, Sritiwong S, Itharat A, Jaijoy K. Anti-inflammatory, anti-nociceptive and antipyretic effects of the ethanol extract from root of *Piper sarmentosum* Roxb. *J Med Assoc Thai* 2010;93:S1-6.
7. Subramaniy BR, Srinivasan G, Sadullah SS, Davis N, Subhadara LB, Halagowder D, et al. Apoptosis inducing effect of plumbagin on colonic cancer cells depends on expression of COX-2. *PLoS One* 2011;6:e18695.
8. Tuntiwechapikul W, Taka T, Songsomboon C, Kaewtun-jai N, Imsumran A, Makonkawkeyoon L, et al. Ginger extract inhibits human telomerase reverse transcriptase and c-Myc expression in A549 lung cancer cells. *J Med Food* 2010;13:1347-54.
9. Nigam N, George J, Srivastava S, Roy P, Bhui K, Singh M, et al. Induction of apoptosis by [6]-gingerol associated with the modulation of p53 and involvement of mitochondrial signaling pathway in B[a]P-induced mouse skin tumorigenesis. *Cancer Chemother Pharmacol* 2010;65:687-96.
10. Lee HS, Seo EY, Kang NE, Kim WK. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. *J Nutr Biochem* 2008;19:313-9.
11. Itharat A, Sakpakdeejaroen I, Tuppenyupjian P, Kummal Pava K. *In Vitro* cytotoxic activity of Thai medicinal preparation called Benjakul and its compounds. Research report. Pathumtanee: Faculty of Medicine, Thammasat University. 2011.
12. Itharat A, Sakpakdeejaroen I. Determination of cytotoxic compounds of Thai traditional medicine called Benjakul using HPLC. *J Med Assoc Thai* 2010;93:S198-203.
13. Sakpakdeejaroen I. Study on cytotoxicity and chemical fingerprint of ethanolic extract of Benjakul preparation. *MSc Dissertation*. Thammasat University, Thailand. 2009.
14. Nakamura H, Yamamoto T. Mutagen and anti-mutagen in ginger, *Zingiber officinale*. *Mutat Res* 1982;103:119-26.
15. Nakamura H, Yamamoto T. The active part of the [6]-gingerol molecule in mutagenesis. *Mutat Res* 1983;122:87-94.
16. Yang G, Zhong L, Jiang L, Geng C, Cao J, Sun X, et al. Genotoxic effect of 6-gingerol on human hepatoma G2 cells. *Chem Biol Interact* 2010;185:12-7.
17. Unchern S, Saito H, Nishiyama N. Selective cytotoxicity of piperine on cultured rat hippocampal neurons in comparison with cultured astrocytes: the possible involvement of lipid peroxidation. *Biol Pharm Bull* 1997;20:958-61.
18. Demma J, Hallberg K, Hellman B. Genotoxicity of plumbagin and its effects on catechol and NQNO-induced DNA damage in mouse lymphoma cells. *Toxicol In Vitro* 2009;23:266-71.
19. Au WW, Heo MY, Chiewchanwit T. Toxicological interactions between nickel and radiation on chromosome damage and repair. *Environ Health Perspect* 1994;102:73-7.
20. Whorton EB Jr, Tice RR, Stetka DG. Statistical design, analysis, and inference issues in studies using sister chromatid exchange. *Basic Life Sci* 1984;29:431-40.
21. Farr SB, Natvig DO, Kogoma T. Toxicity and mutagenicity of plumbagin and the induction of a possible new DNA repair pathway in *Escherichia coli*. *J Bacteriol* 1985;164:1309-16.

บทคัดย่อ

ถูกที่ความเป็นพิษในระดับจีนและเซลล์ของสารสกัดเอทานอลจากพิกัดเบญจกุลต่อเม็ดเลือดขาวของมนุษย์ในหลอดทดลอง ตระพิพย์ รัตนวรรชัย*, สุมน อิติโอล์ฟาร์**, เลริมเกียรติ ทานุชิต***, อินทัช ศักดิ์ภักดีเจริญ****, อรุณพร อิฐวัตน์****

* สาขาชีวเคมี สถาบันวิทยาศาสตร์พรีคลินิก คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์

** สาขาวิชาภิวัฒนาศาสตร์ สถาบันวิทยาศาสตร์พรีคลินิก คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์

*** งานวิจัย คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์

**** สาขาวิชาการแพทย์แผนไทยประยุกต์ คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์

พิกัดเบญจกุลเป็นยาปรับรากนิยมใช้กับผู้ป่วยโรคมะเร็ง การศึกษานี้ทดลองพิษระดับจีนและระดับเซลล์ของสารสกัดเอทานอลของพิกัดเบญจกุล (PBE) ในเม็ดเลือดขาวของมนุษย์ในหลอดทดลองด้วยวิธีชีสเตรอร์โครามาติดเอ็กซ์เพนเซอร์ (SCE) และเลสต์ พิกัดเบญจกุลหมักด้วยร้อยละ ๕๕ เอทานอล เป็นเวลา ๓ วัน กรองและทำให้แห้งได้เป็นสารสกัด PBE ทดลอง PBE (ละลายน้ำ DMSO) ที่ความเข้มข้น ๕๐, ๑๐๐, ๒๐๐, ๔๐๐ และ ๕๐๐ ไมโครกรัม/มิลลิลิตร กับเม็ดเลือดขาวของมนุษย์เป็นเวลา ๓ ชั่วโมง อ่านและวิเคราะห์ค่า SCE โดยมี RPMI 1640 และร้อยละ ๐.๔ (V/V) DMSO เป็นกลุ่มควบคุมผลลัพธ์ และดอกไซรูบิชิน (๐.๑ ไมโครกรัม/มิลลิลิตร) เป็นกลุ่มควบคุมผลลัพธ์ ผลการทดลองพบว่า $PBE \geq ๕๐๐$ ไมโครกรัม/มิลลิลิตร เป็นพิษระดับเซลล์ โดยพบร่องรอยของเม็ดเลือดขาว PBE ที่ ๑๐๐, ๒๐๐ และ ๔๐๐ ไมโครกรัม/มิลลิลิตร กระตุ้นระดับ SCE สูงกว่ากลุ่มควบคุมผลลัพธ์อย่างมีนัยสำคัญ (ค่าพี < 0.05) ด้ชนิดการแบ่งเซลล์ (MI) และดชนิดการเพิ่มจำนวนเซลล์ (PI) ไม่ต่างจากกลุ่มควบคุม ผลการทดลองแสดงว่า PBE เป็นพิษต่อมเม็ดเลือดขาวของมนุษย์ในระดับจีน และระดับเซลล์ความเข้มข้นที่ ≥ ๑๐๐ ไมโครกรัม/มิลลิลิตร และ ≥ ๕๐๐ ไมโครกรัม/มิลลิลิตร ตามลำดับ ความเป็นพิษของ PBE น่าจะมาจากการ plumbagin ที่เป็นองค์ประกอบสำคัญของ PBE ระดับปลดปล่อยของ PBE คือ ≤ ๕๐ ไมโครกรัม/มิลลิลิตร อย่างไรก็ตามการศึกษาในสิ่งมีชีวิตในขั้นต่อไปเป็นสิ่งจำเป็น เพื่อปรับปรุงความเข้มข้นที่ปลดปล่อยในผู้ป่วยโรคมะเร็ง

คำสำคัญ: พิกัดเบญจกุล, ชีสเตรอร์โครามาติดเอ็กซ์เพนเซอร์, ดอกไซรูบิชิน, พิษระดับจีน, พิษระดับเซลล์