

Research article

Effects of vitamin E, green tea polyphenols, and *Ocimum gratissimum* leaf essential oil as a supplement to extender on frozen-thawed canine sperm quality

Nguyen Van Vui¹, Samorn Ponchunchoovong², Sajeera Kupittayanant³, Pakanit Kupittayanant^{2*}

¹Department of Animal Science and Veterinary Medicine, Faculty of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam

²School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

³School of Preclinical Science, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

Abstract

During cryopreservation, oxidative stress is a principal cause of reducing the quality of frozen canine sperm. To prolong the longevity of canine sperm, adding vitamin E, green tea polyphenols, and *Ocimum gratissimum* essential oil in the semen extender was fulfilled to assess the effects of these antioxidant substances on frozen canine sperm quality. A total of twelve ejaculates were collected from three American Bully dogs in this study. The sperm straws were frozen in a programmable freezer at a freezing rate of 5°C/min from 4 to -15°C and 20°C/min from -15 to -100°C. The sperm motility, mitochondrial membrane potential, plasma membrane, and acrosome membrane integrity parameters were used to evaluate the quality of canine sperm using computer-assisted sperm analysis and confocal laser scanning microscope. The sperm lipid peroxidation was conducted using a Thiobarbituric acid assay. The results presented that the canine frozen-thawed sperm motility parameters in all the treatments showed no remarkable difference ($P>0.05$). In addition, although the antioxidant activity of the vitamin E and green tea polyphenols were higher than that of the *Ocimum gratissimum* essential oil, the value of mitochondrial membrane potential, plasma membrane, and acrosome membrane parameters of frozen-thawed sperm in the *Ocimum gratissimum* essential oil extender were higher than those in the rest extenders and had a noticeable difference compared to the control group ($P<0.05$). In conclusion, *Ocimum gratissimum* essential oil is superior to vitamin E and green tea polyphenols in protecting canine sperm during the process of freezing and thawing.

Keywords: Antioxidants, Canine sperm, Frozen-thawed, *Ocimum gratissimum* essential oil.

Corresponding author: Pakanit Kupittayanant, School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand. Email: pakanit@sut.ac.th

Funding: This study is funded in part by the Suranaree University of Technology, Code: SUT-IACUC 17/2560

Article history: received manuscript: 26 January 2024,
revised manuscript: 8 April 2024,
accepted manuscript: 14 April 2024,
published online: 17 May 2024,

Academic editor: Nguyen Trong Ngu

INTRODUCTION

Canine sperm cryopreservation is an essential tool for breeding dogs, as it allows long-term preservation and transportation to distant locations. During sperm freezing, oxidative stress can damage sperm structure and function. Because the sperm cell membrane of dogs is high in polyunsaturated fatty acids (Darin Bennett et al., 1974), they are easily oxidized by reactive oxygen species (ROS) during the freezing and thawing (Lamirande et al., 1997; Vieira et al., 2017). At physiologically normal concentrations, ROS can support sperm function, including sperm maturation, hyper-activation, capacitation, acrosome reaction, and fertilization of the oocyte (Lamirande et al., 1997; Aitken, 2017), whereas overproduction of ROS can stimulate sperm lipid peroxidation which results in sperm membrane fluidity changes, sperm structure damage, and sperm death (Moustafa et al., 2004; Aitken, 2017). Fortunately, canine seminal plasma involves a number of enzymatic antioxidants comprising phospholipid hydro-peroxide glutathione peroxidase, glutathione peroxidase, catalase, and superoxide dismutase (Cassani et al., 2005; Angriman et al., 2014), which can minimize the negative effects of ROS (Birben et al., 2012; Ighodaro and Akinloye, 2017). However, during the sperm cryopreservation process, the canine seminal plasma must be removed before diluting with semen extenders (Treulen et al., 2012; Hori et al., 2017). As a result, the enzymatic antioxidants are no longer available for sperm protection. Thus, adding antioxidants in semen extender ingredients may increase the canine frozen sperm quality. Several antioxidant substances have been used to expand the frozen canine sperm quality, but the outcome results were very fluctuated depending on the concentration and type of antioxidants (Michael et al., 2009; Monteiro et al., 2009; Sahashi et al., 2011; Thiangtum et al., 2012; Wittayarat et al., 2013; Ogata et al., 2015; Lucio et al., 2016; Andersen et al., 2018).

In addition, vitamin E (α -tocopherol) is a fat-soluble antioxidant that not only neutralizes the oxygen radicals but also inhibits lipid peroxy radicals occurring in the chain reaction of lipid peroxidation (Wang and Quinn, 1999; Dad et al., 2006). Several studies have found that adding vitamin E in the semen extender ingredients had beneficial effects on sperm quality of canine (Michael et al., 2009), bull (Asadpour, 2011), stallion (Almeida and Ball, 2005; Vasconcelos Franco et al., 2016), ram (Abdi-Benemar et al., 2015), rooster (Moghbeli et al., 2016), and boar (Jeong et al., 2009; Satorre et al., 2012).

Moreover, green tea polyphenols are natural antioxidants that consist of hydrophilic compounds, including epicatechin, epicatechin gallate, epigallocatechin, and epigallocatechin gallate. These bioactive compounds have a strong antioxidant activity by reducing the free radicals from the ROS and the chain reaction of lipid peroxidation (Forester and Lambert, 2013). The supplementation of green tea polyphenols in the semen extenders to improve sperm quality has been investigated in stallions (Nouri et al., 2018), boar (Gadani et al., 2017), ram (Mehdipour et al., 2016), and canine (Wittayarat et al., 2013).

Furthermore, *Ocimum gratissimum* is an herbaceous plant that has rich essential oils from the leaves (3.5%) (Trevisan et al., 2006). It has been demonstrated that the composition of *Ocimum gratissimum* essential oil contains the main substance of eugenol (30-70%) and the other bioactive constituents, followed by α -bisabolene, thymol, β -selinene, γ -terpinene, and 1,8-cineole (Monga et al., 2017; Kumar et al., 2019). These bioactive compounds almost have an amphiphilic characteristic and a powerful function of antioxidant activity (Chiu et al., 2013; Mahapatra and Roy, 2014). Therefore, adding *Ocimum gratissimum* essential oil to the semen extenders can improve the quality of frozen canine sperm by inhibiting sperm lipid peroxidation during cryopreservation.

