ปัจจัยที่เกี่ยวข้องกับการเกิดฟันผุในฟันน้ำนม
Main Article Content
Abstract
โรคฟันผุเป็นโรคติดเชื้อเนื่องจากสามารถแพร่กระจายเชื้อได้ การเกิดฟันผุในฟันน้ำนมมีปัจจัยที่เกี่ยวข้องคล้ายกับฟันแท้แต่มีรายละเอียดที่แตกต่างกันเพราะเป็นฟันผุที่เกิดกับเด็กในช่วงอายุน้อย ซึ่งอยู่ในระหว่างการพัฒนาหลายด้าน ปัจจัยที่เกี่ยวข้องกับการเกิดฟันผุในฟันน้ำนมได้แก่ ฟัน อาหาร จุลินทรีย์ นอกจากนี้ยังเกี่ยวข้องกับระบบภูมิคุ้มกันของเด็ก ซึ่งมารดามีบทบาทสำคัญของต่อภูมิคุ้มกันของลูก
Downloads
Download data is not yet available.
Article Details
How to Cite
1.
นครชัย ศ, หวีบูรณ์ ส. ปัจจัยที่เกี่ยวข้องกับการเกิดฟันผุในฟันน้ำนม. Th Dent PH J [Internet]. 2006 Dec. 25 [cited 2024 Nov. 24];11(1-2):15-24. Available from: https://he02.tci-thaijo.org/index.php/ThDPHJo/article/view/212762
Section
Original Article
References
1. Carlos JP, Gittelsohn AM. Longitudinal studies of the natural history of caries. II. A life-table study of caries incidence in the permanent teeth. Arch Oral Biol. 1965;10:739-51.
2. Seow WK. Biological mechanisms of early childhood caries. Community Dent Oral Epidemiol. 1998; 26:8-27.
3. Milgrom P, Riedy CA, Weinstein P, Tanner AC, Manibusan L, Bruss J. Dental caries and its relationship to bacterial infection, hypoplasia, diet, and oral hygiene in 6- to 36-month-old children. Community Dent Oral Epidemiol. 2000; 28:295-306.
4. Grenby TH, Andrews AT, Mistry M, Williams RJ. Dental caries-protective agents in milk and milk products: investigations in vitro. J Dent. 2001; 29:83-92.
5. Reynolds EC. The prevention of sub-surface demineralization of bovine enamel and change in plaque composition by casein in an intra-oral model. J Dent Res. 1987; 66:1120-7.
6. Reynolds EC, Cain CJ, Webber FL, Black CL, Riley PF, et al. Anticariogenicity of calcium phosphate complexes of tryptic casein phosphopeptides in the rat. J Dent Res. 1995; 74: 1272-9.
7. Stacey MA, Wright FA. Diet and feeding patterns in high risk pre-school children. Aust Dent J. 1991; 36:421-7.
8.Bowen WH, Pearson SK. Effect of milk on cariogenesis. Caries Res. 1993;27:461-6.
9. Thorild I, Lindau-Jonson B, Twetman S. Prevalence of salivary Streptococcus mutans in mothers and in their preschool children. Int J Paediatr Dent. 2002; 12(1):2-7.
10. Burt BA, Eklund SA, Morgan KJ, Larkin FE, Guire KE, et al. The effects of sugars intake and frequency of ingestion on dental caries increment in a three-year longitudinal study. J Dent Res. 1988; 67:1422-9.
11. Grytten J, Rossow I, Holst D, Steele L. Longitudinal study of dental health behaviors and other caries predictors in early childhood. Community Dent Oral Epidemiol. 1988; 16:356-9.
12. Neff D. Acid production from different carbohydrate sources in human plaque in situ. Caries Res. 1967; 1:78-87.
13. Marques AP, Messer LB. Nutrient intake and dental caries in the primary dentition. Pediatr Dent. 1992; 14:314-21.
14. McMahon J, Parnell WR, Spears GF. Diet and dental caries in preschool children. Eur J Clin Nutr. 1993;47:794-802.
15. Persson LA, Holm AK, Arvidsson S, Samuelson G. Infant feeding and dental caries’a longitudinal study of Swedish children. Swed Dent J. 1985;9:201-6.
