

Review article

Preventing ruminal acidosis and optimizing ruminant performance by carbonate buffer supplementation: A review

Ulvi Fitri Handayani¹, Ahmad Sofyan^{1,2,3,*}, Wulandari¹, Mohammad Miftakhus Sholikin^{1,2}, Muhammad Ainsyar Harahap¹, Slamet Widodo¹, Woki Bilyaro⁴, Agung Irawan^{5,6}, Hendra Herdian^{1,2,3}, Awistaros Angger Sakti¹, Yelsi Listiana Dewi¹, Gunawan¹, Lili Anggraini¹, Latifah¹, Bima Putra Pratama⁷ and Ahmad Zein Baihaqi¹

¹ Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor 16911, Indonesia

² Animal Feed and Nutrition Modelling Research Group (AFENUE), IPB University, Bogor 16680, Indonesia

³ Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, National Research and Innovation Agency, Bogor 16911, Indonesia

⁴ Department of Animal Science, Faculty of Agriculture, University of Bengkulu, Bengkulu 38371, Indonesia

⁵ Vocational School, Universitas Sebelas Maret, Surakarta 57126, Indonesia

⁶ Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon State 97331, USA

⁷ Research Center for Process Technology, National Research and Innovation Agency, Banten 15310, Indonesia

Abstract

Feeding high-concentrate diet is an effective way of improving the performance and feed efficiency of ruminants. However, feeding high-concentrate diet to ruminants may lead to subacute ruminal acidosis (SARA) incidence. This study aims to determine the effect of giving carbonate compounds to ruminants on high-concentrate feed. Carbonate compounds often function as a buffer to maintain rumen pH and prevent the occurrence of SARA. Several studies have shown that SARA can cause rumenitis, milk fat depression, laminitis, liver abscess, and death. Carbonate compounds can be given in single form or in combination with other compounds such as sodium (Na⁺), calcium (Ca²⁺), potassium (K⁺), and magnesium (Mg²⁺). This combination often leads to the formation of complex compounds, such as sodium bicarbonate (NaHCO₃), calcium carbonate (CaCO₃), sodium carbonate (Na₂CO₃), and potassium carbonate (K₂CO₃). NaHCO₃ has been reported to be one of the most popular carbonate compounds to prevent and reduce SARA. Consistent findings across several investigations indicate that supplementation of carbonate buffer at a level of 0.7%–1.5% plays a role in stabilizing ruminal pH, reducing the risk of SARA, and supporting efficient fermentation.

Keywords: Acidosis, Carbonate compound, High-concentrate diet, Rumen pH, Ruminants

Corresponding author: Ahmad Sofyan, Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor 16911, Indonesia. E-mail: ahma053@brin.go.id.

Article history: received manuscript: 8 May 2025,
revised manuscript: 11 July 2025,
accepted manuscript: 4 September 2025,
published online: 8 September 2025,

Academic editor: Saowaluck Yammuen-art

INTRODUCTION

Currently, the growing market demand for meat and milk is driving livestock businesses to increase production. To obtain high-quality products and assure consumer safety, animal welfare-oriented agricultural practices are required, particularly in intensive farming systems. One common strategy used in this system is to provide a high-concentrate, low-forage diet to improve feed efficiency and ruminant performance (Golder and Lean, 2024). However, this feeding strategy disrupts the rumen digestive process (Wang et al., 2023; Wang et al., 2024). This disruption can result in rumen acidosis, a metabolic disorder common in intensively raised cattle. Subacute ruminal acidosis (SARA) is the most common form of this condition.

SARA is a metabolic disorder characterized by a gradual decrease in rumen pH to below 5.6 in a few hours each day (Plaizier et al., 2008; Elmhadi et al., 2022). This phenomenon is relatively common, with a reported prevalence of 19-26% in dairy cattle and 23% in beef cattle in intensive systems (Owens et al., 1998; Penner et al., 2007; Plaizier et al., 2008). This digestive disorder often occurs in cattle fed high-concentrate diets containing high levels of non-fiber carbohydrates (NFCs) (Elmhadi et al., 2022). The high content of rapidly digestible carbohydrates in the concentrate increases microbial digestive activity, thereby increasing volatile fatty acids (VFA) production. However, the high VFA production is not balanced by buffer production, leading to VFA accumulation and lactic acid synthesis, resulting in decreased pH (Hernández et al., 2014). This condition often does not show obvious clinical symptoms, but it has serious consequences for livestock health and productivity. SARA can cause various complications such as rumenitis, decreased milk fat content, laminitis, liver abscesses, and in severe cases, lead to livestock death (Hernández et al., 2014; Malafaia et al., 2022).

The addition of buffers to maintain rumen pH stability is one approach to avoid acidosis. Using a feed buffer may increase rumen pH during high VFA production and provide a more favorable environment for microbial activity (Ramos et al., 2022). NaHCO_3 (Mao et al., 2017), magnesium oxide (MgO), and CaCO_3 (Neiderfer et al., 2020) are often used as ruminal buffers. Russell and Chow (1993) reported that Na_2CO_3 has been utilized since the 1960s to regulate pH levels in the rumen of animals fed a high-concentrate diet. Supplementing a high-concentrate diet with NaHCO_3 promotes ruminal fermentation by elevating rumen pH and decreasing the amounts of lactate and biogenic amines (Mao et al., 2017). The pyrosequencing study revealed that SARA-induced diet disrupted rumen fermentation and decreased rumen microbial diversity (Mao et al., 2013), and feeding NaHCO_3 could aid such detrimental effect by enhancing microbial diversity index and reducing bioamine production (Mao et al., 2017).

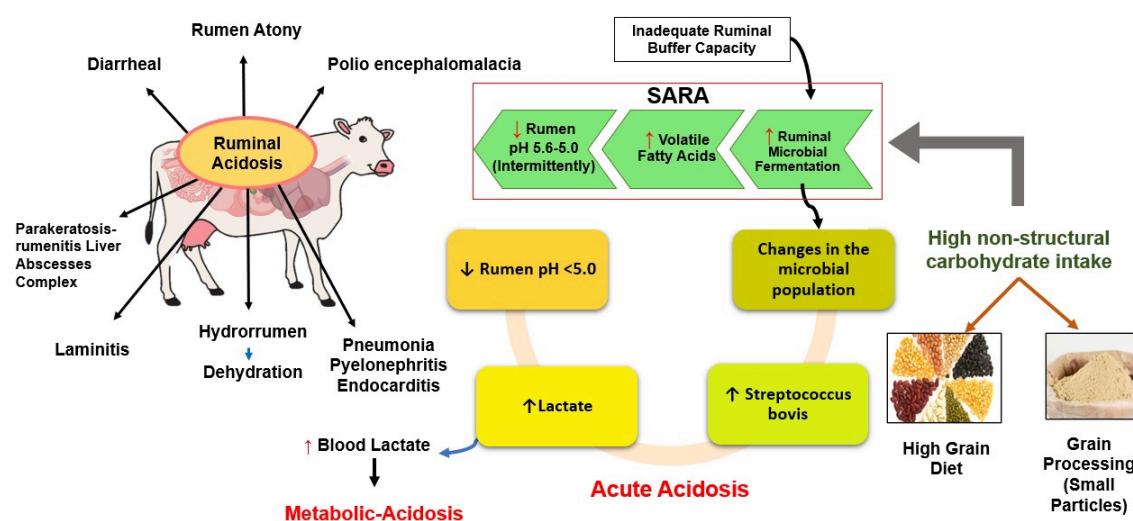
In the present review, we revisit the roles of the inclusion of carbonate buffers and their mode of action in maintaining rumen metabolism by regulating rumen microbial ecology. Our goals are to interpret the updated scientific literature to offer context for describing the action buffers for regulating rumen pH a consideration for use alone or in combination by researchers and cattle nutrition advisors.

RUMINAL ACIDOSIS IN RUMINANTS

The maintenance of the reticulorumen's health is critical for the productivity and health of ruminants (Van Vuuren et al., 2012; Alves, 2024). The reticulorumen pH of cattle, particularly dairy cows, is an important indicator to evaluate the efficiency of rumen fermentation and the susceptibility to gastrointestinal disorders (Neubauer et al. 2018). Feeding more grains and less fiber, as well as reducing forage particle size, all reduce the time spent chewing (Yang and Beauchemin 2006; Fairfield et al. 2007; Hernández et al., 2014). Several studies have shown that saliva production is affected by the length of time spent chewing, eating, and

rumination. Giger-Reverdin et al. (2014) suggested that as the chewing rate per kg of dry matter increased, the saliva production increased. Inorganic buffers in saliva, such as NaHCO_3 , also aid in counteracting the organic acids produced by rumen fermentation (Plaizier et al., 2008). To keep the acid-base balance in the rumen, acid is produced, saliva must neutralize it, and the ruminal epithelium must absorb the products of fermentation (González et al., 2012). In addition, management factors, including stressors, inadequate nutrition (including feed changes), and interruptions to regular feed consumption routines, may cause ruminal acidosis (Hernández et al., 2014).

According to previous studies, there are two main groups of ruminal acidosis. They are summarized in Figure 1. Two clinical forms of ruminal acidosis are acute ruminal acidosis (ARA) and SARA (Hernández et al., 2014). This classification is based on the decrease in rumen pH (Aschenbach et al., 2011). According to Hernandez et al. (2014), acute ruminal acidosis is a metabolic condition characterized by a decrease in blood pH and bicarbonate levels. When the ruminal pH falls below 5.0, animals experience depression, decreased ruminating, appetite loss, diarrhoea, and dehydration. In addition, microbial metabolism and feed digestion are altered, inflammatory processes occur, and milk lipid levels decrease (Dijkstra et al., 2012). Despite the fact that SARA is a condition in which rumen fermentation patterns are momentarily disrupted, the intensity and duration are insufficient to produce clinical symptoms promptly (Nocek, 1997; Maulfair et al., 2013).


