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Abstract  
African horse sickness (AHS) is a deadly infectious vector-borne disease affecting equine species. Outbreaks of 
the disease can cause substantial economic loss due to its high mortality rate and the virus’s ability to extend 
beyond endemic areas. In March 2020, Thailand experienced the first confirmed AHS case, resulting in more than 
600 horses dying and the mortality rate exceeding 90%. This study aims to determine the spatial distribution of 
AHS in Thailand. Initially, records on the first outbreak of AHS in 2020 were used for geoprocessing and visualized 
distribution. Subsequently, spatial and spatial-temporal statistical analyses were performed using QGIS and 
SaTScan 10.1 software. The results reveal the occurrence of AHS incidents in the central, lower northeastern, 
eastern, and western regions of Thailand at a total of 131 locations. The spatial analysis demonstrates significant 
clustering of AHS in 2020. Additionally, the Getis-Ord statistic reveals a high-density (hotspot) of AHS at the 
central plane, encompassing the central, lower northeastern, and eastern regions of Thailand. The space-time 
permutation model depicts the spatiotemporal pattern of AHS. The output identifies two significant clusters in the 
central part of the country, covering the central, eastern, and western regions (P-value 0.000028) and another 
cluster in the lower northeastern region (P-value 0.012) between February and September 2020. These findings 
provide crucial insights into the spatial and spatiotemporal distribution of AHS in Thailand, which is necessary for 
improving disease management and prevention strategies.  
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INTRODUCTION 
 

African horse sickness (AHS) is a deadly infectious vector-borne disease 
affecting equine species, including horses, donkeys, and mules. It is caused by the 
African horse sickness virus (AHSV), a double-stranded RNA virus belonging to the 
Reoviridae family, Orbivirus genus (Toh et al., 2022). AHS is primarily transmitted 
by Culicoides spp. biting midges (Robin et al., 2016) and is characterized by severe 
alterations in respiratory and circulatory function, with case mortality rates reaching 
up to 95% in unimmunized horse populations (Carpenter et al., 2017). Due to its 
high mortality and potential for rapid transboundary spread, the World Organization 
for Animal Health (OIE) classifies AHS as a listed disease, necessitating strict 
surveillance and control measures to prevent outbreaks (OIE, 2020). 

AHS is currently endemic in sub-Saharan Africa, where it poses persistent 
challenges to equine health and industry (Dennis et al., 2019). However, global 
changes, including climate variations, increased trade, and the movement of 
animals, have facilitated the expansion of the disease beyond its traditionally 
endemic regions. In previous decades, outbreaks have been reported in Europe 
(Rodriguez et al., 1992) and Asia (Howell, 1960), highlighting the virus’s ability to 
emerge in non-endemic regions. Thailand experienced the first documented 
outbreak of AHS in March 2020, when veterinary authorities confirmed a case in 
Pak Chong, Nakhon Ratchasima. The disease subsequently spread to other areas 
of the country, resulting in over 500 horse deaths across 15 outbreaks, with a 
mortality rate exceeding 90%. Prior to this outbreak, AHS had never been reported 
in Thailand. The equine population, totaling 7,960 horses across more than 3,000 
farming locations, had no previous exposure to the virus, lacking prior immunity, 
thus making them highly susceptible to severe clinical manifestations of the 
disease. Despite Thailand’s established animal health surveillance systems, the 
outbreak highlighted potential gaps in biosecurity measures and vector control 
strategies. The ability to prevent future outbreaks requires a comprehensive 
understanding of AHS transmission dynamics, the identification of potential 
hotspots, and the assessment of the spatiotemporal patterns of disease spread.  

Spatial analysis tools, statistical modeling, and geographical information 
systems (GIS) have demonstrated significant value in understanding disease 
transmission processes, particularly for vector-borne diseases (Palaniyandi et al., 
2014). The application of GIS in epidemiological studies has increased significantly 
since the 1990s (Koch, 2012), facilitating the integration of spatial data from diverse 
sources, disease mapping, and cluster detection (Graham et al., 2004). Previous 
studies have utilized spatial analytical techniques such as the SaTScan to detect 
clusters of disease outbreaks such as lumpy skin disease (Punyapornwithaya et al., 
2022). Numerous studies have examined the spatial distribution of vector-borne 
diseases (López et al., 2018; Chimera et al., 2022; Li et al., 2023), including AHS in 
endemic regions (Fairbanks et al., 2022). However, no such research has been 
conducted in Thailand.  