16. Shannon IL, Edmonds EJ, Madsen KO. Honey: sugar content and cariogenicity. ASDC J Dent Child. 1979;46:29-33.
17. Moynihan PJ. Update on the nomenclature of carbohydrates and their dental effects. J Dent. 1998;26:209-18.
18. Park KK, Schemehorn BR, Stookey GK, Butchko HH, Sanders PG. Acidogenicity of high-intensity sweeteners and polyols. Am J Dent. 1995;8:23-6.
19. Makinen KK, Hujoel PP, Bennett CA, Isotupa KP, Makinen PL, Allen P. Polyol chewing gums and caries rates in primary dentition: a 24-month cohort study. Caries Res. 1996;30:408
20. Trahan L, Bourgeau G, Breton R. Emergence of multiple xylitol-resistant (fructose PTS-) mutants from human isolates of mutans streptococci during growth on dietary sugars in the presence of xylitol. J Dent Res. 1996;75:1892-900.
21. Alaluusua S, Matto J, Gronroos L, Innila S, Torkko H, Asikainen S, Jousimies-Somer H, Saarela M. Oral colonization by more than one clonal type of mutans streptococcus in children with nursing-bottle dental caries. Arch Oral Biol. 1996;41:167-73.
22. Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL. Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol. 2002;40:1001-9.
23. Fujiwara T, Sasada E, Mima N, Ooshima T. Caries prevalence and salivary mutans strepto cocci in 0-2-year-old children of Japan. Community Dent Oral Epidemiol. 1991;19:151-4.
24. Matee MI, Mikx FH, Maselle SY, Van Palenstein Helderman WH. Mutans streptococci and B lactobacilli in breast-fed children with rampant caries. Caries Res. 1992;26:183-7.
25. Bretz WA, Djahjah C, Almeida RS, Hujoel PP, Loesche WJ. Relationship of microbial and salivary parameters with dental caries in Brazilian pre-school children. Community Dent Oral Epidemiol. 1992;20:261-4.
26. Thibodeau EA, O'Sullivan DM. Salivary mutans streptococci and incidence of caries in preschool children. Caries Res. 1995;29:148-53.
27. Zoitopoulos L, Brailsford SR, Gelbier S, Ludford RW, Marchant SH, Beighton D. Dental caries and caries-associated micro-organisms in the saliva and plaque of 3- and 4-year-old Afro-Caribbean and Caucasian children in south London. Arch Oral Biol. 1996;41:1011-8.
28. Ansai T, Tahara A, Ikeda M, Katoh Y, Miyazaki H, Takehara T. Influence of colonization with mutans streptococci on caries risk in Japanese preschool children: 24 month survival analysis. Pediatr Dent. 2000;22:377-80.
29. Ramos-Gomez FJ, Weintraub JA, Gansky SA, Hoover CI, Featherstone JD. Bacterial, behavat ioral and environmental factors associated with early childhood caries. J Clin Pediatr Dent. 2002;26:165-73.
30. Maciel SM, Marcenes W, Sheiham A. The relationship between sweetness preference, levels of salivary mutans streptococci and caries experience in Brazilian pre-school children. Int J The Paediatr Dent. 2001;11:123-30.
31. Krishnakumar R, Singh S, Subba Reddy VV. Comparison of levels of mutans streptococci and lactobacilli in children with nursing bottle caries, rampant caries, healthy children with 3-5 dmft/DMFT and healthy caries free children. J Indian Soc Pedod Prev Dent. 2002;20:1-5.
32. Marchant S, Brailsford SR, Twomey AC, Roberts GJ, Beighton D. The predominant microflora of nursing caries lesions.Caries Res. 2001;35:397-406.