The previous study demonstrated that the Tris-citric-fructose-mineral salts egg-yolk extender had powerful effects on canine sperm quality during chilling

storage (Vui et al., 2019). Therefore, the aim of this study was to evaluate the effects of *Ocimum gratissimum* essential oil, vitamin E, and green tea polyphenols as a supplement in the Tris-citric-fructose-mineral salts egg-yolk extender on frozen canine sperm quality.

MATERIALS AND METHODS

Reagents

Sterile distilled water and chemicals from Sigma-Aldrich were used in this study. Various antioxidants were used, including essential oils, vitamin E (T3251), green tea polyphenols (P1204), and eugenol (E51791). Only essential oils were extracted from *Ocimum gratissimum* leaves by ethanol extraction. To extract essential oils, 300 g powder of *Ocimum gratissimum* leaves was soaked in 3L ethanol (98%) at room temperature for five days to achieve a mixture solution after filtering. A rotary evaporator was used to evaporate ethanol from the mixture solution. The essential oils used in this study were the bottom layer after centrifuging the concentrated solution.

Animals and semen collection

Three American Bully dogs were used to collect semen by digital manipulation technique following the previous method of Linde-Forsberg (1991). All dogs were proven to have fertility before studying. Semen from each dog was exploited once a week, and a total of twelve ejaculates were used in this study. The study was conducted with the guide of the Institutional Animal Care and Use Committee of the Suranaree University of Technology, Thailand.

Initial evaluation of semen quality

After collecting, the semen from each ejaculation was evaluated for sperm quality. A computer-assisted sperm analysis (CASA) was used to analyze sperm concentration and motility. Eosin-nigrosin staining was used to estimate sperm morphology and viability parameters (Tamuli and Watson, 1994). The semen was used with the sperm quality following the percentage of sperm progressive motility $\geq 70\%$, sperm viability $\geq 90\%$, sperm concentration $\geq 200 \times 10^6$ sperm/mL, and sperm abnormal morphology $\leq 5\%$ (Linde-Forsberg, 1995).

Preparation of extenders

Tris-citric-fructose-mineral salts-egg yolk extender was used as a basic extender (Vui et al., 2019), and one of the following various antioxidants: essential oils (100 $\mu\text{g}/\text{mL}$), vitamin E (50 $\mu\text{g}/\text{mL}$), green tea polyphenols (50 $\mu\text{g}/\text{mL}$), and eugenol (2.6 $\mu\text{g}/\text{mL}$). The level of essential oils added to the extender (100 $\mu\text{g}/\text{mL}$) was based on our previous study, while the concentration of vitamin E and green tea polyphenols (50 $\mu\text{g}/\text{mL}$) were the results of our preliminary study. Especially, the level of eugenol used in this study was the same as the number of eugenol in essential oils extract (2.6%). The percentage of eugenol in essential oils was detected by using GC-MS. A control extender was the basic extender without antioxidants. Moreover, glycerol was added to extenders as a cryoprotectant. All extenders were prepared for two groups, group 1 (3% glycerol) and group 2 (7% glycerol). The final concentration of glycerol after diluting with sperm was 5% for every extender. The extender composition is shown in Table 1.

Semen cryopreservation and experimental design

Canine semen cryopreservation was carried out as the previously described procedure with modifications (Michael et al., 2007). After collection and initial evaluation, the pooled semen was divided into five sterile tubes. After that, semen

was centrifuged for 5 minutes at 720×g, and the seminal plasma was separated. The sperm pellets were diluted in five extenders of group 1 (3% glycerol) to reach 200×10^6 sperm/mL. Then, extended sperm samples were cooled down gradually (0.3°C/min) to 4°C for 1 hour by adding the ice. Next, sperm samples were re-diluted (1:1 v/v) in five extenders of group 2 (7% glycerol) at the same condition of 4°C to obtain 100×10^6 sperm/mL. After 30 minutes at 4°C, extended sperm samples were filled into 0.5 mL French straws and sealed using a heat sealer. The sperm straws were frozen in a programmable freezer (Planer Kryo 360 – 1.7, England) at a freezing rate of 5°C/min from 4 to -15°C and 20°C/min from -15 to -100°C. After that, the sperm straws were immediately plunged into liquid nitrogen and stored in a liquid nitrogen container for at least two weeks before being thawed for evaluation.

The sperm straws were thawed at 70°C in a water bath for 8s and then diluted in Tris buffer (38°C) at a rate of 1:1 before post-thaw evaluation.

The experimental design was a completely randomized design of five treatments with the effects of five sperm extenders (various antioxidants) on frozen-thawed canine sperm quality. Four replicates were conducted.

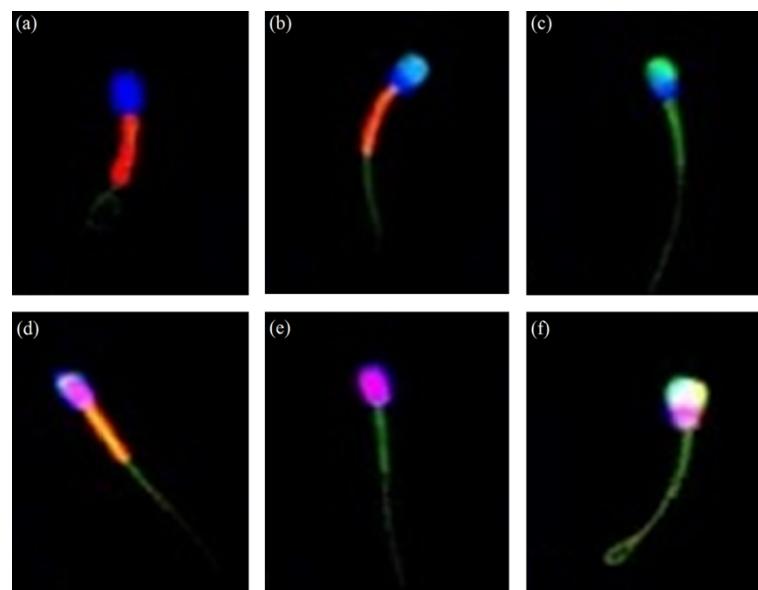
Table 1 The composition of semen extenders