SARA is considerably more prevalent than ARA in modern ruminant production systems. The prevalence of SARA has been reported to range between 11%-26%, with rates of 11%-20% during early lactation and 18%-26% during mid-lactation (Kitkas et al., 2013; Atkinson, 2014; Stefańska et al., 2016). A farm with a known history of high incidence exhibited even greater prevalence, reaching 48.2%, 53.8%, and 65.3% at 30, 90, and 150 days in milk (DIM), respectively (Kitkas et al., 2019). The condition is a common metabolic disorder that occurs in livestock species, including cattle, sheep, and goats, that receive high-grain intensive feeding practices (Huo et al. 2014; Wang et al., 2024). Gozho et al. (2005) reported that SARA was indicated by a continuous decrease in rumen pH below pH 5.6 for more than 3 hours every day. Other study defined SARA as a condition of ruminal pH decline from 5.5 to 5.0 for 111 to 180 minutes every 24 hours (Jaramillo-López et al., 2017). This condition can lead to considerable financial losses for dairy herds and is characterized by a reduction in dry matter intake, milk production, and profitability. It also causes an increase in the number of animals that are culled or lost due to mortality (Plaizier et al., 2008; Elmhadi et al., 2022).

Rumen buffering from saliva is unable to prevent the accumulation of organic acids in the rumen, such as VFA and lactic acid, thus leading to a rumen pH drop. Feeding more grains and less forages promotes the accumulation of VFA in the rumen (Baffa et al., 2024), since grains are more rapidly digested in the rumen than forages (Hu et al., 2007; Aschenbach et al., 2011). SARA can also affect dairy cows that are fed on pasture. According to a study from Ireland (O'Grady et al., 2008), highly digestibility forages in pasture may be the cause of SARA.

The initial occurrence of SARA can be associated with rumen environment disturbance. Common clinical signs include diarrhoea, reduced feed intake, and decreased milk yield (Plaizier et al., 2008). In addition, SARA can predispose animals to secondary complications such as liver abscesses, laminitis, and rumenitis, which may further compromise performance and welfare (Hernández et al., 2014). The rumen microbiota is crucial for regulating the rumen environment and metabolic rate. When ruminants are given diets that are rich in starch or easily digestible carbohydrates, the first element to be affected is the rumen microbiome. This leads to rumen dysbiosis and various additional effects. Rumen dysbiosis is a condition of imbalance compositional profile of microbiota due to microbial diversity loss, which directly affects their functionality on nutrient digestion, production, and health of ruminants (Chen et al., 2012; Firkins and Yu, 2015). This

condition is also a point where the pathogenic and opportunistic microbes are established (Petri et al., 2013). Numerous studies have demonstrated that high-concentration diet-induced SARA decreased the diversity and richness of rumen microbiota (Mao et al., 2013; Khafipour et al., 2016). However, a recent study reported no difference in microbial diversity and richness between SARA-susceptible vs. non-SARA cows (Zhang et al., 2022). The study by Zhang et al. (2022) found a higher abundance of *Prevotella*, a starch-degrading bacterium. As the starch-degrading bacteria continue to grow and the rumen pH gradually declines, rumen microbial diversity starts to fall. Concurrently, shift of several bacteria occurs; fiber-degrading bacteria such as *Bacteroidetes* phyla suppresses while *Firmicutes* phyla increases under SARA condition (Khafipour et al., 2009; Petri et al., 2013; Zhang et al., 2022).

Clinical picture of the disease

Figure 1 The effect of high-level grains and low roughage consumption in ruminants.

METHODS FOR PREVENTING AND REDUCING THE RISK OF SARA IN RUMINANT

Elevated concentrates may present several risks to ruminants. Ruminant diets with a larger proportion of highly digested carbohydrates promote a rapid decrease in rumen pH, which impairs their health and performance. Treatment with mineral buffers, zootechnical additives, vaccinations, and other additives were reported as agents for reducing ruminal acidosis (Jaramillo-López et al., 2017; Elmhadi et al., 2022). A buffer is a substance when added to an aqueous solution, effectively prevents the pH of the solution from changing when it is strongly acidic or basic. Ruminal acidosis can be mitigated by adding buffer chemicals. NaHCO_3 , MgO , Na_2CO_3 , K_2CO_3 , and anhydrous limestone have all been used (Gastaldello et al., 2013). In other study, SARA could be mitigated by microbial feed additive administration (Sirisian, 2017). However, in this review, we focused on the prevention of SARA using carbonate buffer treatment.

CARBONATE BUFFER

Buffer is substance that prevents pH changes in an aqueous solution when strong acids or bases are added. Some of the chemical compounds used as rumen buffer were displayed in [Figure 2](#). Several studies have explored various buffering agents, including NaHCO_3 , MgO , Na_2CO_3 , K_2CO_3 , and anhydrous limestone, for their ability to stabilize rumen pH during SARA ([Gastaldello et al., 2013](#)). Each buffer works differently and shows varying effectiveness in adjusting rumen pH, VFA profiles, and microbial fermentation. These carbonate buffers primarily aid high-producing dairy cattle and feedlot cattle for optimal rumen function. In vitro simulations now accurately predict *in vivo* effects of carbonate buffer on rumen parameters ([Ramos et al., 2022](#)). Buffer also boosts lamb feedlot performance ([Alhidary et al., 2019](#)) and reduces milk fat depression in lactating cattle ([Enemark, 2008](#)). This compound also has the potential to enhance rumen microbial activity on high-grain diets ([Harrison et al., 1989](#)).

Carbonate buffers are among the most commonly used chemical agents in ruminant diets to stabilize rumen pH, especially under high-concentrate feeding systems. These compounds—such as NaHCO_3 and K_2CO_3 neutralized excess hydrogen ions (H^+) generated during fermentation. When rumen pH begins to fall, these buffers released bicarbonate ions (HCO_3^-) to maintain pH in the physiological range of 6.0 to 6.4, thus mitigating the risk of SARA ([Cruywagen et al., 2015](#)).

Carbonates naturally exist in soils as sparingly soluble alkaline-earth carbonates (CaCO_3 , $\text{CaCO}_3 \cdot \text{MgCO}_3$) that dissolve rapidly. The compounds combine with Na, Ca, and Mg, forming compounds such as NaHCO_3 , $\text{Ca}(\text{HCO}_3)_2$, $\text{Mg}(\text{HCO}_3)_2$, and $\text{CaMg}(\text{CO}_3)_2$. Most are widely used rumen buffers, maintaining ruminal pH by reducing acidity from increased VFA production, with effectiveness depending on buffer type and dosage ([Tripathi et al., 2004](#); [Sen et al., 2006](#)). The carbonate buffer capacity is based on the equilibrium of HCO_3^- , H^+ , H_2CO_3 , CO_2 , and H_2O . When the H^+ concentration increases, the equilibrium shifts to the right, and the dissolved CO_2 concentration increases ([Russell and Chow, 1993](#)), as shown in the following general equilibrium equation of the carbonic acid system:

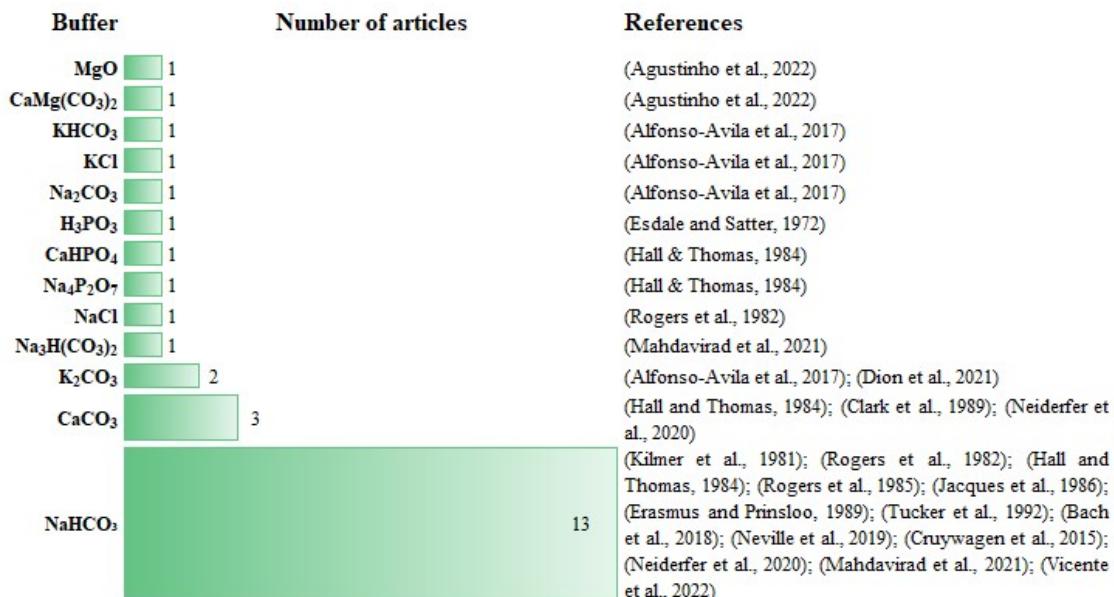
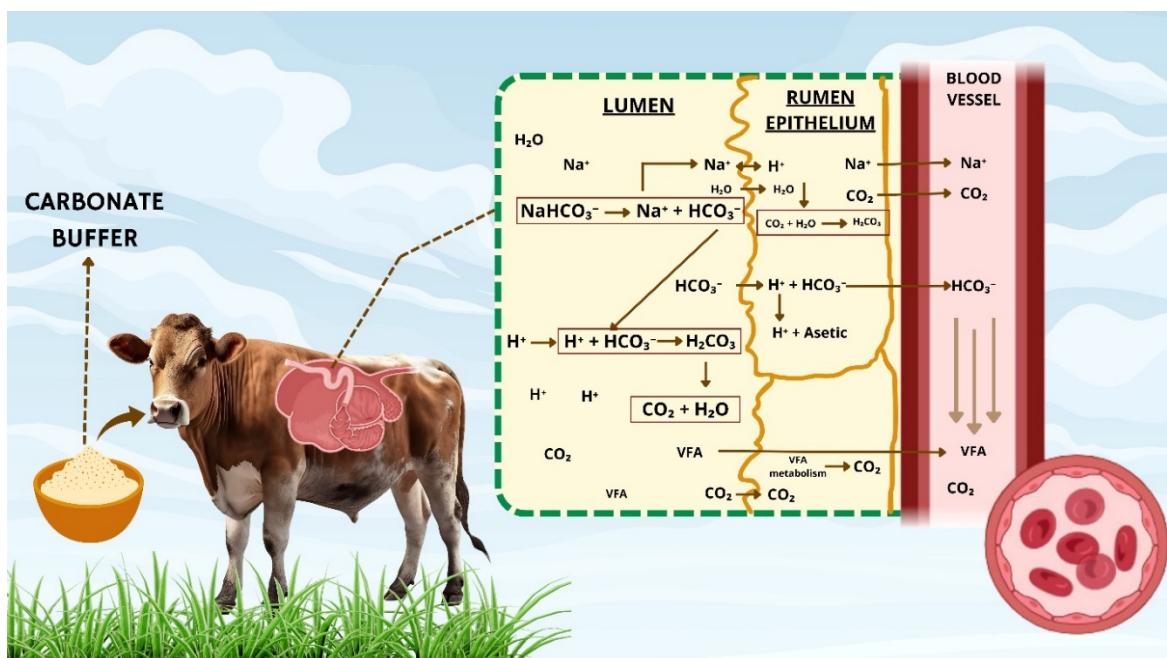

According to previous studies, NaHCO_3 was the most popular buffering agent ([Figure 2](#)). The acid dissociation constant (pKa) value of an ideal buffer solution must be as close to the medium pH as possible. NaHCO_3 had a pKa value of 6.25, which was in the physiological pH range in the rumen. As a result, it functioned well as a buffering agent in the rumen ([Ramos et al., 2021](#)). The effects of NaHCO_3 supplementation on rumen environment and performance were summarized in [Table 1](#).