33. Roeters FJ, van der Hoeven JS, Burgersdijk RC, Schaeken MJ. Lactobacilli, mutans strepto cocci and dental caries: a longitudinal study in 2-year-old children up to the age of 5 years. Caries Res. 1995;29:272-9.
34. Klock B, Krasse B. Microbial and salivary conditions in 9- to 12-year-old children. Scand J Dent Res. 1977;85:56-63.
35. Bratthall D. The global epidemiology of mutans streptococci. In: Johnson NW, ed. Risk markers for oral diseases. Vol 1. Dental caries. Cambridge: Cambridge University Press; 1991. P. 287-312.
36. Sarkonen N, Kononen E, Summanen P, Kanervo A, Takala A, Jousimies-Somer H. Oral colonization with Actinomyces species in infants by two years of age. J Dent Res. 2000;79:864-7.
37. Firestone AR, Feagin FF, Heaven TJ, Sheetz J, Denys F. In vitro demineralization by strains of Actinomyces viscosus and Streptococcus sobrinus of sound and demineralized root surfaces. J Dent Res. 1993;72:1180-3.
38. Van Houte J. Bacterial specificity in the etiology of dental caries. Int Dent J. 1980;30:305 26. 9.
39. Caufield PW, Dasanayake AP, Li Y, Pan Y, Hsu J, Hardin JM. Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect Immun. 2000;68:4018-23.
40. Berkowitz RJ, Jordan HV, White G. The early establishment of Streptococcus mutans in the mouths of infants. Arch Oral Biol. 1975;20:171-4.
41. Caufield PW, Cutter GR, Dasanayake AP. Initial acquisition of mutans streptococci by infants: evidence for a discrete window of infectivity. J Dent Res. 1993;72:37-45.
42. Alaluusua S, Malmivirta R. Early plaque accumulation sign for caries risk in young children. Community Dent Oral Epidemiol. 1994;22:273-6.
43. Kohler B, Andreen I, Jonsson B. The earlier the colonization by mutans streptococci, the higher the caries prevalence at 4 years of age. Oral Microbiol Immunol. 1988;3:14-7.
44. Grindefjord M, Dahllof G, Nilsson B, Modeer T. Stepwise prediction of dental caries in children up to 3.5 years of age. Caries Res. 1996;30:256-66.
45. Grindefjord M, Dahllof G, Modeer T. Caries development in children from 2.5 to 3.5 years of age: a longitudinal study. Caries Res. 1995;29(6):449-54.
46. Dasanayake AP, Caufield PW, Cutter GR, Roseman JM, Kohler B. Differences in the detection and enumeration of mutans streptococci due to differences in methods. Arch Oral Biol. 1995;40:345-51.
47. Mundorff SA, Eisenberg AD, Leverett DH, Espeland MA, Proskin HM. Correlations between numbers of microflora in plaque and saliva. Caries Res. 1990;24:312-7.
48. Van Houte J, Green DB. Relationship between the concentration of bacteria in saliva and the colonization of teeth in humans. Infect Immun. 1974;9:624-30.
49. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986;50:353-80.
50. Kohler B, Bratthall D. Intrafamilial levels of Streptococcus mutans and some aspects of the bacterial transmission. Scand J Dent Res. 1978;86:35-42.
51. Li Y, Caufield PW. The fidelity of initial acquisition of mutans streptococci by infants from their mothers. J Dent Res. 1995;74:681-5.
52. Brown JP, Junner C, Liew V. A study of Streptococcus mutans levels in both infants with bottle caries and their mothers. Aust Dent J. 1985;30:96-8.
53. Berkowitz RJ, Turner J, Green P. Maternal salivary levels of Streptococcus mutans and primary oral infection of infants. Arch Oral Biol. 1981;26:147-9.
54. Dawes C. Inorganic constituents of saliva in relation to caries. In: Guggenheim B, ed. Cariology today. Basel. Karger; 1984. p. 70-4.
