

Research article

Histopathology of kidney and liver in the captive broodstock (*Rastrelliger brachysoma*) during its juvenile stage

Sinlapachai Senarat^{1,*}, Jes Kettratad¹, Sasipong Tipdomrongpong², Theerakamol Pengsakul³, Wannee Jiraungkoorskul⁴, Piyakorn Boonyoung⁵, Shuaiqin Huang⁶

¹Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

²Samut Songkhram Marine Fisheries Research and Development Station, Department of Fisheries, Samut Songkhram 75000, Thailand

³Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand

⁴Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

⁵Department of Anatomy, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand

⁶State Key Laboratory of Cellular Stress Biology, and Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China

Abstract

This is the first study which explained the histopathology in kidney and liver of the captive broodstock (*Rastrelliger brachysoma*) during its juvenile stage, to assess the health status. All fishes (n = 24) with a mean of 5.02 ± 0.87 (SD) cm in total length, were collected during October to December 2013 and processed using standard histological protocols. Conforming to histological observation, kidney and liver parenchyma in this species were clearly altered. The most melanomacrophage center had found to be highly organized in these tissues, whereas a large number of the vacuolar structure in the hepatocyte was shown as an empty space, as also called the hepatocellular lipidosis. All lesions in the abnormal kidney and liver may be related to their reduced functions as well as health status of *R. brachysoma* under captive conditions.

Keywords: Captive fish, Histopathology, Kidney, Liver, Short-mackerel

***Corresponding author:** Sinlapachai Senarat, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, E-mail: Senarat.S@hotmail.com

Article history: received manuscript: 19 March 2018, accepted manuscript: 30 May 2018, published online: 19 June 2018

Academic editor: Korakot Nganvongpanit

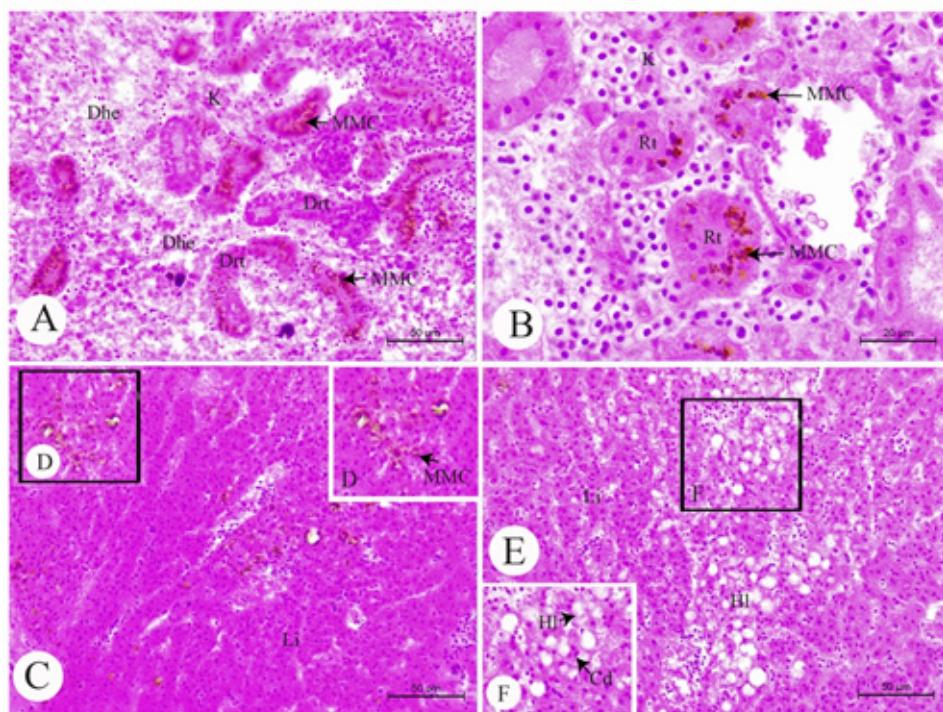
Open Access Copyright: ©2018 Author (s). This is an open access article distributed under the term of the Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author (s) and the source.