Extender components	Extenders				
	Control	Essential oils	Vitamin E	Green tea polyphenols	Eugenol
Tris (g)	0.90	0.90	0.90	0.90	0.90
Citric acid (g)	0.50	0.50	0.50	0.50	0.50
Fructose (g)	1.25	1.25	1.25	1.25	1.25
NaCl (g)	0.45	0.45	0.45	0.45	0.45
KHPO ₄ (g)	0.06	0.06	0.06	0.06	0.06
KCl (g)	0.06	0.06	0.06	0.06	0.06
CaHPO ₄ (g)	0.02	0.02	0.02	0.02	0.02
MgCl ₂ (g)	0.01	0.01	0.01	0.01	0.01
Egg yolk (mL)	20.00	20.00	20.00	20.00	20.00
Essential oils (mg) [*]	-	10.00	-	-	-
Vitamin E (mg)	-	-	5.00	-	-
Green tea polyphenols (mg)	-	-	-	5.00	-
Eugenol (mg)	-	-	-	-	0.26
Gentamicin (g)	0.20	0.20	0.20	0.20	0.20
DMSO (mL)	0.20	0.20	0.20	0.20	0.20
Glycerol (mL)	5.00	5.00	5.00	5.00	5.00
Distilled water (mL)	To 100	To 100	To 100	To 100	To 100
pH	6.52	6.53	6.55	6.55	6.54
Osmolality (mOsmol/kg)	1489	1503	1557	1526	1566

^{*} *Ocimum gratissimum* essential oil

Antioxidant activity evaluation

The antioxidant activity of the various antioxidants used in this study was performed using a free radical of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) (Blois, 1958). The various antioxidants were diluted in methanol to create different concentration solutions. A volume of 100 µl of various antioxidant solutions was placed in a microplate. Then, 100 µl DPPH (200 µM in methanol) was added to the wells. The control group was a mixture of methanol (100 µl) and DPPH solution (200 µM, 100 µl), while the blank group was a combination of methanol (100 µl) with various antioxidant solutions (100 µl). After 30 minutes, the absorbance of these solution mixtures was determined using a microplate spectrophotometer at 517 nm.


The IC₅₀ values (the inhibitory concentration of various antioxidants needed to inhibit 50% of DPPH free radicals) were calculated from the standard curve between the concentration of various antioxidants and the percentage of antioxidant activity.

Sperm motility evaluation

Sperm motility was analyzed using computer-assisted sperm analysis (CASA; HTR-IVOS 14.0; Hamilton Thorne, USA). All sperm motility parameters, including total motility, progressive motility, straight-line velocity, curvilinear velocity, and average pathway velocity, were recorded.

Sperm membrane integrity evaluation

Canine sperm mitochondrial membrane potential, plasma membrane, and acrosome membrane parameters were examined using combined fluorescent staining as described by [Celeghini et al. \(2007\)](#) and modified by [Vui et al. \(2019\)](#). The thawed sperm samples were stained by Hoechst 33342 (H342), propidium iodide (PI), 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1), and fluorescein isothiocyanate-conjugated *Pisum sativum* agglutinin (FITC-PSA). After staining, sperm samples were evaluated using a confocal laser scanning microscope (Nikon/Ni-E, Japan). The sperm with high mitochondrial membrane potential, intact plasma membrane, and acrosome membrane was bright red-orange in the mid-piece region and blue-stained in the nucleus, whereas the sperm with low mitochondrial membrane potential, damaged plasma membrane, and acrosome membrane was bright green in the mid-piece region, red-stained in the nucleus, and yellow-green in acrosome region. The stained sperm classification is presented in [Figure 1](#).

Figure 1 Frozen-thawed canine sperm under a confocal laser scanning microscope (60x). (a) Sperm with high mitochondrial membrane potential, complete plasma, and acrosome membranes. (b) Sperm with high mitochondrial membrane potential, complete plasma membrane, and broken acrosome membrane. (c) Sperm with low mitochondrial membrane potential, complete plasma membrane, and broken acrosome membrane. (d) Sperm with high mitochondrial membrane potential, broken plasma membrane, and complete acrosome membrane. (e) Sperm with low mitochondrial membrane potential, broken plasma membrane, and complete acrosome membrane. (f) Sperm with low mitochondrial membrane potential, broken plasma, and acrosome membranes.

Sperm lipid peroxidation evaluation

The thiobarbituric acid (TBA) assay was used to calculate sperm lipid peroxidation through the concentration of malondialdehyde (MDA) (Maia et al., 2010). Sperm samples were induced lipid peroxidation before adding with TBA reagent by FeSO_4 . The absorbance of the sperm sample was determined at 535nm using a microplate spectrophotometer to measure the level of MDA. The value of MDA was shown in $\text{nmol MDA}/50 \times 10^6$ sperm.

Statistical analysis

Statistical analyses were performed using IBM SPSS, version 20 (IBM Corp., Armonk, N.Y., USA). A one-way analysis of variance (ANOVA) with the post hoc analysis using the Tukey test was used to determine the difference among means of antioxidant groups. All data are expressed as mean \pm SD. $P\leq 0.05$ was set as a significant difference.