55. Tenovuo J, Grahn E, Lehtonen OP, Hyyppa T, Karhuvaara L, Vilja P. Antimicrobial factors in saliva: ontogeny and relation to oral health. J Dent Res. 1987;66:475-9.
56. Twetman S, Lindner A, Modeer T. Lysozyme and salivary immunoglobulin A in caries-free and caries-susceptible pre-school children. Swed Dent J. 1981;5:9-14.
57. Lehner T, Challacombe SJ, Wilton JM, Caldwell J. Cellular and humoral immune responses in vaccination against dental caries in monkeys. Nature. 1976;264:69-72.
58. Tenovuo J. The microbiology and immunology of dental caries in children. Rev Med Microbiol 1991; 2: 76-82.
59. Pucci MJ, Tew JG, Macrina FL. Human serum antibody response against Streptococcus mutans de antigens. Infect Immun. 1986;51:600-6.
60. Michalek SM, Childers NK. Development and outlook for a caries vaccine. Crit Rev Oral Biol Med. 1990;1:37-54.
61. Hajishengallis G, Nikolova E, Russell MW. Inhibition of Streptococcus mutans adherence to saliva-coated hydroxyapatite by human secretory immunoglobulin A (S-IgA) antibodies to cell surface protein antigen I/II: reversal by IgA1 protease cleavage. Infect Immun. 1992 Dec;60(12):5057-64.
62. van Raamsdonk M, van der Mei HC, de Soet JJ, Busscher HJ, de Graaff J. Effect of polyclonal and monoclonal antibodies on surface properties of Streptococcus sobrinus. Infect Immun. 1995;63:1698-702.
63. Smith DJ, Taubman MA, Ebersole JL. Salivary IgA antibody to glucosyltransferase in man. Clin Exp Immunol. 1985;61:416-24. in 11 atvñ 1-2 WOSIAH-8W210H 2549
64. Tenovuo J, Moldoveanu Z, Mestecky J, Pruitt KM, Rahemtulla BM. Interaction of specific and innate factors of immunity: IgA enhances the antimicrobial effect of the lactoperoxidase system against Streptococcus mutans. J Immunol. 1982;128:726-31.
65. Brock JH, Pickering MG, McDowall MC, Deacon AG. Role of antibody and enterobactin in controlling growth of Escherichia coli in human milk and acquisition of lactoferrin- and transfer rin-bound iron by Escherichia coli. Infect Immun. 1983;40:453-9.
66. Kerr MA. The structure and function of human IgA. Biochem J. 1990 15;271:285-96.
67. Gleeson M, Dobson AJ, Firman DW, Cripps AW, Clancy RL, Wlodarczyk JH, Hensley MJ. The variability of immunoglobulins and albumin in salivary secretions of children. Scand J Immunol. 1991;33:533-41.
68. Gahnberg L, Smith DJ, Taubman MA, Ebersole JL. Salivary-IgA antibody to glucosyltransferase of oral microbial origin in children. Arch Oral Biol. 1985;30(7):551-6.
69. Scully CM, Russell MW, Lehner T. Specificity of opsonizing antibodies to antigens of Strepto coccus mutans. Immunology. 1980;41:467-73.
70. Cimasoni G. Crevicular fluid updated. Basel: kager; 1983. P. 45-102
71. Lehner T, Murray JJ, Winter GB, Caldwell J. Antibodies to Streptococcus mutans and immun globulin levels in children with dental caries. Arch Oral Biol. 1978;23:1061-7.
72. Aaltonen AS, Tenovuo J, Lehtonen OP, Saksala R, Meurman O. Serum antibodies against oral Streptococcus mutans in young children in relation to dental caries and maternal close-con tacts. Arch Oral Biol. 1985;30(4):331-5.