This study aims to analyze the spatial patterns of AHS distribution, identify 
hotspot areas, and conduct spatiotemporal analysis to evaluate the AHS clusters 
associated with the first documented outbreak in Thailand by employing GIS 
applications and epidemiological modeling approaches. The findings are expected 
to be valuable for public health policymakers, epidemiologists, and equine industry 
stakeholders by providing critical insights into AHS outbreaks in Thailand, leading 
to the development of targeted control measures. 

 
MATERIALS AND METHODS 
 

Data Collection 
The datasets comprise demographic data and disease outbreak reports 

collected by the Department of Livestock Development (DLD). The data include 
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information on the horse population, the number of infected cases, and 
geographical locations of reported outbreaks in 2020. The data on horse population 
were derived from the annual census conducted by local DLD officials and livestock 
volunteers through house-to-house surveys, with the results submitted via a web-
based reporting system, which can be accessed at 
https://eregist.dld.go.th/eregist-portal/. Following data collection, the datasets 
were structured, verified, and prepared in shapefile format for analysis. The spatial 
distribution of disease was subsequently analyzed and visualized using spatial and 
spatial-temporal statistical approaches to identify the overall disease spatial 
patterns, spatial correlation, disease clustering, and hot spot detection. A summary 
of the data used in this study is presented in Table 1. 

 
 

Table 1 Data and data type from Department of Livestock Development in year 
2020 used in this study 

 

Data Data type 
Horse population Number 
Location of cases reported Coordinates 
Infected cases Number 

 
Spatial Analysis 

This study applies geoprocessing and statistical tools in spatial and 
spatiotemporal analysis, conducted using QGIS 3.18 and SaTScan 10.1 software. 
Spatial visualization of AHS is performed to illustrate the distribution of the disease 
and related information geographically. Disease clustering is then investigated by 
identifying the location, generating a hotspot map, and finally, assessing the 
spatiotemporal distribution to evaluate the pattern, intensity, and area of the 
disease cluster.  

 

Spatial Autocorrelation and Cluster Analysis 
The records on the first AHS outbreak in Thailand are geographically 

processed using QGIS software to visualize the overall pattern of disease 
distribution. For the initial analysis, a shapefile format containing 3,462 farm 
location points is utilized, comprising 131 locations with reported cases and 3,331 
locations without reported cases or no incidence of AHS. This dataset is used to 
assess spatial autocorrelation as a preliminary step prior to conducting hotspot 
detection. The Global Moran’s I index is used to evaluate the spatial autocorrelation 
in the dataset (Waldhör, 1996). The Getis-Ord statistics are applied in this study to 
identify local disease clustering patterns or detect hotspots, with the selection 
based on data type and nature of the disease being assessed. The non-case points 
are incorporated into the cluster analysis as part of the spatial dataset to allow the 
Getis-Ord Gi* statistic to identify significant hotspots and cold spots based on the 
overall distribution of both cases and non-cases. Hotspot analysis, a key 
component of spatial mapping and analysis, aims to identify the spatial phenomena 
occurring in clusters. These phenomena are visually represented on a geographical 
map as points indicating the locations of specific objects or occurrences 
(Mclafferty, 2015). In this step, the farm-level AHS infection rate per 100 individuals 
is analyzed. The infection rate at the farm level is calculated using the following 
formula. 

 
𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑖𝑐𝑘 ℎ𝑜𝑟𝑠𝑒 / 𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 100  
 

Spatiotemporal Analysis 
 Spatiotemporal analysis is conducted to examine the AHS clustering pattern 

in Thailand according to space and time. This process is performed using SaTScan 
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10.1 software and the space-time permutation model. This approach allows the 
statistical significance of a significant cluster to be identified by creating a window 
across space and time, allowing the number of observed and expected examples 
to be calculated. The SaTScan™ determines space-time clusters using circular 
geographical windows and time intervals given as the height of a cylinder with the 
window base (Kulldorff, 2018). The dataset used for analysis includes file reports 
with details of the case and time (date of confirmed cases) and a location file with 
coordinates of disease occurrence with the same location ID as the case file 
prepared in CSV file format.  The study period and time precision are then defined. 
A precision unit of the day is selected. The spatial window size is 50%, and the 
temporal window size is also 50%. After the parameter setting, the software is 
assigned to conduct a space-time retrospective analysis using the space-time 
permutation probability model scan statistics. 