Table 1 Summary of sodium bicarbonate (NaHCO_3) supplementation effect on rumen function and animal performance


Parameters	Effect of NaHCO_3 Supplementation	References
Water consumption	Increased, leading to reduced rumen viscosity and faster feed passage.	(Russell and Chow, 1993)
Rumen feed flow rate	Increased, resulting in faster rumen emptying and improved digestion/absorption of high-energy feed.	(Russell and Chow, 1993)
Rumen pH	Maintain pH in the rumen from dropping.	(Erasmus and Prinsloo, 1989; Tripathi et al., 2004; Mao et al., 2017; Neville et al., 2019; Mahdavirad et al., 2021; Vieira et al., 2024)
Fiber digestibility Threshold	Rumen pH is considered suboptimal for fiber digestion.	(Tripathi et al., 2004)
Body Weight	Increased compared to the control.	(Tripathi et al., 2004)

NaHCO_3 was one of the most widely used buffering agents to counteract the drop in rumen pH during SARA. Its buffering action functioned by neutralizing excess H^+ ions generated during carbohydrate fermentation. The neutralization of ruminal acidity by NaHCO_3 occurred through its interaction with hydrogen ions (H^+) in the rumen, forming carbonic acid that subsequently dissociated into carbon dioxide (CO_2) and water (Figure 3). The dissociation of carbonic acid (H_2CO_3) in rumen epithelium produced H^+ and HCO_3^- ions, aiding pH stabilization (Aschenbach et al., 2011). According to the Stevens model (1970), CO_2 from fermentation diffused through rumen fluid and reacted with H_2O , forming H_2CO_3 , which dissociated into H^+ and HCO_3^- . The released H^+ reacted with acetate to form acetic acid, while HCO_3^- diffused back into the rumen, enhancing buffering capacity. NaHCO_3 not only buffers acids but also influences water dynamics and ion transport. Carter (1990) described Na^+/H^+ exchange occurring at the luminal membrane, driven by Na^+/K^+ ATPase activity. Increased sodium absorption was observed as its concentration in rumen fluid rose, specifically when water intake was limited (Warner and Stacy, 1972). Furthermore, NaHCO_3 enhanced ruminal stability by reducing the rate of feed degradation and modifying ruminal osmolality (Russell and Chow, 1993). Systemically, bicarbonate infusion increased urinary HCO_3^- excretion, emphasizing its role in whole-body acid-base regulation (Erdman et al., 1982). Tucker et al. (1993) stated that NaHCO_3 delayed the postprandial decline in ruminal pH typically occurring 6 to 12 hours after feeding, possibly due to feedback mechanisms affecting salivary secretion. Bicarbonate buffering system also operated through CO_2 equilibrium in rumen. Carbon dioxide interacted with water in the epithelial cells, forming carbonic acid, which dissociated into H^+ and HCO_3^- (Aschenbach et al., 2011). This mechanism not only affected local acid-base balance but also facilitated systemic CO_2 removal through the bloodstream and pulmonary excretion.

Ruminants' need for NaHCO_3 varies with several factors, including salivary buffer levels, diet acidity, feed's natural buffering, ADF content, feed intake, and rumen fermentation (e.g., pH, acetate-to-propionate ratio). Production stage, forage-to-concentrate ratio, and environment have also been reported to play an essential role (Aslam, 1991). In addition, NaHCO_3 supplementation can alter animal behavior and digestion. Vicente et al. (2022) reported that the compound reduced the time spent swallowing, chewing, and ruminating per gram of dry matter. Similarly, Deswysen et al. (1987) observed that NaHCO_3 increased the rate of rumen passage and emptying, thereby enhancing dry matter intake over time.

Figure 2 Some widely used buffers for ruminant.

Figure 3 A brief overview of the sodium bicarbonate (NaHCO₃) buffer in the rumen.

The effect of carbonate buffer in ruminal pH and fermentation

Rumen pH plays a crucial role in optimizing nutrient digestibility within the ruminant body (Calsamiglia et al., 2008; Jones et al., 2016). Rumen pH is never above 6.15, with poor treatment (Cruywagen et al., 2015). A dropping in rumen pH lower than 5.6 for exceeding 3 h/d in a row (Gozho et al., 2005) or for 111 to 180 minutes per day from pH 5.5 to 5.0 (Jaramillo-López et al., 2017) is defined as SARA. The normal pH should be between 5.8 and 6.4 to keep the rumen population in balance (Ishler et al., 1996). Prolonged period of rumen pH depression can have many problems and negatively alter rumen microbial (Elmhadi et al., 2022).

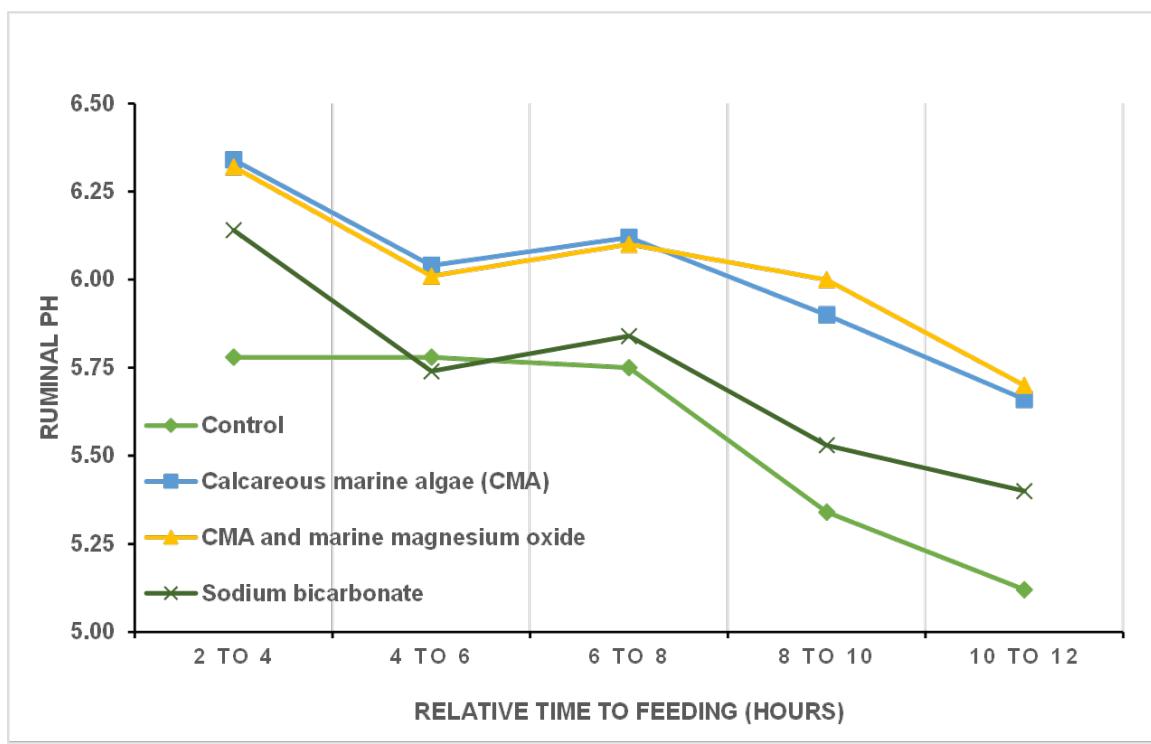
Several studies have publicized supplementation buffers for ruminants to elevate rumen pH (Table 2). A previous study reported that lactating Holstein cows that were given a ruminal cannulate and high-concentrate diet. After continuous infusion of 9 to 12 moles of NaHCO_3 into rumen, pH increased from 5.5 to 6.2 and the ratio of acetate : propionate grew up starting with 1.1 to 2.8 (Esdale and Satter, 1972). Johnson et al. (1988) adding 1% NaHCO_3 on basal diet containing 50:50 grain to forage resulted in no effect on pH. Erdman (1988) summarized the advantages of applying NaHCO_3 and K_2CO_3 as buffers could keep ruminal pH steadily stable. In other research have reported pH increasing with adding NaHCO_3 on ration contain low fiber and high concentrates (Rogers et al., 1982; Mao et al., 2017). The administration of NaHCO_3 and $\text{Na}_4\text{P}_2\text{O}_7$ in the diet with high concentrate can maintenance pH higher than the control for 24 hours, but both neither of these buffers-maintained pH of 6.8 (Hall and Thomas, 1984). NaHCO_3 to the Holstein diet decreased the amount H^+ ion from 0 to 6 h after feeding in the rumen fluid (Tucker et al., 1992), which indicates elevated pH rumen. Pérez-Ruchel et al. (2014) reported that the addition of 20 g/kg DMI of a mixture of 75: 25 NaHCO_3 and MgO to the pasture-raised sheep resulted in a high ruminal pH. Furthermore, both low fermentation activities and ruminal ammonia, which enhanced the passage rate and transit led to more purine derivatives being passed in urine.