RESULTS

Antioxidant activity of the various antioxidants

The antioxidant activity of the various antioxidants used in this study is represented in Table 2. The essential oils from *Ocimum gratissimum* had the highest value in the IC50 (263.63 ± 11.52 $\mu\text{g/mL}$) and was significantly different from the vitamin E (11.03 ± 0.55 $\mu\text{g/mL}$), eugenol (6.06 ± 0.30 $\mu\text{g/mL}$), and green tea polyphenols (4.25 ± 0.33 $\mu\text{g/mL}$). This means that the antioxidant activity of the vitamin E, eugenol, and green tea polyphenols were superior to that of the essential oils from *Ocimum gratissimum*.

Table 2 The concentration of the various antioxidants inhibit 50% DPPH activity (IC50).

Antioxidants	Essential oils	Vitamin E	Green tea polyphenols	Eugenol
IC50 ($\mu\text{g/ml}$)	263.63 ± 11.52^a	11.03 ± 0.55^b	4.25 ± 0.33^b	6.06 ± 0.30^b

Values are mean \pm standard deviation. Superscript letters (a or b) in the same row indicates significant difference ($p<0.05$).

Sperm motility

The results of frozen-thawed canine sperm motility are shown in Table 3. On the whole, the values of total motility, progressive motility, straight-line velocity, curvilinear velocity, and average pathway velocity parameters of frozen-thawed canine sperm were not noticeably different among the extenders ($P>0.05$).

Table 3 Effects of the various antioxidants supplement in semen extender on the frozen-thawed canine sperm total motility (TM), progressive motility (PM), average pathway velocity (VAP), straight-line velocity (VSL), and curvilinear velocity (VCL) parameters.

Extenders	TM (%)	PM (%)	VAP ($\mu\text{m/s}$)	VSL ($\mu\text{m/s}$)	VCL ($\mu\text{m/s}$)
Control	69.95 ± 2.64	44.10 ± 1.81	71.97 ± 1.87	63.76 ± 2.17	118.36 ± 4.31
Essential oils	71.23 ± 2.29	44.58 ± 2.27	72.48 ± 0.90	64.28 ± 1.42	119.05 ± 2.60
Vitamin E	72.50 ± 2.09	44.71 ± 3.61	73.39 ± 2.49	64.76 ± 1.13	129.71 ± 7.84
Green tea polyphenols	68.70 ± 1.43	43.25 ± 1.23	73.93 ± 5.14	64.52 ± 5.29	121.82 ± 8.64
Eugenol	71.35 ± 1.00	44.20 ± 2.30	74.98 ± 0.97	64.79 ± 5.04	126.83 ± 3.17

Values are mean \pm SD for four replicates, each being a pool of three ejaculates.

Sperm membrane integrity

The results of canine sperm mitochondrial membrane potential, plasma membrane, and acrosome membrane integrity are performed in Table 4. In general,

the percentages of the high mitochondrial membrane potential, intact plasma membrane, and acrosome membrane in the *Ocimum gratissimum* essential oil extender were superior to those in the other extenders and had a significant difference as compared to the control group (50.65 ± 1.55 vs. 41.93 ± 4.17 ($P=0.031$), 53.12 ± 2.41 vs. 41.51 ± 3.75 ($P=0.002$), and 55.31 ± 1.24 vs. 45.63 ± 1.31 ($P=0.043$), respectively). For the sperm mitochondrial membrane potential and plasma membrane integrity, although the proportions of these parameters of canine frozen-thawed sperm in the essential oils treatment were the highest, they were not evidently different compared with those in the eugenol, vitamin E, and green tea polyphenols treatments ($P>0.05$). In addition, there were no significant differences in these parameters between the control group, vitamin E, green tea polyphenols, and eugenol extenders ($P>0.05$). For the acrosome membrane integrity, the value of the intact acrosome membrane in the control extender was significantly lower than that in the essential oils (41.51 ± 3.75 vs. 53.12 ± 2.41 , $P=0.002$), vitamin E (41.51 ± 3.75 vs. 50.53 ± 2.76 , $P=0.016$), green tea polyphenols (41.51 ± 3.75 vs. 49.11 ± 5.13 , $P=0.048$), and eugenol (41.51 ± 3.75 vs. 52.45 ± 2.43 , $P=0.003$) extenders.

Table 4 Effects of the various antioxidants supplement in semen extender on the frozen-thawed canine sperm mitochondrial membrane potential, plasma membrane, and acrosome membrane parameters.

Extenders	Plasma membrane integrity (%)	Acrosome membrane integrity (%)	Mitochondrial membrane potential (%)
Control	41.93 ± 4.17^b	41.51 ± 3.75^b	45.63 ± 1.31^b
Essential oils	50.65 ± 1.55^a	53.12 ± 2.41^a	55.31 ± 1.24^a
Vitamin E	47.75 ± 2.65^{ab}	50.53 ± 2.76^a	54.49 ± 1.82^{ab}
Green tea polyphenols	46.41 ± 5.66^{ab}	49.11 ± 5.13^a	52.18 ± 6.10^{ab}
Eugenol	45.55 ± 3.08^{ab}	52.45 ± 2.43^a	53.40 ± 7.04^{ab}

Values are mean \pm SD for four replicates, each being a pool of three ejaculates. Superscript letters (a or b) in the same column indicate significant difference among extenders ($P\le0.05$).

Moreover, **Table 5** gives the proportion of healthy sperm with high mitochondrial membrane potential, intact plasma membrane, and acrosome membrane. The values of this parameter corresponded to those of the high mitochondrial membrane potential and the intact plasma membrane parameters. This means that the essential oils treatment was the greatest in this parameter, being significantly higher than the control extender (48.86 ± 3.01 vs. 37.41 ± 4.61 , $P=0.015$), whereas the rest of the antioxidant extenders, including the vitamin E, green tea polyphenols, and eugenol were not obviously different compared with the control extender ($P>0.05$).

Table 5 Effects of the various antioxidants supplementation in semen extender on the sperm with intact plasma membrane, intact acrosome membrane, and high mitochondrial membrane potential of frozen-thawed canine sperm.