 
RESULTS 
 

The clustering and spatiotemporal analysis results were achieved using the 
previously mentioned space-time permutation model. The data used for the 
analysis consisted of the horse population, locations of cases reported, and 
number of infected cases as the farm-level AHS infection rate. 

 
Spatial Analysis (Global Moran’s I and the Getis-Ord 
statistic) 

Global Moran’s I test and the Getis-Ord statistic were used to analyze the 
clustering or hotspots of AHS occurrence in Thailand along with global spatial 
autocorrelation. Table 2 summarizes the results of Global Moran’s I analysis. 
According to the findings of Global Moran’s test for AHS occurrence, the Moran’s 
I value was 0.048844, and the corresponding P-value was 0.0095. This indicates 
that during 2020, there was a significant cluster of AHS in Thailand. The associated 
z-score of 2.591515 reveals that the likelihood of clustered patterns being the 
consequence of random events is less than 1%. 

 
 

Table 2 Summary of Global Moran’s I result 
 

Index Result 
Moran’s Index 0.048844 

z-score 2.591515 
P-value 0.009555 

 
The statistical analysis using the Getis-Ord method identified significant 

spatial clustering of AHS infection rates across different regions, with high-
incidence areas concentrated in the central and northern parts of the southern 
regions of Thailand.  

A statistically significant hotspot (P-value <0.01) was identified in the central 
area of the country, involving three major regions: central, northeastern, and 
eastern Thailand. Another cluster (marked red in Figure 1) with a P-value <0.05 was 
detected in the western region. The analysis revealed that hot spots, representing 
areas with significantly higher infection rates, were most prominent at the 99% 
confidence level (667 locations), followed by the 95% (25 locations) and 90% (20 
locations) confidence levels. 
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Figure 1 Hotspot analysis results of AHS outbreaks in Thailand (2020) 

 
Table 3 Summary of the Getis-Ord statistical analysis results 
 

z-score P-value % Confidence level Number of locations 
< -1.65 <0.01 Cold spot 99% 532 
< -1.96 <0.05 Cold spot 95% 77 
< -2.58 <0.10 Clod spot 90% 201 

  Not significant 1,940 
> +1.65 <0.10 Hot spot 90% 20 
> +1.96 <0.05 Hot spot 95% 25 
> +2.58 <0.01 Hot spot 99% 667 

 
In contrast, cold spots (represented in blue in Figure 1) indicate areas with 

lower infection rates, primarily located in the lower part of the central region, 
extending into the midsection of the western region. Cold spots were detected at 
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the 99% confidence level (532 locations), with fewer locations at the 95% (77 
locations) and 90% (201 locations) confidence levels. A substantial number of 
locations (1,940) were not statistically significant. These findings highlight the 
presence of distinct geographical variations in disease prevalence, emphasizing 
the need for targeted intervention strategies to control the spread of AHS in high-
risk areas while maintaining surveillance in low-risk regions. 

   
Spatiotemporal Analysis 

The space-time permutation model was employed to analyze the 
spatiotemporal distribution of AHS outbreaks in Thailand. The results, illustrated in 
Figure 2, identify clusters of infection, with red and green circles indicating detected 
cluster areas and red dots representing the location of reported AHS cases. The 
findings of the study reveal the occurrence of AHS outbreaks between February 
and September 2020, with a total of 131 locations reporting cases and 610 
confirmed infections. Two significant clusters cover the central part of the country, 
involving a total of 59 locations. Statistical significance was determined using a P-
value threshold of <0.05. 

  

 
 

Figure 2 Space-time permutation analysis results 

 
The primary cluster, emerging between May 2 and August 1, was the most 

statistically significant (P-value 0.000028). This cluster had a radius of 89.28 km, 
covering the central region, the northern part of the eastern region, and some parts 
of the western region, with cases reported in 23 locations. The second cluster, 
observed between February 24 and April 1 in the lower northeastern region of 
Thailand, encompassed 22 cases within a 10.9 km radius and a statistically 
significant P-value of 0.012, as shown in Figure 2 and Table 4. These findings 
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highlight the spatial and temporal patterns of AHS outbreaks, emphasizing the 
need for targeted surveillance and intervention strategies in high-risk areas. 
 