73. Lee SI, Heiner DC, Wara D. Development of serum IgG subclass levels in children. Monogr Allergy. 1986;19:108-21.
74. Smith DJ, Taubman MA. Ontogeny of immunity to oral microbiota in humans. Crit Rev Oral Biol Med. 1992;3:109-33.
75. Pearce C, Bowden GH, Evans M, Fitzsimmons SP, Johnson J, Sheridan MJ, Wientzen R, Cole MF. Identification of pioneer viridans streptococci in the oral cavity of human neonates. J Med Microbiol. 1995;42:67-72.
76. Kilian M, Reinholdt J, Lomholt H, Poulsen K, Frandsen EV. Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: critical evaluation of experimental evi dence. APMIS. 1996;104:321-38.
77. Smith DJ, King WF, Gilbert JV, Taubman MA. Structural integrity of infant salivary immunoglo bulin A (IgA) in IgA1 protease-rich environments. Oral Microbiol Immunol. 1998;13:89-96.
2. Seow WK. Biological mechanisms of early childhood caries. Community Dent Oral Epidemiol. 1998; 26:8-27.
3. Milgrom P, Riedy CA, Weinstein P, Tanner AC, Manibusan L, Bruss J. Dental caries and its relationship to bacterial infection, hypoplasia, diet, and oral hygiene in 6- to 36-month-old children. Community Dent Oral Epidemiol. 2000; 28:295-306.
4. Grenby TH, Andrews AT, Mistry M, Williams RJ. Dental caries-protective agents in milk and milk products: investigations in vitro. J Dent. 2001; 29:83-92.
5. Reynolds EC. The prevention of sub-surface demineralization of bovine enamel and change in plaque composition by casein in an intra-oral model. J Dent Res. 1987; 66:1120-7.
6. Reynolds EC, Cain CJ, Webber FL, Black CL, Riley PF, et al. Anticariogenicity of calcium phosphate complexes of tryptic casein phosphopeptides in the rat. J Dent Res. 1995; 74: 1272-9.
7. Stacey MA, Wright FA. Diet and feeding patterns in high risk pre-school children. Aust Dent J. 1991; 36:421-7.
8.Bowen WH, Pearson SK. Effect of milk on cariogenesis. Caries Res. 1993;27:461-6.
9. Thorild I, Lindau-Jonson B, Twetman S. Prevalence of salivary Streptococcus mutans in mothers and in their preschool children. Int J Paediatr Dent. 2002; 12(1):2-7.
10. Burt BA, Eklund SA, Morgan KJ, Larkin FE, Guire KE, et al. The effects of sugars intake and frequency of ingestion on dental caries increment in a three-year longitudinal study. J Dent Res. 1988; 67:1422-9.
11. Grytten J, Rossow I, Holst D, Steele L. Longitudinal study of dental health behaviors and other caries predictors in early childhood. Community Dent Oral Epidemiol. 1988; 16:356-9.
12. Neff D. Acid production from different carbohydrate sources in human plaque in situ. Caries Res. 1967; 1:78-87.
13. Marques AP, Messer LB. Nutrient intake and dental caries in the primary dentition. Pediatr Dent. 1992; 14:314-21.
14. McMahon J, Parnell WR, Spears GF. Diet and dental caries in preschool children. Eur J Clin Nutr. 1993;47:794-802.
15. Persson LA, Holm AK, Arvidsson S, Samuelson G. Infant feeding and dental caries’a longitudinal study of Swedish children. Swed Dent J. 1985;9:201-6.
16. Shannon IL, Edmonds EJ, Madsen KO. Honey: sugar content and cariogenicity. ASDC J Dent Child. 1979;46:29-33.
17. Moynihan PJ. Update on the nomenclature of carbohydrates and their dental effects. J Dent. 1998;26:209-18.
18. Park KK, Schemehorn BR, Stookey GK, Butchko HH, Sanders PG. Acidogenicity of high-intensity sweeteners and polyols. Am J Dent. 1995;8:23-6.