Extenders	Control	Essential oils	Vitamin E	Green tea polyphenols	Eugenol
Sperm (%)	37.41 ± 4.61^b	48.86 ± 3.01^a	44.71 ± 3.84^{ab}	44.20 ± 5.97^{ab}	44.02 ± 3.65^{ab}

Values are mean \pm SD for four replicates, each being a pool of three ejaculates. Superscript letters (a or b) in the same row indicates significant difference among extenders ($P<0.05$).

Sperm lipid peroxidation

The malondialdehyde concentration of frozen-thawed canine sperm with the addition of various antioxidants is presented in **Table 6**. The level of the MDA of frozen-thawed canine sperm in the control treatment was significantly higher than that in the essential oils (7.70 ± 0.20 vs. 6.88 ± 0.01 , $P<0.001$), vitamin E (7.70 ± 0.20

vs. 6.84 ± 0.03 , $P < 0.001$), green tea polyphenols (7.70 ± 0.20 vs. 6.67 ± 0.24 , $P < 0.001$), and eugenol (7.70 ± 0.20 vs. 7.01 ± 0.23 , $P < 0.001$) treatments. Although the value of the MDA of frozen-thawed canine sperm in the green tea polyphenols treatment was the smallest, it was not noticeably different compared with the rest antioxidant treatments ($P > 0.05$).

Table 6 Effects of the various antioxidants supplementation in semen extender on the level of the malondialdehyde (MDA) (nmol/50x10⁶ sperm) of frozen-thawed canine sperm.

Extenders	Control	Essential oils	Vitamin E	Green tea polyphenols	Eugenol
MDA	7.70 ± 0.20^a	6.88 ± 0.01^b	6.84 ± 0.03^b	6.67 ± 0.24^b	7.01 ± 0.23^b

Values are mean \pm SD for four replicates, each being a pool of three ejaculates. Superscript letters (a or b) in the same row indicates significant difference among extenders ($P < 0.05$).

DISCUSSION

During cryopreservation, canine sperm have to encounter the deleterious effects of oxidative stress due to the high production of reactive oxygen species (ROS). These effects can damage sperm structures such as lipids, proteins, and DNA (Lamirande et al., 1997; Aitken, 2017). The supplementation of antioxidants in semen extenders can protect canine sperm against the oxidation effects (Vieira et al., 2017). Several studies were conducted to evaluate the effects of various antioxidants on canine sperm against the deleterious of oxidation with useful outcomes (Monteiro et al., 2009; Neagu et al., 2009; Wittayarat et al., 2013; Ogata et al., 2015; Lucio et al., 2016), or inefficient results (Thiangtum et al., 2012; Andersen et al., 2018). Vitamin E and green tea polyphenols have been used to improve sperm quality in animals and had positive effects (Michael et al., 2009; Satorre et al., 2012; Wittayarat et al., 2013; Vasconcelos Franco et al., 2016; Gadani et al., 2017; Nouri et al., 2018), while no study has investigated the impact of essential oils from *Ocimum gratissimum* on sperm as a herbal antioxidant. Our study has found that the Tris-citric-fructose-mineral salts egg-yolk extender had a positive influence on canine sperm quality during chilling storage (Vui et al., 2019). This study was implemented to determine the outcome of the supplement of *Ocimum gratissimum* essential oil, green tea polyphenols, and vitamin E to Tris-citric-fructose-mineral salts egg-yolk extender on frozen canine sperm.

The present study showed that the addition of *Ocimum gratissimum* essential oil, vitamin E, and green tea polyphenols in semen extender could not impact the sperm motility parameters, but the antioxidant extenders could improve the quality of frozen-thawed canine sperm in the mitochondrial membrane potential, plasma membrane, and acrosome membrane integrity parameters as compared to the control extender. In particular, the treatment with adding *Ocimum gratissimum* essential oil was superior to the other extenders and significantly better than the control group in improving the quality of frozen-thawed canine sperm. In addition, the eugenol extender, as a control for the concentration of eugenol in the *Ocimum gratissimum* essential oil extender, was not greater than the *Ocimum gratissimum* essential oil extender in all sperm quality parameters. This means that the beneficial influence of *Ocimum gratissimum* essential oil was not only from eugenol function but also from the other substances. Many studies have shown that the major composition of *Ocimum gratissimum* essential oil contained the various phytochemicals comprising eugenol, 1,8-cineole, thymol, α -bisabolene, β -selinene, and γ -terpinene (Monga et al., 2017; Kumar et al., 2019). These bioactive compounds have been proven to have strong antioxidant activity (Chiu et al., 2013; Mahapatra and Roy, 2014). In the present study, the antioxidant activity of these compounds may be represented not only by their antioxidant activity individually but also by the combination of these compounds to be a synergistic

antioxidant activity (Sonam and Guleria, 2017). These antioxidant properties of *Ocimum gratissimum* essential oil may consequently contribute directly or cooperate with the intercellular antioxidant system, including catalase, phospholipid hydro-peroxide glutathione peroxidase, glutathione peroxidase, and superoxide dismutase against oxidative stress (Neagu et al., 2011; Angriman et al., 2014).

Besides antioxidant activity properties, the energy and mineral sources of *Ocimum gratissimum* essential oil may contribute to the improvement of frozen-thawed canine sperm quality during cryopreservation. In previous studies, it was found that the composition of *Ocimum gratissimum* essential oil had high carbohydrates and mineral elements such as calcium, sodium, potassium, manganese, magnesium, zinc, phosphorus, and iron (Idris et al., 2011; Igbinosa et al., 2013). These substances could support energy for sperm activities and maintain osmotic balance, as well as form parts of primary enzymes relating to sperm function and metabolism (Juyena and Stellella, 2012; Smith et al., 2018).

In addition, although *Ocimum gratissimum* essential oil antioxidant activity was lower than that of vitamin E and green tea polyphenols in the same concentration, green tea polyphenols and vitamin E extenders were not better than *Ocimum gratissimum* essential oil extender in protecting the sperm mitochondrial membrane potential, the sperm plasma membrane and acrosome membrane integrity parameters. One explanation could be the fact that almost all bioactive compounds in *Ocimum gratissimum* essential oil have amphiphilic characteristics (Prabhu et al., 2009; Kumar et al., 2019), while vitamin E is a fat-soluble substance and green tea polyphenols are water-soluble compounds (Prasanth et al., 2019). Thus, *Ocimum gratissimum* essential oil and vitamin E can absorb in the sperm plasma membranes against lipid peroxidation during cryopreservation (Wang and Quinn, 1999; Aitken, 2017), while green tea polyphenols are restricted.