INTRODUCTION

Histopathological biomarker is one of the most important tools to reflect the health status and assess environmental effects of fish for long periods (Fatma, 2009; Nikalje et al., 2012). This biomarker has been widely used to investigate and to predict the vital changes of specific tissues and organs (Hinton et al., 2001; Adams, 2002; Dietrich and Krieger, 2009). Among several organs, the kidney and liver tissue in fish is a key organ and very sensitive to the environmental changes (Hinton et al., 2001; Genten et al., 2008). The alteration of kidney and liver structures can hence reflect the fish health and ecosystem as a whole (Hinton et al., 2001; Adams, 2002). Similarly, evidences of the liver/kidney histopathologies of fish have been extensively investigated to evaluate the effects of organic compounds and heavy metals on teleost fish in both wild and captive fishes (Hinton et al., 1992; Senarat et al., 2015a).

The captive broodstock (*Rastrelliger brachysoma*) belongs to Family Scombridae and it is now considered to be the most important fishery resources in Thailand. At the same time, it is noted that this fish has become the endangered/threatened species (Senarat et al., 2017) due to the increase of overfishing and deterioration of its habitat causing a serious decline in its number (Senarat et al., 2015a; 2015b). To solve this problem, the aquacultural development must be developed to produce the *R. brachysoma* and subsequently, its culture project is continuously supervised by the Samut Songkhram Coastal Fisheries Research and Development Center, Samut Sakhon province, Thailand (Senarat, 2015c). Although successful fertilization of the egg and optimum offspring survival have been documented, the developmental rate of *R. brachysoma* during its juvenile stages still decreased for an unknown reason. Comprehensive evaluation of the introduced health status in the fish is here required as primary phase before entering to further studies in other factors. In this study, we assessed the health status of *R. brachysoma* during juvenile stage in captivity, using histopathological biomarker. Surely, our information is vital for the provision of scientific knowledge to health status of *R. brachysoma* juvenile in captivity, implying that can provide an early monitoring in the aquaculture system.

MATERIALS and METHODS


Fixed twenty-four individuals' short mackerel (*R. brachysoma*) during juvenile stages were randomly collected during October to December 2013 and exclusively donated from the Samut Songkhram Marine Fisheries Research and Development Station, Samut Songkhram, Thailand. All fish were reared in a closed recirculating aquaculture system. The fishes with a mean of 5.02 ± 0.87 (SD) cm in total length were maintained in mechanically circulated filtered seawater with constant aeration, a temperature ranging from 26-28°C, a salinity level ranging from 25-30 ppt, and a photoperiod of 12:12 h light-dark. The short mackerel broodstock was fed with fresh squid and polychaetes, and artificial feed twice daily. The whole fish was processed using standard histological protocols (Presnell and Schreibman, 1997). The paraffin blocks were trimmed, sectioned at a thickness of 4 μ m and stained with Harris's hematoxylin and eosin (H&E). Histological sections were mounted with Permount and the histopathological lesions were observed and photographed under the light microscope (Leica digital 750 Boston Industries, Inc; USA). The percent prevalence in each lesion was calculated through this experiment.

RESULTS and DISCUSSION

A few comprehensive data are focused on the histopathological assessment of the juvenile fishes in captivity (Cusack et al., 2001; Miyazaki et al., 2011; Kizhakudan et al., 2015; Gosh et al., 2016). This study is the first to report and to increased information on the important histopathological alterations of the kidney and liver in *R. brachysoma* during juvenile stages (Figures 1A-1F).

The degeneration of renal tubule and disorganization of the hematopoietic tissue was observed and is depicted in Figure 1A. The results revealed the infiltration of the melanomacrophage center (MMC), which had been found to be highly organized in the kidney and liver tissues (n = 20 individual fishes, 83.33% prevalence) (Figures 1A-1D). In an earlier report on *Hypophthalmichthys molitrix* from farming system, the presence of MMCs were identified, suggesting to associate with the disease as well as bacterial infection (Gosh et al., 2016). Similar was reported in the kidney teleosts (Agius, 1979; Agius, 1980; Agius, 1981a) such as *Salmo gairdneri* (Agius, 1981b), *Morone saxatilis* (Harper and Wolf, 2009) and *Sparus aurata* (Meseguer et al., 1994), in *R. brachysoma* liver (Senarat et al., 2015a). Several studies have investigated that the appearance of the MMC is directly concerned with fishes after it is exposed or suffered a more severe type of stress (overcrowding, excessive noise and aggression) and that is supported by previous studies (Agius and Roberts, 2003; Alvarez-Pellitero et al., 2007; Sitja-Bobadilla, 2008). The problems in the aquaculture system (environment contaminants and poor water quality) (Patiño et al., 2003), the inflected-tissue from tuberculosis (Chinabut, 1999), nocardiosis (Chen, 1992) and antibacterial phagocytic capacity (Agius and Roberts, 2003) stimulated the occurrence of the MMC. Reports regarding the detection of the MMC indicated that if the increased MMC was detected, it could be related to a positive stimulation from the infectious diseases throughout the change of environmental quality or stress responses resulting from exposure to toxicants (Wolke, 1992; Marty et al., 2003; van Dyk et al., 2010). It could be hence mentioned that insights of the influence of microbial organisms, identification of diagnose parasitic diseases and water quality in a culture system of *R. brachysoma* are still required in further work.