19. Makinen KK, Hujoel PP, Bennett CA, Isotupa KP, Makinen PL, Allen P. Polyol chewing gums and caries rates in primary dentition: a 24-month cohort study. Caries Res. 1996;30:408
20. Trahan L, Bourgeau G, Breton R. Emergence of multiple xylitol-resistant (fructose PTS-) mutants from human isolates of mutans streptococci during growth on dietary sugars in the presence of xylitol. J Dent Res. 1996;75:1892-900.
21. Alaluusua S, Matto J, Gronroos L, Innila S, Torkko H, Asikainen S, Jousimies-Somer H, Saarela M. Oral colonization by more than one clonal type of mutans streptococcus in children with nursing-bottle dental caries. Arch Oral Biol. 1996;41:167-73.
22. Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL. Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol. 2002;40:1001-9.
23. Fujiwara T, Sasada E, Mima N, Ooshima T. Caries prevalence and salivary mutans strepto cocci in 0-2-year-old children of Japan. Community Dent Oral Epidemiol. 1991;19:151-4.
24. Matee MI, Mikx FH, Maselle SY, Van Palenstein Helderman WH. Mutans streptococci and B lactobacilli in breast-fed children with rampant caries. Caries Res. 1992;26:183-7.
25. Bretz WA, Djahjah C, Almeida RS, Hujoel PP, Loesche WJ. Relationship of microbial and salivary parameters with dental caries in Brazilian pre-school children. Community Dent Oral Epidemiol. 1992;20:261-4.
26. Thibodeau EA, O'Sullivan DM. Salivary mutans streptococci and incidence of caries in preschool children. Caries Res. 1995;29:148-53.
27. Zoitopoulos L, Brailsford SR, Gelbier S, Ludford RW, Marchant SH, Beighton D. Dental caries and caries-associated micro-organisms in the saliva and plaque of 3- and 4-year-old Afro-Caribbean and Caucasian children in south London. Arch Oral Biol. 1996;41:1011-8.
28. Ansai T, Tahara A, Ikeda M, Katoh Y, Miyazaki H, Takehara T. Influence of colonization with mutans streptococci on caries risk in Japanese preschool children: 24 month survival analysis. Pediatr Dent. 2000;22:377-80.
29. Ramos-Gomez FJ, Weintraub JA, Gansky SA, Hoover CI, Featherstone JD. Bacterial, behavat ioral and environmental factors associated with early childhood caries. J Clin Pediatr Dent. 2002;26:165-73.
30. Maciel SM, Marcenes W, Sheiham A. The relationship between sweetness preference, levels of salivary mutans streptococci and caries experience in Brazilian pre-school children. Int J The Paediatr Dent. 2001;11:123-30.
31. Krishnakumar R, Singh S, Subba Reddy VV. Comparison of levels of mutans streptococci and lactobacilli in children with nursing bottle caries, rampant caries, healthy children with 3-5 dmft/DMFT and healthy caries free children. J Indian Soc Pedod Prev Dent. 2002;20:1-5.
32. Marchant S, Brailsford SR, Twomey AC, Roberts GJ, Beighton D. The predominant microflora of nursing caries lesions.Caries Res. 2001;35:397-406.
33. Roeters FJ, van der Hoeven JS, Burgersdijk RC, Schaeken MJ. Lactobacilli, mutans strepto cocci and dental caries: a longitudinal study in 2-year-old children up to the age of 5 years. Caries Res. 1995;29:272-9.
34. Klock B, Krasse B. Microbial and salivary conditions in 9- to 12-year-old children. Scand J Dent Res. 1977;85:56-63.
35. Bratthall D. The global epidemiology of mutans streptococci. In: Johnson NW, ed. Risk markers for oral diseases. Vol 1. Dental caries. Cambridge: Cambridge University Press; 1991. P. 287-312.
36. Sarkonen N, Kononen E, Summanen P, Kanervo A, Takala A, Jousimies-Somer H. Oral colonization with Actinomyces species in infants by two years of age. J Dent Res. 2000;79:864-7.