Moreover, the value of MDA was a principal indicator for lipid peroxidation during sperm cryopreservation (Toker et al., 2016; Vieira et al., 2017). The results demonstrated that adding the various antioxidants in the semen extender could protect frozen canine sperm to decrease lipid peroxidation by restraining MDA production. In addition, the concentration of MDA in the vitamin E and green tea polyphenols extenders were lower than that in the *Ocimum gratissimum* essential oil extender. These results were consistent with the antioxidant activity results of these various antioxidants in which the antioxidant activity of *Ocimum gratissimum* essential oil was significantly lower than that of vitamin E and green tea polyphenols. However, the sperm mitochondrial membrane potential, the sperm plasma membrane, and acrosome membrane integrity parameters in the *Ocimum gratissimum* essential oil treatment were better than those in the vitamin E and green tea polyphenols treatments. Especially, although the green tea polyphenols are hydrophilic compounds that may have limited contact with the sperm plasma membrane, the MDA value in this treatment was the lowest as compared to that in the rest treatments. This result may be explained by the fact that the antioxidant ability of the green tea polyphenols may only have a function in the semen extender and not act in the sperm. In this study, a canine sperm lipid peroxidation indicator was conducted to evaluate the lipid peroxidation of the frozen-thawed extended sperm. Thus, the results of this parameter may be shown in both the semen extender and inside the sperm. In fact, lipid peroxidation could occur within the sperm cell membrane and also within the dilution medium (Maia et al., 2010). As a result, the lipid peroxidation results were the total MDA production occurring in both the semen extender and inside the sperm. Therefore, the oxidation in the sperm dilution medium could noticeably impact the outcome of the sperm lipid peroxidation indicator. This study suggests that the combination of the water-soluble antioxidants with the fat-soluble or amphoteric antioxidants supplement in the canine semen extender may improve sperm lipid peroxidation during cryopreservation.

CONCLUSIONS

In conclusion, the results showed that adding green tea polyphenols, vitamin E, and *Ocimum gratissimum* essential oil to semen extender has a protective impact on frozen-thawed canine sperm quality. In addition, the *Ocimum gratissimum* essential oil is superior to the vitamin E and green tea polyphenols, and has a significant protection for canine sperm during freezing storage.

AUTHOR CONTRIBUTIONS

P.K. conceived and designed the experiments; V.V.N. and P.K. performed the experiments; V.V.N. and P.K. analysed the data; S.P. contributed materials; V.V.N., S.K. and P.K. wrote the paper; all authors reviewed and approved the final manuscript.

CONFLICT OF INTEREST

We have no conflict of interest.

REFERENCES

Abdi-Benemar, H., Jafaroghi, M., Khalili, B., Zamiri, M.J., Ezazi, H., Shadparvar, A.A., 2015. Effects of DHA supplementation of the extender containing egg yolk and α - tocopherol on the freezability and post-thawing fertility of ram semen. *Small. Rumin. Res.* 130, 166–170.

Aitken, R.J., 2017. Reactive oxygen species as mediators of sperm capacitation and pathological damage. *Mol. Reprod. Dev.* 84, 1039–1052.

Almeida, J., Ball, B.A., 2005. Effect of α -tocopherol and tocopherol succinate on lipid peroxidation in equine spermatozoa. *Anim. Reprod. Sci.* 87, 321–337.

Andersen, A.H., Thennesen, M., Failing, K., Goericke-Pesch, S., 2018. Effect of reduced glutathione (GSH) supplementation to Tris-egg yolk extender on chilled semen variables of dogs. *Anim. Reprod. Sci.* 198, 145–153.

Angriman, D.S.R., Lucio, C.F., Veiga, G.A.L., Silva, L.C.G., Regazzi, F.M., Nichi, M., Vannucchi, C.I., 2014. Sperm maturation in dogs: sperm profile and enzymatic antioxidant status in ejaculated and epididymal spermatozoa. *Andrologia.* 46, 814–819.

Asadpour, R., 2011. Influence of added vitamin c and vitamin e on frozen-thawed bovine sperm cryopreserved in citrate and tris-based extenders. *Vet. Res. Forum.* 2, 37–44.

Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O., 2012. Oxidative stress and antioxidant defense. *World. Allergy. Organ. J.* 31, 9–19.

Blois, M.S., 1958. Antioxidant Determinations by the use of a stable free radical. *Nature.* 181, 1199–1200.

Cassani, P., Beconi, M.T., O'Flaherty, C., 2005. Relationship between total superoxide dismutase activity with lipid peroxidation, dynamics and morphological parameters in canine semen. *Anim. Reprod. Sci.* 86, 163–173.

Celeghini, E.C.C., De Arruda, R.P., De Andrade, A.F.C., Nascimento, J., Raphael, C.F., 2007. Practical techniques for bovine sperm simultaneous fluorimetric assessment of plasma, acrosomal and mitochondrial membranes. *Reprod. Domest. Anim.* 42, 479–488.

Chiu, Y.W., Lo, H.J., Huang, H.Y., Chao, P.Y., Hwang, J.M., Huang, P.Y., Huang, S.J., Liu, J.Y., Lai, T.J., 2013. The antioxidant and cytoprotective activity of, *Ocimum gratissimum* extracts against hydrogen peroxide-induced toxicity in human HepG2 cells. *J. Food. Drug. Anal.* 21, 253–260.

Dad, S., Bisby, R.H., Clark, I.P., Parker, A.W., 2006. Formation of singlet oxygen

from solutions of vitamin E. *Free Radic. Res.* 40, 333–338.