Table 4 Spatiotemporal analysis results of AHS outbreaks in Thailand 2020 using the space-time 
permutation model 
 

Cluster Cluster time Centroid/ 
Radius(km) O E O/E 

ratio LLR P-value 

1 May 2 and August 
1, 2020 

13.952900 N, 
100.712200 E/ 

89.28 km 

2.99 7.69 0.3888 10.871 <0.001 

2 February 24 and 
April 1, 2020 

14.583700 N, 
101.445700 E/ 

10.9 km 

2.32 9.47 0.2449 6.689 0.011 

 

O=observed case; E=expected case; O/E ratio=ratio of observed cases/expected cases; LLR=log-
likelihood ratio. 

DISCUSSION 
 

AHS is considered to be a highly fatal, vector-borne viral disease. It has a 
severe economic impact on the equine industry as well as equine health and 
welfare. Given its devastating effects, studying the epidemiology and spatial 
distribution of AHS is crucial for a better understanding of disease patterns for 
occurrence, leading to effective prevention and outbreak control. During the 2020 
outbreak of AHS in Thailand, hundreds of horses were affected, with a case-fatality 
rate exceeding 90%. This is consistent with the previous outbreak in Africa in 2011 
(Grewar et al., 2013). Whereas during the 1989 outbreak in Portugal, a mortality 
rate of 62.2% was reported in the vaccinated population (Portas et al., 1999).  

Hotspot analysis is a spatial analysis technique used to identify statistically 
significant clusters of high and low disease occurrences, providing insights into the 
geographical distribution of outbreaks. This approach offers the visualization of 
high-risk areas, enabling researchers and policymakers to implement targeted 
control measures, while spatiotemporal analysis extends this understanding by 
incorporating the temporal dimension, allowing for the detection of patterns over 
time and identifying trends in disease spread. Together, these methods enhance 
epidemiological surveillance, facilitating more effective prevention and intervention 
strategies. 

The spatial analysis of past AHS outbreaks reveals distinct geographical 
clustering, with cases often concentrated, and a greater risk of disease occurrence 
in areas where vector populations are abundant, climatic conditions favorable, 
equine density high, or a large amount of horse movement exists (Faverjon et al., 
2015; Kim et al., 2024). Similarly, in Thailand, cases were reported predominantly 
in central and northeastern regions, suggesting a spatially structured disease 
distribution influenced by environmental and epidemiological factors.  

The results of Global Moran’s I test and the Getis-Ord statistical analysis 
provide strong evidence of significant spatial clustering in the occurrence of AHS 
in Thailand during 2020. The results confirm that the observed clustering is unlikely 
to be due to random chance, indicating a structured spatial distribution of the 
disease.  In contrast, in a recent study conducted in Indonesia between 2018 and 
2022 on bovine anaplasmosis (a vector-borne disease with different vector and 
ecological contexts), the results of Global Moran’s I indicate a random pattern of 
disease prevalence throughout the study period (Wibowo et al., 2024). According 
to the study, the Getis-Ord analysis further refines this observation by identifying 
high-incidence hotspots predominantly in the central, northeastern, and eastern 
regions, with the most significant clustering occurring at a 99% confidence level in 
667 locations. Conversely, cold spots, representing areas of lower infection rates, 
are concentrated in the lower central and mid-western regions. The presence of 
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both hot and cold spots highlights the heterogeneous nature of AHS distribution, 
reinforcing the necessity for spatially targeted intervention strategies. High-risk 
areas require immediate control measures, including enhanced surveillance, 
vaccination programs, and vector management, while sustained monitoring in low-
risk regions remains essential to prevent potential outbreaks.  