37. Firestone AR, Feagin FF, Heaven TJ, Sheetz J, Denys F. In vitro demineralization by strains of Actinomyces viscosus and Streptococcus sobrinus of sound and demineralized root surfaces. J Dent Res. 1993;72:1180-3.
38. Van Houte J. Bacterial specificity in the etiology of dental caries. Int Dent J. 1980;30:305 26. 9.
39. Caufield PW, Dasanayake AP, Li Y, Pan Y, Hsu J, Hardin JM. Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect Immun. 2000;68:4018-23.
40. Berkowitz RJ, Jordan HV, White G. The early establishment of Streptococcus mutans in the mouths of infants. Arch Oral Biol. 1975;20:171-4.
41. Caufield PW, Cutter GR, Dasanayake AP. Initial acquisition of mutans streptococci by infants: evidence for a discrete window of infectivity. J Dent Res. 1993;72:37-45.
42. Alaluusua S, Malmivirta R. Early plaque accumulation sign for caries risk in young children. Community Dent Oral Epidemiol. 1994;22:273-6.
43. Kohler B, Andreen I, Jonsson B. The earlier the colonization by mutans streptococci, the higher the caries prevalence at 4 years of age. Oral Microbiol Immunol. 1988;3:14-7.
44. Grindefjord M, Dahllof G, Nilsson B, Modeer T. Stepwise prediction of dental caries in children up to 3.5 years of age. Caries Res. 1996;30:256-66.
45. Grindefjord M, Dahllof G, Modeer T. Caries development in children from 2.5 to 3.5 years of age: a longitudinal study. Caries Res. 1995;29(6):449-54.
46. Dasanayake AP, Caufield PW, Cutter GR, Roseman JM, Kohler B. Differences in the detection and enumeration of mutans streptococci due to differences in methods. Arch Oral Biol. 1995;40:345-51.
47. Mundorff SA, Eisenberg AD, Leverett DH, Espeland MA, Proskin HM. Correlations between numbers of microflora in plaque and saliva. Caries Res. 1990;24:312-7.
48. Van Houte J, Green DB. Relationship between the concentration of bacteria in saliva and the colonization of teeth in humans. Infect Immun. 1974;9:624-30.
49. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986;50:353-80.
50. Kohler B, Bratthall D. Intrafamilial levels of Streptococcus mutans and some aspects of the bacterial transmission. Scand J Dent Res. 1978;86:35-42.
51. Li Y, Caufield PW. The fidelity of initial acquisition of mutans streptococci by infants from their mothers. J Dent Res. 1995;74:681-5.
52. Brown JP, Junner C, Liew V. A study of Streptococcus mutans levels in both infants with bottle caries and their mothers. Aust Dent J. 1985;30:96-8.
53. Berkowitz RJ, Turner J, Green P. Maternal salivary levels of Streptococcus mutans and primary oral infection of infants. Arch Oral Biol. 1981;26:147-9.
54. Dawes C. Inorganic constituents of saliva in relation to caries. In: Guggenheim B, ed. Cariology today. Basel. Karger; 1984. p. 70-4.
55. Tenovuo J, Grahn E, Lehtonen OP, Hyyppa T, Karhuvaara L, Vilja P. Antimicrobial factors in saliva: ontogeny and relation to oral health. J Dent Res. 1987;66:475-9.
56. Twetman S, Lindner A, Modeer T. Lysozyme and salivary immunoglobulin A in caries-free and caries-susceptible pre-school children. Swed Dent J. 1981;5:9-14.
57. Lehner T, Challacombe SJ, Wilton JM, Caldwell J. Cellular and humoral immune responses in vaccination against dental caries in monkeys. Nature. 1976;264:69-72.
58. Tenovuo J. The microbiology and immunology of dental caries in children. Rev Med Microbiol 1991; 2: 76-82.
59. Pucci MJ, Tew JG, Macrina FL. Human serum antibody response against Streptococcus mutans de antigens. Infect Immun. 1986;51:600-6.
