Digital Health

  • Somchai Bovornkitti The Academy of Science, The Royal Society of Thailand, Bangkok
  • Chidchanok Lursinsap The Academy of Science, The Royal Society of Thailand, Bangkok
Keywords: -




Download data is not yet available.


1. Digital health. Wikipedia. Accessed January 19, 2020.
2. Senanarong V, Luasinsap Ch, Bovornkitti S. Artificial Intelligence and Precision Medicine. Thammasat Med J. 2018;18:687-694.
3. Hussain W, Goddard A, Joshi I. AI and healthcare. Commentary; December, 2019: 10-11.
4. Himathongkam T, Luasinsap Ch, Bovornkitti S. Artificial Pancreas and Diabetes Mellitus. Buddhachinaraj Med J. 2016;33:152-155.
5. Soto F, Chrostowski R. Frontiers of Medical Micro/Nanorobotics: in vivo Applications and Commercialization Perspectives Toward Clinical Uses. Bioeng. Biotechnol. 2018;6:
1-12. doi: 10.3389/fbioe.2018.00170.
6. Bovornkitti S. Further on CRISPR gene editing. Thamasat Med J. 2020;20(2):192-193.
7. Dileep G. Imagine a robot capable of treating Ebola patients or cleaning up nuclear waste. Accessed January 30, 2016.
8. Northstar AI Explorer. What is a contentenabled medical imaging console?.
AYBCAAEgKtavD_BwE. Accessed January 19, 2020.
9. Mohammadpour RA, Abedi SM, Bagheri S, Ghaemian A. Fuzzy rule-based classification system for assessing coronary artery disease. Computational and Mathematical
Methods in Medicine. 2015;2015:1-8. doi:org/10.1155/2015/564867.
10. de Castro A, Benito A, Manzanera S, et al. Three-Dimensional Cataract Crystalline Lens Imaging With Swept-Source Optical Coherence Tomography. Investigative Ophthalmology & Visual Sci. 2018;59:897-903. doi:10.1167/iovs.17-23596.
11. Brunoa G, Fiori A. MicroClAn: Microarray clustering analysis. Journal of Parallel and Distributed Computing. 2013;73(3):360-370.
12. McCulloch WS, Pitts WS. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics. 1990;5:115-133.
13. Junsawang P, Phimoltares S, Lursinsap C. Streaming chunk incremental learning for class-wise data stream classification with fast learning speed and low structural complexity. PLoSONE. 2019;14(9):1-20. doi: 10.1371/journal.pone.0220624.
14. Thakong M, Phimoltares S, Jaiyen S, Lursinsap C. Fast Learning and Testing for Imbalanced Multi-Class Changes in Streaming Data by Dynamic Multi-Stratum Network. IEEE
Access. 2017;5:10633-10648.
15. Wikipedia. eHealth. Accessed March 21, 2020.
Special Articles