The incidence of the intracytoplasmic vacuoles in the liver, also called “hepatocellular lipidosis” was recognized in *R. brachysoma* juvenile (n = 10 individual fishes, 41.66% prevalence) (Figures 1E-1F). The above-described results indicated that we observed liver pathology in this fish and, to the best of our knowledge, this is the first report. Major degenerative changes including hepatocellular lipidosis and cellular degeneration were recorded (Figure 1F), which were probably related to liver damage, as similarly suggested by Greenfield et al. (2008). Hinton and Laurén (1990) speculated that a derangement in lipid and protein metabolism (lipidosis) is related to abnormal accumulating triglycerides in hepatocytes. Moreover, malnourishment may also raise fat mobilization and impair apoprotein synthesis. In actual fact, the occurrence of the hepatocellular lipidosis was associated with exposure to chlorinated hydrocarbons and other contaminants (Hendricks et al., 1984; Hinton et al., 1992; Robertson and Bradley 1992; Schrank et al., 1997), including polychlorinated biphenyls (Teh et al., 1997; Anderson et al., 2003). Therefore, it is possible that *R. brachysoma* juvenile might be contaminated by the pollutants as mentioned above (Hinton and Laurén 1990). However, several factors involving hepatic effects have been reported to cause high mortality rate in fishes in captivity. It might be caused by ageing, nutritional value and other environmental conditions (Hinton et al., 1992; Robertson and Bradley, 1992).

Figure 1 Light photomicrograph of histopathological lesions in the kidney (A-B) and liver (C-F) of *Rastrelliger brachysoma* during juvenile stage. A: The degeneration of renal tubule (Drt) and disorganization of the hematopoietic tissue (Dhe) in the kidney (K) were observed. A-D: Several melanomacrophage centers (MMCs) were widely distributed in the kidney (K) and liver (Li). E-F: The hepatocellular lipidosis (HI) and cellular degeneration (Cd) appeared in the liver. Note: Rt = renal tubule.

CONCLUSION

For the current data, we did not have any robust information to support the cause of kidney and liver histopathology of this fish; however, it is plausible to conclude that all histopathological observations including MMC and hepatocellular lipidosis might provide more information on the total loss of the function of both organs. Our observation could be helpful to imply histopathological changes in liver and kidney may be an early event from culture system, suggesting that this situation may be related a decreased growth rate and a reduced health of *R. brachysoma* during juvenile stage. To fulfill other information regarding the histopathological effects, a part of our results could also be incorporated into quality monitoring in the aquaculture system.

ACKNOWLEDGEMENTS

This work was supported by a grant to SS from The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship. Many thanks to all staffs of the members of the Aquatic Toxicology, Department of Pathobiology, Faculty of Science, Mahidol University for their help in the laboratory. We also specially thank Dr. Anna Chatthong for critically reading the manuscript.

REFERENCES

Adams, S.M. 2002. Biological indicators of aquatic ecosystem stress. American Fisheries Society: Maryland, 104-112.

Agius, C. 1979. The role of melano-macrophage centres in iron storage in American Fisheries Society: Maryland, 104-112.

Agius, C. 1980. Phylogenetic development of melano-macrophage centres in fish. *J. Zoo.*, 191, 11-31.

Agius, C. 1981a. Preliminary studies on the ontogeny of the melanomacrophages of teleost haemopoietic tissues and age-related changes. *Dev. Comp. Immunol.*, 5, 5597-5606.

Agius, C. 1981b. The effects of splenectomy and subsequent starvation on the storage of haemosiderin by the melano-macrophages of rainbow trout, *Salmo gairdneri* Richardson. *J. Fish Biol.* 18, 41-44.

Agius, C., Roberts, R.J. 2003. Melano-macrophage centres and their role in fish pathology. *J. Fish Dis.* 26, 499-509.