60. Michalek SM, Childers NK. Development and outlook for a caries vaccine. Crit Rev Oral Biol Med. 1990;1:37-54.
61. Hajishengallis G, Nikolova E, Russell MW. Inhibition of Streptococcus mutans adherence to saliva-coated hydroxyapatite by human secretory immunoglobulin A (S-IgA) antibodies to cell surface protein antigen I/II: reversal by IgA1 protease cleavage. Infect Immun. 1992 Dec;60(12):5057-64.
62. van Raamsdonk M, van der Mei HC, de Soet JJ, Busscher HJ, de Graaff J. Effect of polyclonal and monoclonal antibodies on surface properties of Streptococcus sobrinus. Infect Immun. 1995;63:1698-702.
63. Smith DJ, Taubman MA, Ebersole JL. Salivary IgA antibody to glucosyltransferase in man. Clin Exp Immunol. 1985;61:416-24. in 11 atvñ 1-2 WOSIAH-8W210H 2549
64. Tenovuo J, Moldoveanu Z, Mestecky J, Pruitt KM, Rahemtulla BM. Interaction of specific and innate factors of immunity: IgA enhances the antimicrobial effect of the lactoperoxidase system against Streptococcus mutans. J Immunol. 1982;128:726-31.
65. Brock JH, Pickering MG, McDowall MC, Deacon AG. Role of antibody and enterobactin in controlling growth of Escherichia coli in human milk and acquisition of lactoferrin- and transfer rin-bound iron by Escherichia coli. Infect Immun. 1983;40:453-9.
66. Kerr MA. The structure and function of human IgA. Biochem J. 1990 15;271:285-96.
67. Gleeson M, Dobson AJ, Firman DW, Cripps AW, Clancy RL, Wlodarczyk JH, Hensley MJ. The variability of immunoglobulins and albumin in salivary secretions of children. Scand J Immunol. 1991;33:533-41.
68. Gahnberg L, Smith DJ, Taubman MA, Ebersole JL. Salivary-IgA antibody to glucosyltransferase of oral microbial origin in children. Arch Oral Biol. 1985;30(7):551-6.
69. Scully CM, Russell MW, Lehner T. Specificity of opsonizing antibodies to antigens of Strepto coccus mutans. Immunology. 1980;41:467-73.
70. Cimasoni G. Crevicular fluid updated. Basel: kager; 1983. P. 45-102
71. Lehner T, Murray JJ, Winter GB, Caldwell J. Antibodies to Streptococcus mutans and immun globulin levels in children with dental caries. Arch Oral Biol. 1978;23:1061-7.
72. Aaltonen AS, Tenovuo J, Lehtonen OP, Saksala R, Meurman O. Serum antibodies against oral Streptococcus mutans in young children in relation to dental caries and maternal close-con tacts. Arch Oral Biol. 1985;30(4):331-5.
73. Lee SI, Heiner DC, Wara D. Development of serum IgG subclass levels in children. Monogr Allergy. 1986;19:108-21.
74. Smith DJ, Taubman MA. Ontogeny of immunity to oral microbiota in humans. Crit Rev Oral Biol Med. 1992;3:109-33.
75. Pearce C, Bowden GH, Evans M, Fitzsimmons SP, Johnson J, Sheridan MJ, Wientzen R, Cole MF. Identification of pioneer viridans streptococci in the oral cavity of human neonates. J Med Microbiol. 1995;42:67-72.
76. Kilian M, Reinholdt J, Lomholt H, Poulsen K, Frandsen EV. Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: critical evaluation of experimental evi dence. APMIS. 1996;104:321-38.
77. Smith DJ, King WF, Gilbert JV, Taubman MA. Structural integrity of infant salivary immunoglo bulin A (IgA) in IgA1 protease-rich environments. Oral Microbiol Immunol. 1998;13:89-96.