Although this study primarily focuses on the spatial and spatiotemporal 
analysis of African Horse Sickness (AHS) outbreaks in Thailand and does not 
directly include an analysis of environmental factors, certain distinct spatial 
characteristics may plausibly facilitate the occurrence and transmission of the 
disease. For instance, the hot spot areas identified in the central and lower 
northeastern regions of Thailand are characterized by abundant natural water 
sources, extensive irrigation systems, and predominantly agricultural land use. 
These environmental features create favorable conditions for vector development 
and may serve as potential breeding sites. Furthermore, horse management 
practices in these areas, such as open grazing or housing horses near water 
bodies, can increase the likelihood of exposure to insect vectors. The density and 
movement pattern of the horse population in these regions may also play a role in 
enhancing the risk of disease transmission. 

On the other hand, the cold spot areas may reflect not only spatial and 
climatic conditions less conducive to vector proliferation but also the presence of 
effective disease control measures and robust veterinary public health systems, 
potentially contributing to the lower incidence of AHS observed in those regions. 

The clusters of AHS outbreaks identified in this study, in practical terms, 
could assist authorities in focusing their attention on located outbreak farms in 
order to obtain further information on risks and dissemination of the disease. 
Comparing farms located in and outside of clusters would allow researchers to 
examine management strategies and other possible causes of AHS outbreaks. 
Official authorities could additionally assign priority to regions with a large number 
of cases while allocating resources and enforcing stringent surveillance and 
control measures. 

Although there are currently no ongoing outbreaks of AHS in Thailand, and 
the World Organization for Animal Health (WOAH) has officially reinstated 
Thailand’s status as an AHS-free country effective March 10, 2023, the risk of re-
emergence remains a concern. Despite this achievement, continuous surveillance, 
preventive measures, and effective control strategies are essential for preventing 
future outbreaks and maintaining the country’s disease-free status. 

Several studies have explored various AHS control measures, including the 
use of live attenuated vaccines, vector control strategies, and movement 
restrictions to mitigate disease transmission (Diouf et al., 2013; Castillo-Olivares, 
2020). Vector management, particularly targeting Culicoides midges, has been 
identified as a critical component of disease control since these insects serve as 
the primary transmission vectors. However, there is currently a significant lack of 
data on vector abundance in Thailand, highlighting the need for further research on 
potential vectors. Additionally, Thailand has developed a comprehensive 
contingency plan, which includes enhanced surveillance, early detection systems, 
vaccination protocols, and outbreak response strategies to ensure rapid 
containment in the event of reintroduction. These proactive measures are vital for 
reducing the risk of future outbreaks and protecting equine health at both national 
and regional levels.  

The findings of this study underscore the importance of integrating spatial 
epidemiological approaches into national disease control policies to ensure 
efficient resource allocation for preventing, controlling, and mitigating the risk of 
AHS spread. Understanding these spatial patterns is critical for predicting future 
outbreaks and developing targeted control strategies, such as vector management, 
movement restrictions, and vaccination programs. By leveraging spatial analysis, 
policymakers and veterinary authorities can implement proactive and evidence-
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based interventions, ultimately strengthening disease surveillance and protecting 
equine health in Thailand. 

 
CONCLUSIONS 
 

In 2020, there a notable clustering of AHS cases was detected in Thailand, 
according to the results of the Global Moran’s I test and spatial evaluation. 
Considering a Moran’s I value of 0.048844, a P-value of 0.0095, and a z-score of 
2.591515, the study suggests that the disease possessed a structured 
geographical distribution, and the observed spatial clustering was unlikely to be 
due to random events. Furthermore, the Getis-Ord Gi* statistics identified high-
incidence hotspots, primarily located in the central area of the country covering the 
central, lower northeastern, and eastern regions, characterized by a high equine 
population density. Two significant clusters were identified in the central region, the 
northern part of the eastern region, and some parts of the western region (P-value 
0.000028), with another cluster in the lower northeastern region (P-value 0.012) 
between February and September 2020, according to the space-time permutation 
analysis, which examined the spatiotemporal pattern of AHS. This implies that the 
clustering of AHS may have been associated with common factors that possessed 
similar characteristics spatially. 

These findings offer critical insights into the spatial and spatiotemporal 
distribution of AHS in Thailand, which are essential for enhancing disease 
management and prevention strategies. By integrating GIS applications with 
epidemiological modeling methodologies, this study provides a comprehensive 
understanding of AHS outbreaks in horses. Such an approach enables risk-based 
surveillance and supports evidence-based decision-making for disease control, 
aligning with national and area-specific policies to mitigate the impact of AHS. 
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