Cruywagen et al. (2015) found that the administration of NaHCO_3 on a basal diet formulated for potential acidosis to induce SARA (35.2 % forage 64.8 % concentrate) had a shorter rumen pH of 5.5 carbonate (7.5 hours) than control (13.8 hours). Furthermore, the addition of 3.2% K_2CO_3 in the dairy cattle diet made rumen pH increase linearly (Fraley et al., 2015). Neville et al. (2019) revealed that supplementation with some buffer, i.e., calcareous marine algae (CMA), marine magnesium oxide (MM), and sodium bicarbonate (SB). During the 2 to 4 h period, the control treatment cows had a lower mean rumen pH compared with CMA, CMA+MM, and SB. Controls tended to have lower daily (24 h) mean rumen pH values than SB, and both CMA and CMA+MM maintained a greater daily (24 h) (Figure 4).

Table 2 Effect of supplementation of carbonate buffer in rumen fermentation, digestibility, and milk quality

Animal/breed	Potention diet-induced acidosis*	Buffer Treatments	Rumen fermentation Change*		Digestibility and Intake Change*		Quality of milk production and Quality*		Literature/Citation
			Effect on Ruminant pH	Total VFA	Digestibility	Feed Intake	Milk Production	Milk Quality (Fat)	
Arabic lambs	✗	K ₂ CO ₃ (1.6%)	⊖	⊖	NR	⊖	⊕	⊖	(Dion et al., 2021) (Mahdavirad et al., 2021)
	✓	NaHCO ₃ (1.5%)	⊕	⊖	⊕	⊕	NR	NR	
	✓	Na ₂ H(CO ₃) ₂ (1.5%)	⊕	⊖	⊕	⊖	NR	NR	
	✓	NaHCO ₃ (0.75%) + Na ₂ H(CO ₃) ₂ (0.75%)	⊖	⊖	⊕	⊕	NR	NR	
Cow / Holstein	✓	NaHCO ₃ (0.7%)	⊕	NR	NR	⊕	⊖	⊕	(Neville et al., 2019) (Neiderfer et al., 2020)
	✓	NaHCO ₃ (200g/day)	⊖	⊖	⊖	⊖	⊖	⊖	
	✓	CaCO ₃ (200g/day)	⊖	⊖	⊖	⊖	⊖	⊖	
Cow/Holstein	✓	NaHCO ₃ (200g/day)	⊖	⊖	⊖	⊖	⊖	⊖	(Bach et al., 2018) (Alfonso-Avila et al., 2017)
	✓	NaHCO ₃ (0.8%)	⊖	NR	NR	⊖	⊖	⊖	
	✓	K ₂ CO ₃ (1.8%)	⊖	⊖	NR	⊖	⊖	⊖	
Cow/Holstein	✓	KHCO ₃ (2.8%)	⊖	⊖	NR	⊖	⊖	⊖	(Mao et al., 2017) (Cruywagen et al., 2015)
	✓	Na ₂ CO ₃ (1.4%)	⊖	⊖	NR	⊖	⊖	⊖	
	✓	NaHCO ₃ 70 mg/g in ration	⊕	⊕	NR	NR	NR	NR	
Lamb/ Malpura weaner	✓	NaHCO ₃ 7.5 g/day	⊕	NR	⊖	⊖	NR	NR	(Tripathi et al. 2004)
	✓	NaHCO ₃ 15 g/day	⊕	NR	⊖	⊖	NR	NR	
	✓	NaHCO ₃ 22.5 g/day	⊕	NR	⊖	⊖	NR	NR	
Cow/Holstein	✓	NaHCO ₃ (1.5%)	NR	NR	NR	⊖	⊖	⊖	(Tucker et al., 1992) (Erasmus and Prinsloo, 1989)
	✓	NaHCO ₃ (1.2%)	⊕	⊖	NR	⊖	⊖	⊖	
	✓	H-white CaCO ₃ (1.4%)	⊖	⊖	NR	⊖	⊖	⊖	
Cow/Holstein	✓	Reagent grade CaCO ₃ (1.4%)	⊖	⊖	NR	⊖	⊖	⊖	(Clark et al., 1989)
	✓	Reagent grade CaCO ₃ (2.1%)	⊖	⊖	NR	⊖	⊖	⊖	
	✗	NaHCO ₃ (1%)	⊖	⊖	⊖	⊖	⊖	⊖	
Cow/Holstein	✗	NaHCO ₃ (1%)	⊖	⊖	⊖	⊖	NR	NR	(Johnson et al., 1988) (Jacques et al., 1986)
	✓	NaHCO ₃ (1.2%)	⊖	⊖	NR	⊖	⊖	⊖	
Cow/ Holstein	✓	NaHCO ₃ (20g/kg diet)	⊖	⊖	⊖	⊖	⊖	⊖	(Rogers et al., 1982)
	✗	NaHCO ₃ (0.8%)	⊖	⊖	NR	⊖	⊖	NR	
Cow/Holstein	✓	NaHCO ₃ (5%)	⊖	⊖	NR	NR	NR	NR	(Esdale and Satter, 1972)
	✗								

NR, Not reported; *, Effect of treatments compared with control


High concentrate or presentation concentrate on ration more than 50 %

Low concentrate or the diets do not induce acidosis

Increase

Similar with control

Decrease

Figure 4 Effect of calcareous marine phytoplankton, with or without marine magnesium oxide, and sodium bicarbonate on the mean rumen pH over a two-hour feeding period (rumen pH). Data derivate from Neville et al. (2019).

The administration of buffer NaHCO_3 infusion trends to enhance total VFA in the rumen (Tucker et al., 1993). Cruywagen et al. (2015) reported that the total VFA of rumen Holstein treated by 0.8% NaHCO_3 was higher than the control (119.8 vs. 112.9 mM). Ruminal VFA was increased by adding 1.2 % NaHCO_3 into a high level of dietary concentrate (75%) in the diet (Kennelly et al., 1999; Khorasani and Kennelly, 2001). Those described as a result of the high concentration of VFA alongside the increase in acetate. However, some studies showed different results. In addition of NaHCO_3 in the diet did not affect ruminal VFA concentration (Kilmer et al., 1981; Johnson et al., 1988). On the other hand, Erdman et al. (1982) and Rogers et al. (1982) stated that the administration of NaHCO_3 in the diet had more acetate and less propionate in the rumen. The inconsistent effects of NaHCO_3 supplementation on ruminal VFA profiles observed across studies could be attributed to differences in diet composition, particularly the forage-to-concentrate ratio. In studies where cattle were fed a 50:50 forage-to-concentrate diet (Kilmer et al., 1981; Johnson et al., 1988), NaHCO_3 supplementation had little to no effect on the molar proportions of acetate and propionate. However, in trials using high-concentrate diet, such as 75:25 and 60:40 concentrate-to-forage ratios (Rogers et al., 1982; Erdman et al., 1982, respectively), NaHCO_3 tended to increase the proportion of acetate and decrease propionate in the rumen. Mao et al. (2017) showed that administration of NaHCO_3 enhanced acetate, propionate, isobutyrate, isovalerate, and valerate concentrations, but decreased butyrate and the level of fatty acids. Cows receiving the buffer diet observed had higher rumen acetate values (Cruywagen et al., 2015).

According Xu et al. (1994) inclusion buffer Rumen 8® (Agchem Commission Co. Princeton, New Jersey, USA) containing 36.3% Na_2CO_3 and 26.5% NaHCO_3 or Alkaten® (Church and Dwight, Co., Princeton, New Jersey, USA) containing 43.4 % Na_2CO_3 and 34.4 % NaHCO_3 at 2.2% in high level concentrate diet (60%) resulted in lower rumen acetate: propionate ratio concentration than without buffer treatment due to an increase in propionate concentration. This was consistent with

the result of [Cruywagen et al. \(2015\)](#), showing that the concentration of ruminal propionic acid that had NaHCO_3 in the diet was higher than control. However, there was a difference in the ruminal concentration of butyrate. The administration of NaHCO_3 in high-level concentrate diet had higher butyrate concentration than control ([Kennelly et al., 1999](#); [Khorasani and Kennelly, 2001](#); [Cruywagen et al., 2015](#)). The addition of 1.2% NaHCO_3 increased ruminal pH and liquid dilution rate, which decreased the molar percentage of ruminal propionic ([Erasmus and Prinsloo, 1989](#)).

Supplementation of NaHCO_3 positively affects the reduction of bioamine level, the elevation of pH rumen, and the modification of microbes ecology ([Mao et al., 2017](#)). [Tun et al. \(2020\)](#) studies using quantitative PCR (qPCR) and showed that SARA stimulated numerous species of rumen microbes by increasing or tending to increase protein metabolism and aromatic compound metabolism. [Mao et al. \(2013\)](#) reported that SARA enhanced the bacteria population utilizing starch and glucose and diminished fibrolytic bacteria. According to [Calsamiglia et al. \(2012\)](#), fibrolytic activity bacteria would be depressed at a pH below 5.8; meanwhile, ruminal pH at 5.2 to 6 was the condition of active activity of amylolytic bacteria ([Ishler et al., 1996](#)). Supplemented NaHCO_3 at 70 mg/g in the diet could increase the diversity of ruminal bacteria such as *Ruminococcus*, *Succinivibrio*, and *Prevotella* while depressed *Streptococcus* and *Butyrivibrio* bacteria ([Mao et al., 2017](#)).

NaHCO_3 has a potency as ruminal buffer supplement that could maintain ruminal pH in a suitable range unless for bacteria and also for protozoa activity. This is possible because relationship among the lowest level of ruminal pH and the ruminal protozoa. Supplemented NaHCO_3 at 25, 50, and 75 g increased the ruminal protozoa compared to without NaHCO_3 supplementation into diet ([Newbold et al., 1991](#)). [Philippeau et al. \(2017\)](#) reported populations of ruminal protozoa were reduced while ruminal pH levels at < 6. [Mahdavirad et al. \(2021\)](#) reported that the addition of 1.5% NaHCO_3 , 0.75% NaHCO_3 combined with 0.75% sodium sesquicarbonate, and 2% zeolite to the feed increased the population of rumen protozoa compared with the control. [Santra et al. \(2003\)](#) also resulted, inclusion of 2.25% NaHCO_3 in high level of concentrate diet had no effect on the protozoa population in the sheep rumen. However, the addition of NaHCO_3 improves the population of rumen protozoa than the control treatment. In contrast to the findings of [Montaño et al. \(1999\)](#), NaHCO_3 addition to the bull's diet increases rumen pH and reduces protozoa populations.