Alvarez-Pellitero, P., Palenzuela, O., Sitjà-Bobadilla, A. 2007. Histopathology and cellular response in *Enteromyxum leei* (Myxozoa) infections of *Diplodus puntazzo* (Teleostei). *Parasitol. Int.* 57, 110-120.

Anderson, M.J., Cacela, D., Beltman, D., Teh, S.J., Okihiro, M.S., Hinton, D.E., Denslow, N., Zelikoff, J.T. 2003. Biochemical and toxicopathic biomarkers assessed in smallmouth bass recovered from a polychlorinated biphenyl-contaminated river. *Biomarkers*. 8, 371- 393.

Chen, S.C. 1992. Study on the pathogenicity of *Nocardia asteroides* to the Formosa snakehead, *Channa maculata* (Lacepede), and the largemouth bass, *Micropterus salmoides* (Lacepede). *J. Fish Dis.* 15, 47-53.

Chinabut, S. 1999. Mycobacteriosis and nocardiosis. In: Bruno, K., Bruno, D. W., (Eds), *Fish Diseases and Disorders*. Woo, P. T. CAB International: Wallingford. 319-340.

Cusack, R.R., Groman, D.B., MacKinnon, A., Kibenge, F.S.B., Wadowska, D. and Brown, N. 2001. Pathology associated with an aquareovirus in captive juvenile Atlantic halibut *Hippoglossus hippoglossus* and an experimental treatment strategy for a concurrent bacterial infection. *Dis. Aquat. Org.* 44, 7-16.

Dietrich, D.R., Krieger, H.O. 2009. Histological analysis of endocrine disruptive effects in small laboratory fish. John Wiley and Sons: New Jersey.

Fatma, A.S.M. 2009. Histopathological studies on *Tilapia zillii* and *Solea vulgaris* from Lake Qarun, Egypt. *World J. Fish Marine Sci.* 1, 29-39.

Genten, F., Terwinghe, E., Danguy, A. 2008. *Atlas of fish histology*. Science Publishers, Enfield.

Gosh, K., Ahmed, G.U. and Akter, M.N. 2016. Investigation on changing pattern of health status of juvenile *Hypophthalmichthys molitrix* from farming systems in Bangladesh. *J. Fisheries*. 4, 420-427.

Greenfield, B.K., Teh, S.J., Ross, J.R., Hunt, J., Zhang, G., Davis, J.A., Ichikawa, G., Crane, D., Hung, S.S., Deng, D., The, F.C., Green, P.G. 2008. Contaminant concentrations and histopathological effects in *Sacramento splittail* (*Pogonichthys macrolepidotus*). *Arch. Environ. Contam. Toxicol.* 55, 270-281.

Harper, C., Wolf, J.C. 2009. Morphologic effects of the stress response in fish. *ILAR J.* 50, 387-396.

Hendricks, J.D., Meyers, T.R., Shelton, D.W. 1984. Histological progression of hepatic neoplasia in rainbow trout (*Salmo gairdneri*). *J. Natl. Cancer Inst. Monogr.* 65, 321-336.

Hinton, D.E., Laurén, D.J. 1990. Liver structural alterations accompanying chronic toxicity in fishes: potential biomarkers of exposure. In: Mc Carthy, J.F., Shugart, L.R. (Eds.), *Biomarkers of environmental contamination*. Lewis, Boca Raton, FL, 17-57.

Hinton, D.E., Baumann, P.C., Gardner, G.R., Hawkins, W.E., Hendricks, J.D., Murchelano, R.A., Okihiro, M.S. 1992. *Histopathologic biomarkers. Biochemical, physiological, and histological markers of anthropogenic stress*. Biomarkers, Lewis Publishers, Boca Raton, FL, 155-209.

Hinton, D.E., Segner, H., Braunbeck, T. 2001. Toxic responses of the liver. In: Schlenk, D., and Benson, W.H. (Eds.), *Target organ toxicity in marine and freshwater teleosts*. Taylor and Francis, London, 224-268.

Kizhakudan, J.K., Praveena, P.E., Maran, V., Otta, S.K., Bhuvaneswari, T., Rajan., Krishnamoorthi, S. & Jithengran, K.P. 2015. Investigation on the mortality of juveniles in captive stock of the Indian halibut *Psettodes erumei*. *Indian J Geo-Marine Sci.* 44, 1217-1223.

Marty, G.D., Hoffmann, A., Okihiro, M.S., Hepler, K., Hanes, D. 2003. Retrospective analyses: Bile hydrocarbons and histopathology of demersal rockfish in Prince William sound, Alaska, after the Exxon Valdez oil spill. *Mar. Environ. Res.* 56, 569-584.