Darin Bennett, A., Poulous, A., White, I.G., 1974. The phospholipids and phospholipid bound fatty acids and aldehydes of dog and fowl spermatozoa. *J. Reprod. Fertil.* 41, 471–474.

Forester, S.C., Lambert, J.D., 2013. Antioxidant effects of green tea. *Mol. Nutr. Food Res.* 55, 844–854.

Gadani, B., Bucci, D., Spinaci, M., Tamanini, C., Galeati, G., 2017. Resveratrol and Epigallocatechin-3-gallate addition to thawed boar sperm improves in vitro fertilization. *Theriogenology.* 90, 88–93.

Hori, T., Masuda, T., Kobayashi, M., Kawakami, E., 2017. Role of prostatic fluid in cooled canine epididymal sperm. *Reprod. Domest. Anim.* 52, 655–660.

Idris, S., Iyaka, Y.A., Ndamitso, M.M., Paiko, Y.B., 2011. Nutritional Composition of the leaves and stems of *Ocimum gratissimum*. *J. Emerg. Trends. Eng. Appl. Sci.* 2, 801–805.

Igbinosa, E.O., Uzunuigbe, E.O., Igbinosa, I.H., Odadjare, E.E., Igiehon, N.O., Emuedo, O.A., 2013. In vitro assessment of antioxidant, phytochemical and nutritional properties of extracts from the leaves of *Ocimum gratissimum* (Linn). *African J. Tradit. Complement. Altern. Med.* 10, 292–298.

Ighodaro, O.M., Akinloye, O.A., 2017. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. *Alexandria J. Med.* 54, 287–293.

Jeong, Y.J., Kim, M.K., Song, H.J., Kang, E.J., Ock, S.A., Mohana Kumar, B., Balasubramanian, S., Rho, G.J., 2009. Effect of α -tocopherol supplementation during boar semen cryopreservation on sperm characteristics and expression of apoptosis related genes. *Cryobiology.* 58, 181–189.

Juyena, N.S., Stellella, C., 2012. Seminal plasma: an essential attribute to spermatozoa. *J. Androl.* 33, 536–551.

Kumar, A., Mishra, P., Rodrigues, V., Baskaran, K., Verma, R.S., Padalia, R.C., Sundaresan, V., 2019. Delineation of *Ocimum gratissimum* L. complex combining morphological, molecular and essential oils analysis. *Ind. Crops Prod.* 139, 1–8.

Lamirande, E. de, Jiang, H., Zini, A., Kodama, H., Gagnon, C., 1997. Reactive oxygen species and sperm physiology. *Reprod. Fertil.* 2, 48–54.

Linde-Forsberg, C., 1991. Achieving canine pregnancy by using frozen or chilled extended semen. *Vet. Clin. North Am. Small Anim. Pract.* 21, 467–485.

Linde-Forsberg, C., 1995. Artificial insemination with fresh, chilled extended, and frozen- thawed semen in the dog. *Semin. Vet. Med. Surg. (Small Anim).* 10, 48–58.

Lucio, C.F., Silva, L.C.G., Regazzi, F.M., Angriman, D.S.R., Nichi, M., Assumpção, M.E.O., Vannucchi, C.I., 2016. Effect of reduced glutathione (GSH) in canine sperm cryopreservation: In vitro and in vivo evaluation. *Cryobiology.* 72, 135–140.

Mahapatra, S.K., Roy, S., 2014. Phytopharmacological approach of free radical scavenging and antioxidative potential of eugenol and *Ocimum gratissimum* Linn. *Asian Pac. J. Trop. Med.* 7, 391–397.

Maia, S., Dimas, S., Cecilia, C., Rodello, L., Cristina, I., Gallego, S., 2010. Lipid peroxidation and generation of hydrogen peroxide in frozen-thawed ram semen cryopreserved in extenders with antioxidants. *Anim. Reprod. Sci.* 122, 118–123.

Mehdipour, M., Daghagh Kia, H., Najafi, A., Vaseghi Dodaran, H., García-Álvarez, O., 2016. Effect of green tea (*Camellia sinensis*) extract and pre-freezing equilibration time on the post-thawing quality of ram semen cryopreserved in a soybean lecithin-based extender. *Cryobiology.* 73, 297–303.

Michael, A., Alexopoulos, C., Pontiki, E., Hadjipavlou-Litina, D., Saratsis, P., Boscos, C., 2007. Effect of antioxidant supplementation on semen quality

and reactive oxygen species of frozen-thawed canine spermatozoa. *Theriogenology*. 68, 204–212.

Michael, A.J., Alexopoulos, C., Pontiki, E. a, Hadjipavlou-Litina, D.J., Saratsis, P., Verteridis, H.N., Boscos, C.M., 2009. Effect of antioxidant supplementation in semen extenders on semen quality and reactive oxygen species of chilled canine spermatozoa. *Anim. Reprod. Sci.* 112, 119–135.

Moghbeli, M., Kohram, H., Zare-Shahaneh, A., Zhandi, M., Sharafi, M., Nabi, M.M., Zahedi, V., Sharideh, H., 2016. Are the optimum levels of the catalase and vitamin E in rooster semen extender after freezing-thawing influenced by sperm concentration? *Cryobiology*. 72, 264–268.

Monga, S., Dhanwal, P., Kumar, R., Kumar, A., Chhokar, V., 2017. Pharmacological and physico-chemical properties of Tulsi (*Ocimum gratissimum L.*): an updated review. *Pharma Innov.* 6, 181–186.

Monteiro, J., Silva, L., Lúcio, C., Gonçalves, J., Assumpção, M., Rodrigues, J., Vannucchi, C., 2009. Influence of ascorbic acid and glutathione antioxidants on frozen-thawed canine semen. *Reprod. Domest. Anim.* 44, 359–362.

Moustafa, M.H., Sharma, R.K., Thornton, J., Mascha, E., Abdel-hafez, M.A., Thomas, A.J., Agarwal, A., 2004. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. *Hum. Reprod.* 19, 129–138.