Ruminal ammonia (NH_3) was not affected by adding NaHCO_3 ([Johnson et al., 1988](#)). [Kilmer et al. \(1981\)](#) and [Okeke et al. \(1983\)](#) showed that diets containing NaHCO_3 in lactating cattle could also detect increases in NH_3 . Although some studies, such as [Kilmer et al. \(1981\)](#), demonstrated that NaHCO_3 supplementation increased ruminal NH_3 concentrations due to enhanced protein solubility and deamination from elevated rumen pH. [Johnson et al. \(1988\)](#) reported a different outcome, suggesting that protein degradation was limited or that microbial assimilation of ammonia was efficient, thereby masking the effect of NaHCO_3 . This was supported by their observation that NaHCO_3 had no significant impact on apparent nutrient digestibility. However, there was limited data to discuss supplementation of Na_2CO_3 or another buffer to ruminal NH_3 .

Carbonate buffers commonly used in ruminant diets included NaHCO_3 . The optimal effect on ruminal pH was observed with NaHCO_3 supplementation ranging from 0.7% to 1.5% of diet, or at levels of 20g/kg DMI, which increased pH values from approximately 5.5 to above 6.0. This range appeared to support favorable fermentation conditions by increasing acetate proportions and, in some cases, total VFA concentrations. However, the response of VFA profiles to buffer addition varied depending on the forage-to-concentrate ratio and buffer composition. In diets with high-concentrate ($\geq 60\%$), NaHCO_3 increased acetate and decreased propionate, while in 50:50 diets, the effect was minimal. NaHCO_3 supplementation modulated rumen microbial ecology by enhancing the population of fibrolytic

bacteria and protozoa, while decreasing lactic acid-producing bacteria. These microbial changes were essential to stabilizing fermentation and preventing pH drops. Although results on ruminal NH_3 concentrations remained inconsistent, the inclusion of NaHCO_3 generally supported a more stable ruminal environment.

The influence of buffer carbonate in the feed intake and nutrient digestibility

The influence of buffer addition on diet has been investigated by previous studies (Table 2). [Rogers et al. \(1982\)](#) explained the addition of 20g NaHCO_3 / kg diet in high grain ration enhanced digestibility of dry matter (DM), organic matter (OM), and ADF in Holstein. This study contradicts [Johnson et al. \(1988\)](#) and [Jacques et al. \(1986\)](#), who reported that the administration of 1% NaHCO_3 for Holstein cows had no effect on the nutrient digestibility, such as DM, OM, crude protein (CP), and ADF. In addition, the digestibility did not differ between the administration of 1% NaHCO_3 in diet containing 50% and 84% silage diets ([Jacques et al., 1986](#)). However, water consumption (L/d) tended to be higher for cows receiving 1% NaHCO_3 ([Johnson et al., 1988](#)).

Studies on lambs reported similar results. [Mahdavirad et al. \(2021\)](#) demonstrated that the utilisation of various buffering sources such as 2% zeolite, 1.5% NaHCO_3 , and 1.5% sodium sesquicarbonate did not affect the apparent digestibility of DM, OM, CP, NDF, and ADF. The finding of that investigation was the same as reported in the other study, i.e., the inclusion of 1% NaHCO_3 ([Boerner et al., 1987](#)), 1.4% zeolite ([Dschaak et al., 2010](#)), and 0.75% NaHCO_3 ([Doepel and Hayirli, 2011](#); [Perez-Ruchel et al., 2014](#)) as a buffering agent in the diet of ruminants (cattle and sheep) has no positive effects on the apparent digestibility of DM, OM, and CP significantly. [Dschaak et al. \(2010\)](#) reported that the addition of 1.4% zeolite or NaHCO_3 did not affect the digestibility of DM, OM, NDF, and ADF. However, several studies showed that the inclusion of 0.65% sodium sesquicarbonate ([Solorzano et al., 1989](#)), 1.5% NaHCO_3 ([Askar et al., 2011](#)), and 1% NaHCO_3 ([Gastaldello et al., 2013](#)) into the diet enhanced the apparent digestibility of DM, OM, and CP. The inclusion of 1% NaHCO_3 or 1.3% limestone into the diet (consisting of 90% concentrate) resulted in significant improvement in the digestibility of DM, OM, and CP ([Gastaldello et al., 2013](#)). [Vicente et al. \(2022\)](#) concluded that adding 2% NaHCO_3 was the appropriate strategy in the lamb diet with high grain (corn base) and no fiber source.

Administration of 0.8% NaHCO_3 did not reduce feed intake ([Bach et al., 2018](#)). Another type of buffer, such as the addition of 1.4% CaCO_3 in high-concentrate, decreased DMI of cattle ([Clark et al., 1989](#)). Adding 1.8% K_2CO_3 for cattle tended to decrease body weight when compared to the control group ([Alfonso-Avila et al., 2017](#)). The addition of various buffering sources, namely 1.5% NaHCO_3 and 1.5% sodium sesquicarbonate, did not result in any significant differences in each treatment on final weight, average daily gain (ADG), DMI, and feed conversion ratio (FCR) ([Mahdavirad et al., 2021](#)). The study conducted by [Doepel and Hayirli \(2011\)](#) found that supplementation with 0.75% NaHCO_3 in the diet of Holstein cattle did not result in a significant increase in dry matter intake (21.0 kg/d), milk yield (30.8 kg/d), or milk components, including fat (1.16 kg/d), protein (1.01 kg/d), and lactose (1.40 kg/d). [Hu and Murphy \(2004\)](#) in their meta-analysis demonstrated that increasing Na_2CO_3 in the feed by up to 400 mEq/kg could enhance DMI and milk production. The administration 150 to 500 mEq/kg (DM basis) Na_2CO_3 for Holstein cows increase (DMI) throughout the lactation period ([Correa et al., 2014](#)).

Findings from [Alhidary et al. \(2019\)](#) indicate that adding a 0.4% mixture of acid buffer and Na_2CO_3 (50:50 w/w) in the feed of Awassi lambs can reduce FCR by 5.46%. Nevertheless, it is not showing any difference in ADG, DMI, and final body weight compared to the control group. Otherwise, according to [Mahdavirad](#)

et al. (2021) Adding 1.5% Na_2CO_3 to the Arabi lambs' diet did not statistically affect ADG, DMI, BW, or FCR.

The impact of buffer carbonate on ruminant performance and quality product

For several decades, numerous studies have explored the effects of various buffer treatments on milk yield and composition (Table 2). Rogers et al. (1982) and Johnson et al. (1988) show that daily milk yield was not affected by the administration of NaHCO_3 . The treatments included a control group (CON), administration with a combination of 125 g/day of CaCO_3 and 75 g/day of magnesium oxide (FCCM), 200 g/day of calcium carbonate (FCC) or sodium bicarbonate (FSB), as well as abomasal infusion of a lipid encapsulate providing 200 g/day of sodium bicarbonate (ISB) in diet Holstein. The results indicated that none of the treatments had a significant influence on the milk yield or composition (Neiderfer et al., 2020). The inclusion of CaCO_3 as much as 1.4 until 2.1% to Holstein diets containing concentrate and corn silage (60% : 40% (DM basis)) resulted in a reduction in milk yield and showed no significant impact on the synthesis of milk fat and milk protein in dairy cows (Clark et al., 1989). Johnson et al. (1988) reported that adding 1% NaHCO_3 did not affect milk fat or protein composition. However, various studies have yielded varying outcomes.

Erasmus and Prinsloo (1989) observed that the inclusion of 1.2% NaHCO_3 resulted in a tendency towards an increase in fat percentage and yield of 4% FCM. The inclusion of rumen buffering products (marine, MgO , NaHCO_3 , calcareous marine algae) in lactation dairy cattle diet, an increasing in milk fat and protein output can be achieved (Neville et al., 2019). Adding NaHCO_3 (Cruywagen et al., 2015) and K_2CO_3 (Alfonso-Avila et al., 2017) in high-concentrate diets resulted in an enhancement synthesis of milk fat. The specific mechanism responsible for this effect remains to be determined. The trans-10 18:1 milk fat concentration increased significantly in response the administration 1.4% Na_2CO_3 compared with 1.8% K_2CO_3 (Alfonso-Avila et al., 2017). Nonetheless, in comparison the 2.8% KHCO_3 , 2% KCl , 1.8% K_2CO_3 , and the control, they have not significant effect on either milk protein or production. According to Alfonso-Avila et al. (2017) supplementation of 1.8% K_2CO_3 on dairy cattle diet caused higher protein content in the milk compared with supplementation 1.4% Na_2CO_3 . Bach et al. (2018) stated that the administration of 0.8% NaHCO_3 is effective in maintaining milk production; however, it does not serve as a preventive measure against reduced feed intake. Administration of 0.8% NaHCO_3 in the diet of Holstein cows resulted in higher milk yield/kg DMI compared to the control group (Cruywagen et al., 2015). This variability of response to dietary 1% NaHCO_3 could be due to differences in diet formulation, amounts of NaHCO_3 , and stage of lactation (Johnson et al., 1988).

There are several studies on giving buffers for fattening that have been carried out by previous researchers. Toprak et al. (2016) stated that the administration of micronized zeolite until 2% in a diet of fattening lambs did not have significant impact on the ADG or the final body weight. Supplementary buffering agent (0.4% mixture of acid buffer and Na_2CO_3 (50:50 w/w) on Awassi lambs' diet improved carcass characteristic and also reducing the body fat (Alhidary et al., 2019). In addition, they explained that meat color in supplementation 0.4% Celtic Sea Minerals (commercial product) or 0.4% WMC Seaweed (commercial) were higher than control group. Supplementation different concentration of NaHCO_3 into lamb diet containing high concentrate did not have differences on carcass composition (Sen et al., 2006). But The combination of MgO and NaHCO_3 improved total tract nutrient digestibility, rumen fermentation, and serum antioxidant levels in lambs, leading to enhanced growth and carcass quality (Xiong et al., 2024).