Meseguer, J., Lopez-Ruiz, A., Esteban, M.A. 1994. Melano-macrophages of the seawater teleosts, sea bass (*Dicentrarchus labrax*) and gilthead seabream (*Sparus aurata*): morphology, formation and possible function. *Cell Tissue Res.* 277, 1-10.

Miyazaki, T., Fujiwara, K., Kobara, J., Matsumoto, N., Abe, M.Nagano, T. 2011. Histopathology associated with two viral diseases of larval and juvenile fishes: epidermal necrosis of the Japanese flounder *Paralichthys olivaceus* and epithelial necrosis of black sea bream *Acanthopagrus schlegeli*. *J. Aquat. Anim. Health.* 1, 85-93.

Nikalje, S.B., Muley, D.V., Angadi, S.M. 2012. Histopathological changes in gills of a freshwater major carp, *Labeo rohita* after acute and chronic exposure to textile mill effluent (tme). *Int. J. Environ. Sci.* 3, 108-118.

Patiño R., Goodbred, S., Draugelis-Dale, R., Barry, C., Foott, J., Wainscott, M. 2003. Morphometric and histopathological parameters of gonadal development in adult common carp from contaminated and reference sites in Lake Mead, Nevada. *J. Aquat Anim Health.* 15, 55-68.

Presnell, J.K., Schreibman, M.P. 1997. *Humason's Animal Tissue Techniques*. 5th ed. Johns Hopkins University Press: Baltimore.

Robertson, J.C., Bradley, T.M. 1992. Liver ultrastructure of juvenile Atlantic salmon (*Salmo salar*). *J. Morphol.* 211, 41-54.

Schrank, C.S., Cormier, S.M., Blazer, V.S. 1997. Contaminant exposure, biochemical, and histopathological biomarkers in white suckers from contaminated and reference sites in the Sheboygan River, Wisconsin. *J. Great Lakes Res.* 23, 119-130.

Senarat, S., Kettratad, J., Poolprasert, P., Boonyoung, P., Kangwanrangsan, N., Jiraungkoorskul, W. 2015a. Hepatic histopathology in *Rastrelliger brachysoma* (Bleeker, 1851) from The Upper Gulf of Thailand. Proceeding in APCEAS: Osaka. 369-374.

Senarat, S., Kettretad, J., Jiraungkoorskul, W. 2015b. Morpho-histology of the reproductive duct in short mackerel *Rastrelliger brachysoma* (Bleeker, 1865). *Adv. Environ. Biol.* 9, 210-215.

Senarat, S. 2015c. Structure and alteration of gonadotropin releasing hormone – 1 peptidergic neuronal system during breeding season of short mackerel, *Rastrelliger brachysoma* (Bleeker, 1851) from Sumut Sonkhram Province. Dissertation, Chulalongkorn University.

Senarat, S., Kettretad, J., Jiraungkoorskul, W. 2017. Ovarian histology and reproductive health of short mackerel, *Rastrelliger brachysoma* (Bleeker, 1851), as threatened marine fish in Thailand. *Songklanakarin J. Sci. Technol.* 39, 225-235.

Sitja-Bobadilla, A. 2008. Fish immune response to myxozoan parasites. *Parasite*. 15, 420- 425.

Teh, S.J., Adams, S.M., Hinton, D.E. 1997. Histopathologic biomarkers in feral freshwater fish populations exposed to different types of contaminant stress. *Aquat. Toxicol.* 37, 51-70.

van Dyk, J.C., Marchanda, M.J., Smita, N.J., Pietersea, G.M. 2010. A histology-based fish health assessment of four commercially and ecologically important species from the Okavango Delta panhandle, Botswana. *Afr. J. Aquat Sci.* 34, 273–282.

Wolke, R.E. 1992. Piscine macrophage aggregates: A review. *Ann. Rev. Fish Dis.* 2, 91-108.

How to cite this article;

Sinlapachai Senarat, Jes Kettratad, Sasipong Tipdomrongpong, Theerakamol Pengsakul, Wan-nee Jiraungkoorskul, Piyakorn Boonyoung, Shuaiqin Huang. Histopathology of kidney and liver in the captive broodstock (*Rastrelliger brachysoma*) during its juvenile stage. *Veterinary Integrative Sciences*. 2018; 16(2): 87-93.