Neagu, V.R., García, B.M., Rodríguez, A.M., Ferrusola, C.O., Bolaños, J.M.G., Fernández, L.G., Tapia, J.A., Peña, F.J., 2011. Determination of glutation peroxidase and superoxide dismutase activities in canine seminal plasma and its relation with sperm quality and lipid peroxidation post thaw. *Theriogenology*. 75, 10–16.

Neagu, V.R., García, B.M., Rodríguez, A.M., Tapia, J.A., Sandoval, C.S., Fernández, L.G., Ferrusola, C.O., Peña, F.J., 2009. Freezing dog semen in presence of the antioxidant butylated hydroxytoluene improves postthaw sperm membrane integrity. *Theriogenology*. 73, 645–650.

Nouri, H., Shojaeian, K., Samadian, F., Lee, S., Kohram, H., Lee, J.I., 2018. using resveratrol and epigallocatechin-3-Gallate to improve cryopreservation of stallion spermatozoa with low quality. *J. Equine Vet. Sci.* 70, 18–25.

Ogata, K., Sasaki, A., Kato, Y., Takeda, A., Wakabayashi, M., Sarentonglaga, B., Yamaguchi, M., Hara, A., Fukumori, R., Nagao, Y., 2015. Glutathione supplementation to semen extender improves the quality of frozen-thawed canine spermatozoa for transcervical insemination. *Reprod. Dev.* 61, 116–122.

Prabhu, K.S., Lobo, R., Shirwaikar, A.A., Shirwaikar, A., 2009. *Ocimum gratissimum*: a review of its chemical, pharmacological and ethnomedicinal properties. *Open. Complement. Med. J.* 1, 1–15.

Prasanth, M.I., Sivamaruthi, B.S., Chaiyasut, C., Tencomnao, T., 2019. A review of the role of green tea (*camellia sinensis*) in antiphotoaging, stress resistance, neuroprotection, and autophagy. *Nutrients*. 11, 1–24.

Sahashi, Y., Otsuki, T., Higaki, S., Nagano, M., Yamashita, Y., Hishinuma, M., 2011. Effect of butylated hydroxytoluene on dog sperm longevity in chilling storage and cryopreservation. *J. Vet. Med. Sci.* 73, 895–899.

Satorre, M.M., Breininger, E., Beconi, M.T., 2012. Cryopreservation with α-tocopherol and Sephadex filtration improved the quality of boar sperm. *Theriogenology*. 78, 1548–1556.

Smith, A.M.J., Bonato, M., Dzama, K., Malecki, I.A., Cloete, S.W.P., 2018. Mineral profiling of ostrich (*Struthio camelus*) seminal plasma and its relationship with semen traits and collection day. *Anim. Reprod. Sci.* 193, 98–106.

Sonam, K.S., Guleria, S., 2017. Synergistic antioxidant activity of natural products. *Ann. Pharmacol. Pharm.* 2, 1–6.

Tamuli, M.K., Watson, P.F., 1994. Use of a simple staining technique to distinguish acrosomal changes in the live sperm sub-population. *Anim. Reprod. Sci.* 35, 247–254.

Thiangtum, K., Hori, T., Kawakami, E., 2012. Effect of catalase and superoxide dismutase on motility, viability and acrosomal integrity of canine spermatozoa during storage at 5°C. *Thai J. Vet. Med.* 42, 447–453.

Toker, M.B., Alcay, S., Gokce, E., Ustuner, B., 2016. Cryopreservation of ram semen with antioxidant supplemented soybean lecithin-based extenders and impacts on incubation resilience. *Cryobiology*. 72, 205–209.

Treulen, F., Sánchez, R., Risopatrón, J., 2012. Effects of seminal fluid fractions on plasma and acrosome membrane integrity and mitochondrial membrane potential determined by flow cytometry in chilled canine spermatozoa. *Reprod. Domest. Anim.* 47, 1043–1048.

Trevisan, M.T.S., Silva, M.G.V., Pfundstein, B., Spiegelhalder, B., Owen, R.W., 2006. Characterization of the volatile pattern and antioxidant capacity of essential oils from different species of the genus *Ocimum*. *J. Agric. Food Chem.* 54, 4378–4382.

Vasconcelos Franco, J.S. de, Faheem, M., Chaveiro, A., da Silva, F.M., 2016. Effects of α-tocopherol and freezing rates on the quality and heterologous in vitro fertilization capacity of stallion sperm after cryopreservation. *Theriogenology*. 86, 957–962.

Vieira, N. de M., Góes, Kawai, G.K.V., Assumpção, M.E.O.D., Rui, B.R., Angrimani, D. de S.R., Losano, J.D. de A., Bicudo, L. de C., Nichi, M., da Silva, B. do C.S., 2017. Induced sperm oxidative stress in dogs: Susceptibility against different reactive oxygen species and protective role of seminal plasma. *Theriogenology*. 108, 39–45.

Vui, N.V., Samorn, P., Sajeera, K., Pakanit, K., 2019. Effects of egg yolk and soybean lecithin on sperm quality determined by computer-assisted sperm analysis and confocal laser scanning microscope in chilled canine sperm. *Vet. Med. Sci.* 5, 345–360.

Wang, X., Quinn, P.J., 1999. Vitamin E and its function in membranes. *Prog. Lipid. Res.* 38, 309–336.

Wittayarat, M., Ito, A., Kimura, T., Namula, Z., Luu, V.V., Do, L.T.K., Sato, Y., Taniguchi, M., Otoi, T., 2013. Effects of green tea polyphenol on the quality of canine semen after long-term storage at 5°C. *Reprod. Biol.* 13, 251–254.

How to cite this article:

Nguyen Van Vui, Samorn Ponchunchoovong, Sajeera Kupittayanant, Pakanit Kupittayanant. Effects of vitamin E, green tea polyphenols, and *Ocimum gratissimum* leaf essential oil as a supplement to extender on frozen-thawed canine sperm quality. *Veterinary Integrative Sciences*. 2025; 23(1): e2025016-1-13.