Thus, animal performance is determined by various factor such as nutrient concentration, feed intake, digestibility, and metabolic efficiency of absorbed nutrients. The variation of findings from different studies may be attributed to differences in buffer level, type, and purity, as well as the variations in diets composition and experimental conditions (Mahdavirad et al., 2021).

FUTURE RESEARCH DIRECTIONS AND INNOVATIONS

Maintaining optimal ruminal pH is essential for the health and productivity of ruminants. Buffer carbonates, such as NaHCO_3 , play a significant role in stabilizing rumen pH and preventing issues like subacute ruminal acidosis (SARA). Future research and innovation in this area should aim to improve the efficacy and sustainability of buffer carbonate use in ruminant nutrition, as well as integrate these buffers into precision livestock farming systems. For instance, developing rumen buffer products that manage pH fluctuations and support enzyme activity, or creating buffer formulations that are easily absorbed, could enhance their effectiveness and promote a healthier rumen environment. Encapsulation of buffer or slow-release technology can be designed to release buffer substances gradually, thereby maintaining rumen pH stability more effectively. Research in this area is still limited, especially on the development of encapsulation for rumen buffers. The study by Neiderfer et al. (2020) found that supplementing feed with encapsulated NaHCO_3 improved hindgut fermentation, as evidenced by an increase in fecal pH, a decrease in fecal volatile fatty acids (VFAs), and a reduction in fecal lipopolysaccharides (LPS). Exploring sustainable and environmentally friendly sources of carbonate buffers, such as by-products from other industries or natural minerals, can help reduce reliance on synthetic additives. Additionally, conducting in-depth observations on how carbonate buffers affect rumen microbiome composition and function, identifying beneficial microbial shifts that contribute to pH stability, would be highly valuable. Using an omics approach to investigate these changes would enable a comprehensive and detailed understanding, providing insights into the overall mechanisms involved.

CONCLUSION

Feeding high-concentrate diet can be used to optimize the performance and efficiency of ruminant livestock. The risk of feeding high-concentrate diet was the occurrence of SARA in ruminants. Methods for preventing and reducing the risk of SARA in ruminant livestock include the administration of carbonate compounds. The administration of carbonate compounds to ruminant livestock, either singly or in combination, functions as a buffer to maintain rumen pH, ensuring that SARA does not occur. Based on the reviewed studies, supplementation of carbonate buffer especially NaHCO_3 at levels between 0.7% to 1.5% of ruminant diet has been shown to help stabilize ruminal pH, reduce the risk of SARA, and support efficient rumen fermentation.

ACKNOWLEDGEMENTS

The first and second author is grateful to the National Research and Innovation Agency, Indonesia, for funding the study through the “Post-Doctoral Program” with contract number 64/II/HK/2022.

AUTHOR CONTRIBUTIONS

Ulvi Fitri Handayani: Conceptualization (equal); writing – original draft preparation (lead); Writing – review & editing (lead); Visualization (lead).

Ahmad Sofyan: Supervision (lead); conceptualization (lead), writing – original draft (equal), and Writing – review & editing (equal); Validation (lead).

Wulandari: Conceptualization (supporting); Writing – original draft preparation (equal); writing – review & editing (equal).

Mohammad Miftakhus Sholikin: Conceptualization (supporting); Writing – original draft preparation (equal); writing – review & editing (equal).

Muhammad Ainsyar Harahap: Conceptualization (supporting); Writing – original draft preparation (equal).

Slamet Widodo: Conceptualization (supporting); Writing – original draft preparation (equal).

Woki Bilyaro: Writing – original draft preparation (equal).

Agung Irawan: Validation (equal) and Writing – review and editing (equal).

Hendra Herdian: Writing – review & editing (supporting).

Awistaros Angger Sakti: Writing – review & editing (supporting).

Yelsi Listiana Dewi: Writing – review & editing (equal).

Gunawan: Writing – review & editing (supporting).

Lili Anggraini: Writing – review & editing (supporting).

Latifah: Writing – review & editing (supporting).

Bima Putra Pratama: Visualization (equal), Writing – review & editing (supporting).

Ahmad Zein Baihaqi: Writing – review & editing (equal).

CONFLICT OF INTEREST

The authors declare that they have no competing interest.

REFERENCES

Agustinho, B.C., Ravelo, A., Vinyard, J.R., Lobo, R.R., Arce-Cordero, J.A., Monteiro, H.F., Sarmikasoglou, E., Bennett, S., Johnson, M.L., Vieira, E.R.Q., Stoffel, C., Stocks, S.E., Faciola, A.P., 2022. Effects of replacing magnesium oxide with calcium-magnesium carbonate with or without sodium bicarbonate on ruminal fermentation and nutrient flow in vitro. *J. Dairy Sci.* 105, 3090–3101.

Alfonso-Avila, A.R., Charbonneau, Chouinard, P.Y., Tremblay, G.F., Gervais, R., 2017. Potassium carbonate as a cation source for early-lactation dairy cows fed high-concentrate diets. *J. Dairy Sci.* 100, 1751–1765.

Alhidary, I.A., Abdelrahman, M.M., Elsabagh, M., 2019. A comparative study of four rumen buffering agents on productive performance, rumen fermentation and meat quality in growing lambs fed a total mixed ration. *Animal.* 13, 2252–2259.

Alves, G.M.C., 2024. Strategic nutritional interventions with ntic and their relationship to performance, feeding behavior, and reticulorumen environment in cows and calves under subacute ruminal acidosis risk. University of Kentucky.

Aschenbach, J.R., Penner, G.B., Stumpff, F., Gäbel, G., 2011. Ruminant nutrition symposium: Role of fermentation acid absorption in the regulation of ruminal pH. *J. Anim. Sci.* 89, 1092–1107.

Askar, A.R., Guada, J.A., Gonzalez, J.M., de Vega, A., Castrillo, C., 2011. Effects of sodium bicarbonate on diet selection and rumen digestion by growing lambs individually fed whole barley grain and a protein supplement at their choice. *Anim. Feed Sci. Technol.* 164, 45–52.

Aslam, M., 1991. Controlled ruminal infusion of sodium (Thesis). University of Agriculture Faisalabad, Pakistan.

Atkinson, O., 2014. Prevalence of subacute ruminal acidosis (SARA) on UK dairy farms. *Cattle Pract.* 22(1), 1-9.

Bach, A., Guasch, I., Elcoso, G., Duclos, J., Khelil-Arfa, H., 2018. Modulation of rumen pH by sodium bicarbonate and a blend of different sources of magnesium oxide in lactating dairy cows submitted to a concentrate challenge. *J. Dairy Sci.* 101, 9777-9788.

Baffa, D.F., Tadeu, S.O., Alberto, M.F., Michele, G.C., Ismael, N.S., Elon, S.A., José, R.M.Jr., Elvanio, J.L.M.F., 2024. Evaluation of associative effects on degradability, fermentation parameters, and in vitro methane production as a result of variation in the ruminant's diets constituents. *Grasses.* 3, 274-286.

Boerner, B.J., Byers F.M., Schelling, G.T., 1987. Trona and sodium bicarbonate in beef cattle diets effects on site and extent of digestion. *J. Anim. Sci.* 65, 303-308.

Calsamiglia, S., Blanch, M., Ferret, A., Moya, D., 2012. Is subacute ruminal acidosis a pH related problem? causes and tools for its control. *Anim. Feed Sci. Technol.* 172, 42-50.

Calsamiglia, S., Cardozo, P.W., Ferret, A., Bach, A., 2008. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. *J. Anim. Sci.* 86, 702-711.

Carter, R.R., Grovum, W.L., 1990. A review of the physiological significance of hypertonic body fluids on feed intake and ruminal function: salivation, motility and microbes. *J. Anim. Sci.* 68, 2811-2832.

Chen, Y., Oba, M., Guan, L.L., 2012. Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. *Vet. Microbiol.* 159(3-4), 451-459.

Clark, J.H., Plegge, A.W., Davis, C.L., McCoy, G.C., 1989. Effects of calcium carbonate on ruminal fermentation, nutrient digestibility, and cow performance. *J. Dairy Sci.* 72, 493-500.

Correa, L.B., Zanetti, M.A., Saran Netto, A., Del Claro, G.R., Paiva, F.A., Martins, P.G.M.A., 2014. Effects of supplemental dietary sodium bicarbonate on performance of lactating Holstein cows during the summer season in Brazil. *Livest. Sci.* 169, 78-82.

Cruywagen, C.W., Taylor, S., Beya, M.M., Calitz, T., 2015. The effect of buffering dairy cow diets with limestone, calcareous marine algae, or sodium bicarbonate on ruminal pH profiles, production responses, and rumen fermentation. *J. Dairy Sci.* 98, 5506-5514.

Deswysen, A.G., Ellis, W.C., Pond, K.R., 1987. Interrelationships among Voluntary Intake, Eating and Ruminating behavior and ruminal motility of heifers fed corn silage. *J. Anim. Sci.* 64, 835-841.

Dijkstra, J., Ellis, J.L., Kebreab, E., Strathe, A.B. López, S., France, J., Bannink, A., 2012. Ruminal pH regulation and nutritional consequences of low pH. *Anim. Feed Sci. Technol.* 172, 22-33.

Dion, S., Brassard, M.E., Lévesque, J., Rico, D.E., Tremblay, G.F., Gervais, R., Chouinard, P.Y., 2021. Potassium carbonate as a supplement to improve milk fat concentration and yield in early-lactating dairy goats fed a high-starch, low-fiber diet. *J. Dairy Sci.* 104, 7794-7807.

Doepel, L., Hayirli, A., 2011. Exclusion of dietary sodium bicarbonate from a wheat-based diet: Effects on milk production and ruminal fermentation. *J. Dairy Sci.* 94, 370-375.

Dschaak, C.M., Eun, J.S., Young, A.J., Stott, R.D., Peterson, S., 2010. Effects of supplementation of natural zeolite on intake, digestion, ruminal fermentation, and lactational performance of dairy cows. *Prof. Anim. Sci.* 26, 647-654.

Elmhadi, M.E., Ali, D.K., Khogali, M.K., Wang, H., 2022. Subacute ruminal acidosis in dairy herds: Microbiological and nutritional causes, consequences, and prevention strategies. *Anim. Nutr.* 10, 148-155.

Enemark, J.M., 2008. The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): a review. *Vet. J.* 176, 32-43.

Erasmus, L.J., Prinsloo, J., 1989. The potential of a phyllosilicate (Palabora vermiculite) as buffer in dairy cattle diets. *J. Dairy Sci.* 72, 964-971.

Erdman, R.A., 1988. Dietary buffering requirements of the lactating dairy cow: A review. *J. Dairy Sci.* 71, 3246-3266.

Erdman, R.A., Hemken, R.W., Bull, L.S., 1982. Dietary sodium bicarbonate and magnesium oxide for early postpartum lactating dairy cows: effects of production, acid-based metabolism, and digestion. *J. Dairy Sci.* 65, 712-731.

Esdale, W.J., Satter, L.D., 1972. Manipulation of ruminal fermentation, IV. effect of altering ruminal pH on volatile fatty acid production. *J. Dairy Sci.* 55, 964-970.

Fairfield, A.M., Plaizier, J.C., Duffield, T.F., Lindinger, M.I., Bagg, R., Dick, P., McBride, B.W., 2007. Effects of prepartum administration of a monensin controlled release capsule on rumen pH, feed intake, and milk production of transition dairy cows. *J. Dairy Sci.* 90, 937-945.

Firkins, J.L., Yu, Z., 2015. Ruminant nutrition symposium: How to use data on the rumen microbiome to improve our understanding of ruminant nutrition. *J. Anim. Sci.* 93(4), 1450-1470.

Fraley, S.E., Hall, M.B., and Nennich, T.D., 2015. Effect of variable water intake as mediated by dietary potassium carbonate supplementation on rumen dynamics in lactating dairy cows. *J. Dairy Sci.* 98, 3247-3256.

Gastaldello Jr., A.L., Pires, A.V., Susin, I., Mendes, C.Q., Queiroz, M.A.A., Amaral, R.C., Gentil, R.S., Ferreira, E.M., Mourão, G.B., Eastridge, M.L., 2013. Limestone with different particle size and sodium bicarbonate to feedlot lambs fed high grain diets with or without monensin. *Small Rumin. Res.* 114, 80-85.

Giger-Reverdin, S., Rigalma, K., Desnoyers, M., Sauvant, D., Duvaux-Ponter, C., 2014. Effect of concentrate level on feeding behavior and rumen and blood parameters in dairy goats: Relationships between behavioral and physiological parameters and effect of between-animal variability. *J. Dairy Sci.* 97, 4367-4378.

Golder, H.M., Lean, I.J., 2024. Ruminal acidosis and its definition: a critical review. *J. Dairy Sci.* 107(12), 100066-10098.

González, L.A., Manteca, X., Calsamiglia, S., Schwartzkopf-Genswein, K.S., Ferret, A., 2012. Ruminal acidosis in feedlot cattle: Interplay between feed ingredients, rumen function, and feeding behavior (a review). *Anim. Feed Sci. Technol.* 172, 66-79.

Gozho, G.N., Plaizier, J.C., Krause, D.O., Kennedy, A.D., Wittenberg, K.M., 2005. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. *J. Dairy Sci.* 88, 1399-1403.

Hall, M.W., Thomas, E.E., 1984. Effect of selected dietary buffers upon utilization of concentrate- or roughage-based cattle diets: laboratory studies. *J. Anim. Sci.* 59, 227-236.

Harrison, J.H., Riley, R.E., Loney, K.A., 1989. Effect of type and amount of buffer addition to grass silage-based total mixed rations on milk production and composition. *J. Dairy Sci.* 72, 1824-1830.

Hernández, J., Benedito, J.L., Abuelo, A., Castillo, C., 2014. Ruminal acidosis in feedlot: from Aetiology to Prevention. *Sci. World J.* 2014, 702572

Hu, W., Kung, L., Michael, R. Murphy., 2007. Relationships between dry matter intake and acid-base status of lactating dairy cows as manipulated by dietary cation-anion difference. *Anim. Feed Sci. Technol.* 136, 216-225.

Hu, W., Murphy, M.R., 2004. Dietary cation-anion difference effects on performance and acid-base status of lactating dairy cows: A meta-analysis. *J. Dairy Sci.* 87, 2222-2229.

Huo, W., Zhu, W., Mao, S., 2014. Impact of subacute ruminal acidosis on the diversity of liquid and solid-associated bacteria in the rumen of goats. *World J. Microbiol. Biotechnol.* 30, 669-680.

Ishler, V., Heinrichs, A.J., Varga, G., 1996. From feed to milk: understanding rumen function. Pennsylvania State University.

Jacques, K.A., Axe, D.E., Harris, T.R., Harmon, D.L., Bolen, K.K., Johnson, D.E., 1986. Effect of sodium bicarbonate and sodium bentonite on digestion, solid and liquid flow, and ruminal fermentation characteristics of forage sorghum silage-based diets fed to steers. *J. Anim. Sci.* 63, 923–932.

Jaramillo-López, E., Itza-Ortiz, M.F., Peraza-Mercado, G., Carrera-Chávez, J.M., 2017. Ruminal acidosis: Strategies for its control. *Austral. J. Vet. Sci.* 49, 139–148.

Johnson, M.A., Sweeney, T.F., Muller, L.D., 1988. Effects of feeding synthetic zeolite a and sodium bicarbonate on milk production nutrient digestion, and rate of digesta passage in dairy cows. *J. Dairy Sci.* 71, 946–953.

Jones, M.L., Clark, J.D., Michael, N.A., Bewley, J.M., 2016. Effect of supplementing Lactating dairy cow ration with sodium sesquicarbonate on reticulorumen pH, rumination, and dry matter intake. *J. Anim. Sci.* 94, 667–667.

Kennelly, J.J., Robinson, B., Khorasani, G.R., 1999. Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yield, and milk composition in early-lactation Holstein cows. *J. Dairy Sci.* 82, 2486–2496.

Khafipour, E., Li, S., Plaizier, J.C., Krause, D.O., 2009. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. *Appl. Environ. Microbiol.* 75(22), 7115e24.

Khafipour, E., Li, S., Tun, H.M., Derakhshani, H., Moossavi, S., Plaizier, J.C., 2016. Effects of grain feeding on microbiota in the digestive tract of cattle. *Anim. Front.* 6(2), 13–19.

Khorasani, G.R., Kennelly, J.J., 2001. Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yield, and milk composition in late-lactation Holstein cows. *J. Dairy Sci.* 84, 1707–1716.

Kilmer, L.H., Muller, L.D., Snyder, T.J., 1981. Addition of sodium bicarbonate to rations of postpartum dairy cows: physiological and metabolic effects. *J. Dairy Sci.* 64, 2357–2369.

Kitkas, G.C., Valergakis, G.E., Kritsepi-Konstantinou, M., Gelasakis, A., Ar-senos, G., Kalaitzakis, E., Panousis., 2019. Effects of ruminal pH and subacute ruminal acidosis on milk yield and composition of Holstein cows in different stages of lactation. *J. Hell. Vet. Med.* 70, 1551–1560.

Kitkas, G.C., Valergakis, G.E., Karatzias, H., Panousis, N., 2013. Subacute ruminal acidosis: prevalence and risk factors in Greek dairy herds. *Iran J. Vet. Res.* 14, 183–189.

Mahdavirad, N., Chaji, M., Bojarpour, M., Dehghanbanadaky, M., 2021. Comparison of the effect of sodium bicarbonate, sodium sesquicarbonate, and zeolite as rumen buffers on apparent digestibility, growth performance, and rumen fermentation parameters of Arabi lambs. *Trop. Anim. Health Prod.* 53, 465.

Malafaia, P., Souza, V.C.D., Costa, D.F.A., 2022. Physicochemical evaluations of diets, rumen fluid, blood and faeces of beef cattle under two different feedlot systems. *Animals.* 12(22), 3114.

Mao, S., Huo, W., Liu, J., Zhang, R., Zhu, W., 2017. In vitro effects of sodium bicarbonate buffer on rumen fermentation, levels of lipopolysaccharide and biogenic amine, and composition of rumen microbiota. *J. Sci. Food Agric.* 97, 1276–1285.

Mao, S., Zhang, R., Wang, D., Zhu, W., 2013. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. *Anaerobe.* 24, 12–19.

Maulfair, D.D., McIntyre, K.K., Heinrichs, A.J., 2013. Subacute ruminal acidosis and total mixed ration preference in lactating dairy cows. *J. Dairy Sci.* 96, 6610–6620.

Montaño, M.F., Calderón, J.F., Castrejón, F., Garza, J.D., Pérez, F., Zinn, R.A., 1999. Ruminal alkalinizing potential of brucite (Magnesium Hydroxide) and

sodium bicarbonate for feedlot cattle. *Proceedings. American Society of Animal Science.* 50, 343-350.

Neiderfer, K.P., Barnard, A.M., Moyer, K.Z., Trench, A.M., Taylor, A.E., Cronin, S.K., Gressley, T.F., 2020. Effects of calcium carbonate, magnesium oxide and encapsulated sodium bicarbonate on measures of post-ruminal fermentation. *J. Anim. Physiol. Anim. Nutr.* 104, 802-811.

Neubauer, V., Humer, E., Kröger, I., Braid, T., Wagner, M., Zebeli, Q., 2018. Differences between pH of indwelling sensors and the pH of fluid and solid phase in the rumen of dairy cows fed varying concentrate levels. *J. Anim. Physiol. Anim. Nutr.* 102, 343-349.

Neville, E.W., Fahey, A.G., Gath, V.P., Molloy, B.P., Taylor, S.J., Mulligan, F.J., 2019. The effect of calcareous marine algae, with or without marine magnesium oxide, and sodium bicarbonate on rumen pH and milk production in mid-lactation dairy cows. *J. Dairy Sci.* 102, 8027-8039.

Newbold, C.J., Thomas, P.C., Chamberlain, D.G., 1991. Effect of dietary supplements of sodium bicarbonate with or without additional protein on the utilization of nitrogen in the rumen of sheep receiving a lucerne silage-based diet. *Anim. Feed Sci. Technol.* 35, 191-198.

Nocek, J.E. 1997. Bovine acidosis: Implications on laminitis. *J. Dairy Sci.* 80, 1005-1028.

O'Grady, L., Michael, L.D., Finbar J.M., 2008. Subacute ruminal acidosis (SARA) in grazing Irish dairy cows. *Vet. J.* 176, 44-49.

Okeke, G.C., Buchanan-Smith, J.G., Grieve, D.G., 1983. Effect of sodium bicarbonate on rate of passage and degradation of soybean meal in postpartum dairy cows. *J. Dairy Sci.* 66, 1023-1031.

Owens, F.N., Secrist, D.S., Hill, W.J., Gill, D.R., 1998. Acidosis in cattle: A review. *J. Anim. Sci.* 76, 275-286.

Penner, G.B., Beauchemin, K.A., Mutsvangwa, T., 2007. Severity of ruminal acidosis in primiparous Holstein cows during the periparturient period. *J. Dairy Sci.* 90, 365-375.

Pérez-Ruchel, A., Repetto, J.L., Cajarville, C., 2014. Use of NaHCO_3 and MgO as additives for sheep fed only pasture for a restricted period of time per day: effects on intake, digestion and the rumen environment. *J. Anim. Physiol. Anim. Nutr.* 98, 1068-1074.

Petri, R.M., Schwaiger, T., Penner, G.B., Beauchemin, K.A., Forster, R.J., McKinnon, J.J., McAllister, T.A., 2013. Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. *App. Environ. Microbiology.* 79(12), 3744-3755.

Philippeau, C., Lettat, A., Martin, C., Silberberg, M., Morgavi, D.P., Ferlay, A., Nozière, P., 2017. Effects of bacterial direct-fed microbial on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high-or low-starch diets. *J. Dairy Sci.* 100, 2637-2650.

Plaizier, J.C., D.O. Krause, G.N. Gozho, B.W. McBride., 2008. Subacute Ruminal acidosis in dairy cows: The physiological causes, incidence, and consequences. *Vet. J.* 176, 21-31.

Ramos, S.C., Jeong, C.D., Mamuad, L.L., Kim, S.H., Son, A.R., Miguel, M.A., Islam. M., Cho. Y, Lee, S.S., 2021. Enhanced ruminal fermentation parameters and altered rumen bacterial community composition by formulated rumen buffer agents fed to dairy cows with a high-concentrate diet. *Agriculture.* 11(6), 554.

Ramos, S.C., Kim, S.H., Jeong, C.D., Mamuad, L.L., Son, A.R., Kang, S.H., Cho, Y.I., Kim, T.G., Lee, J.S., Cho, K.K., Lee, S.S., Lee, S.S., 2022. Increasing buffering capacity enhances rumen fermentation characteristics and alters rumen microbiota composition of high-concentrate fed Hanwoo steers. *Sci. Rep.* 12, 20739.

Rogers, J.A., Davis, C.L., Clark, J.H., 1982. Alteration of rumen fermentation, milk fat synthesis, and nutrient utilization with mineral salts in dairy cows. *J. Dairy Sci.* 65, 577-586.

Rogers, J.A., Muller, L.D., Davis, C.L., Chalupa, W., Kronfeld, D.S., Karcher, L.F., Cummings, K.R., 1985. Response of dairy cows to sodium bicarbonate and limestone in early lactation. *J. Dairy Sci.* 68, 646–660.

Russell, J.B., Chow, J.M., 1993. Another theory for the action of ruminal buffer salts: decreased starch fermentation and propionate production. *J. Dairy Sci.* 76, 826–830.

Santra, A., Chaturvedi, O.H., Tripathi, M.K., Kumar, R., Karim, S.A., 2003. Effect of dietary sodium bicarbonate supplementation on fermentation characteristics and ciliate protozoal population in rumen of lambs. *Small Rum. Res.* 47, 203–212.

Sen, A.R., Santra, A., Karim, S.A., 2006. Effect of dietary sodium bicarbonate supplementation on carcass and meat quality of high concentrate fed lambs. *Small Rum. Res.* 65, 122–127.

Sirisan, V., 2017. Strategies to reduce ruminal acidosis by using microorganism. *Vet. Integr. Sci.* 15, 51–62.

Solorzano, L.C., Armentano, L.E., Grummer, R.R., Dentine, M.R., 1989. Effects of sodium bicarbonate and sodium sesquicarbonate on lactating Holstein cows. *J. Dairy Sci.* 72, 453–461.

Stefńska, B., Nowak, W., Komisarek, J., Taciak, M., Barszcz, M., Skomiał, J., 2016. Prevalence and consequence of subacute ruminal acidosis in polish dairy herds. *J. Anim. Physiol. Anim. Nutr.* 101(4), 694–702.

Stevens, C.E., 1970. Fatty acid transport through the rumen epithelium. In: Phillipson, A.T. (Ed.), *Physiology of digestion and metabolism in the ruminant*. Oriel Press, Newcastle-upon- Tyne, UK., pp. 101–112.

Toprak, N.N., Yilmaz, A., Öztürk, E., Yigit, O., Cedden, F., 2016. Effect of micronized zeolite addition to lamb concentrate feeds on growth performance and some blood chemistry and metabolites. *S. Afr. J. Anim. Sci.* 46, 313–320.

Tripathi, M.K., Santra, A., Chaturvedi, O.H., Karim, S.A., 2004. Effect of sodium bicarbonate supplementation on ruminal fluid pH, feed intake, nutrient utilization and growth of lambs fed high concentrate diets. *Anim. Feed Sci. Technol.* 111, 27–39.

Tucker, W.B., Aslam, M., Lema, M., Shin, I.S., Le Ruyet, P., Hogue, J.F., Buchanan, D.S., Miller, T.P., Adams, G.D. 1992. Sodium bicarbonate or multielement buffer via diet or rumen: effects on performance and acid-base status of lactating cows. *J. Dairy Sci.* 75, 2409–2420.

Tucker, W.B., Hogue, J.F., Aslam, M., Lema, M., Le Ruyet, P., Shin, I.S., Van Koevering, M.T., Vernon, R.K., Adams, G.D., 1993. Controlled ruminal infusion of sodium bicarbonate. 3. Influence of infusion dose on systemic acid-base status, minerals, and ruminal milieu. *J. Dairy Sci.* 76(8), 2222–2234.

Tun, H.M., Li, S., Yoon, I., Meale, S.J., Azevedo, P.A., Khatipour, E., Plaizier, J.C., 2020. *Saccharomyces cerevisiae* fermentation products (SCFP) stabilize the ruminal microbiota of lactating dairy cows during periods of a depressed rumen pH. *BMC Vet. Res.* 16, 1–17.

Van Vuuren, Ad.M., Calsamiglia, S., Udén, P., 2012. Rumen health: A 360° analysis. *Anim. Feed Sci. Technol.* 172, 1–3.

Vicente, A.C.S., de Paula Carlis, M.S., dos Santos, I.J., da Silva, A.L.A., Júnior, P.C.G.D., de Assis, R.G., Sturion, T.U., Biava, J.S., Pires, A.V., Ferreira, E.M., 2022. Performance, nutritional behavior, and carcass characteristics of feedlot lambs fed diets with non-forage fiber source or sodium bicarbonate. *Trop. Anim. Health Prod.* 54, 287.

Vieira, L.V., Savela, M.F.B., Rahal, N.M., Barbosa, A.A., Saraiva, D.R., Del-Pino, F.A.B., Viviane, R.R., Eliza, R.K., Cássio, C.B., et al., 2024. An assessment on the effects of buffers on the productive, behavioral and metabolic parameters of Holstein dairy cows. *Trop. Anim. Health Prod.* 56 (7), 255.

Wang, K., Song, D., Zhang, X., Datsomor, O., Jiang, M., Zhao, G., 2024. Effects of high-grain diet on performance, ruminal fermentation, and rumen microbial flora of lactating Holstein dairy cows. *Animals.* 1, 2522.

Wang, K., Xiong, B., Zhao, X., 2023. Could propionate formation be used to reduce enteric methane emission in ruminants?. *Sci. Total Environ.* 855, 158867.

Warner, A.C.I., Stacy, B. D., 1972. Water and sodium and potassium movements across the rumen wall of sheep. *Q. J. Exp. Physiol.* 57, 103-119.

Xiong, F., Liangkang, Lv., Yingyi, L., Hewei, C., Hongjian, Y., 2024. Supplementation of feedlot lambs with magnesium oxide and sodium bicarbonate: Effects on performance, nutrient digestibility, rumen environment, serum biochemistry and antioxidant indices. *Anim. Feed Sci. Tech.* 311, 115951.

Xu, S., Harrison, J.H., Riley, R.E., Loney, K.A., 1994. Effect of buffer addition to high grain total mixed rations on rumen pH, feed intake, milk production, and milk composition. *J. Dairy Sci.* 77, 782-788.

Yang, W.Z., Beauchemin, K.A., 2006. Effects of physically effective fiber on chewing activity and ruminal pH of dairy cows fed diets based on barley silage. *J. Dairy. Sci.* 89(1), 217-228.

Zhang, T., Mu, Y., Zhang, R., Xue, Y., Guo, C., Qi, W., Zhang, J., Mao, S., 2022. Responsive changes of rumen microbiome and metabolome in dairy cows with different susceptibility to subacute ruminal acidosis. *Anim. Nutr.* 8(1), 331-340.

How to cite this article;

Ulvi Fitri Handayani, Ahmad Sofyan, Wulandari, Mohammad Miftakhus Sholikin, Muhammad Ainsyar Harahap, Slamet Widodo, Woki Bilyaro, Agung Irawan, Hendra Herdian, Awistaros Angger Sakti, Yelsi Listiana Dewi, Gunawan, Lili Anggraini, Latifah, Bima Putra Pratama and Ahmad Zein Baihaqi. Preventing ruminal acidosis and optimizing ruminant performance by carbonate buffer supplementation: A review. *Veterinary Integrative Sciences*. 2026; 24(2): e2026040-1-21.
