Gut Microbiota in The Pathogenesis of Type 2 Diabetes Mellitus
Keywords:
Gut Microbiota, Type 2 DM, PathogenesisAbstract
There are increased evidences of association between gut bacteria and the pathogenesis of type 2 diabetes mellitus. In humans, the gut bacteria comprise of six main phyla, including Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria and Verrucomicrobia. Gut bacteria maintain in a certain composition between each phylum and subphylum. Disturbance in gut microbiota composition is called dysbiosis. The microbial dysbiosis could result in many diseases, for examples: Celiac disease, obesity and certainly diabetes mellitus. The proposed mechanisms of gut microbiota on the pathogenesis of type 2 diabetes mellitus are resulted from: effects of gut microbiota on energy metabolisms, effects on intestinal integrity, effects on metabolic endotoxemia and low-grade inflammation, effects on intestinal motility, effects on immune system. Clinical information from the treatments to alter the gut flora composition by probiotics, prebiotics and fecal transplantation potentiate the novel alternatives for the future treatment of type 2 diabetes mellitus.
References
International Diabetes Federation. IDF Diabetes Atlas, 10th ed. Brussels, Belgium: 2021. Available at: https://www.diabetesatlas.org. Access August 6, 2022
Aekplakorn W, Chariyalertsak S, Kessomboon P, Assanangkornchai S, Taneepanichskul S, Putwatana P. Prevalence of Diabetes and Relationship with Socioeconomic Status in the Thai Population: National Health Examination Survey, 2004-2014. J Diabetes Res. 2018; 1654530. https://doi.org/10.1155/2018/1654530 PMid:29687009 PMCid:PMC5852889
DeFronzo RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009; 58(4): 773-95. https://doi.org/10.2337/db09-9028 PMid:19336687 PMCid:PMC2661582
Pratipanawatr T, Pratipanawatr W, Rosen C, Berria R, Bajaj M, Cusi K, Mandarino L, Kashyap S, Belfort R, DeFronzo RA. Effect of IGF-I on FFA and glucose metabolism in control and type 2 diabetic subjects. Am J Physiol Endocrinol Metab. 2002; 282(6): E1360-8. https://doi.org/10.1152/ajpendo.00335.2001 PMid:12006367
DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulindependent (type II) diabetes mellitus. J Clin Invest. 1985; 76(1): 149-55. https://doi.org/10.1172/JCI111938 PMid:3894418 PMCid:PMC423730
Bajaj M, Suraamornkul S, Hardies LJ, Pratipanawatr T, DeFronzo RA. Plasma resistin concentration, hepatic fat content, and hepatic and peripheral insulin resistance in pioglitazonetreated type II diabetic patients. Int J Obes Relat Metab Disord. 2004; 28(6): 783-9. https://doi.org/10.1038/sj.ijo.0802625 PMid:15024400
Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001; 86(5): 1930-5. https://doi.org/10.1210/jcem.86.5.7463 PMid:11344187
Muscelli E, Mari A, Casolaro A, Camastra S, Seghieri G, Gastaldelli A, Holst JJ, Ferrannini E. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes. 2008; 57(5): 1340-8. https://doi.org/10.2337/db07-1315 PMid:18162504
Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagonlike peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993; 91(1): 301-7. https://doi.org/10.1172/JCI116186 PMid:8423228 PMCid:PMC330027
Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulindependent diabetes. Diabetes. 2005; 54(12): 3427-34. https://doi.org/10.2337/diabetes.54.12.3427 PMid:16306358
Harmsen HJ, de Goffau MC. The Human Gut Microbiota. Advances in experimental medicine and biology. 2016; 902: 95-108. https://doi.org/10.1007/978-3-319-31248-4_7 PMid:27161353
Manor O, Dai CL, Kornilov SA, Smith B, Price ND, Lovejoy JC, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun. 2020; 11(1): 5206. https://doi.org/10.1038/s41467-020-18871-1 PMid:33060586 PMCid:PMC7562722
Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-toInfant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host Microbe. 2018; 24(1): 133-45 e5. https://doi.org/10.1016/j.chom.2018.06.005 PMid:30001516 PMCid:PMC6716579
Shaterian N, Abdi F, Ghavidel N, Alidost F. Role of cesarean section in the development of neonatal gut microbiota: A systematic review. Open Med. 2021; 16(1): 624-39. https://doi.org/10.1515/med-2021-0270 PMid:33869784 PMCid:PMC8035494
Li W, Tapiainen T, Brinkac L, Lorenzi HA, Moncera K, Tejesvi M, et al. Vertical transmission of gut microbiome and antimicrobial resistance genes in infants exposed to antibiotics at birth. J Infect Dis. 2020; 224(7): 1236-46. https://doi.org/10.1093/infdis/jiaa155 PMid:32239170 PMCid:PMC8514186
Martin R, Makino H, Cetinyurek Yavuz A, Ben-Amor K, Roelofs M, Ishikawa E, et al. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota. PLoS One. 2016; 11(6): e0158498. https://doi.org/10.1371/journal.pone.0158498 PMid:27362264 PMCid:PMC4928817
Nogacka A, Salazar N, Suárez M, Milani C, Arboleya S, Solís G, et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome. 2017; 5(1): 93. https://doi.org/10.1186/s40168-017-0313-3 PMid:28789705 PMCid:PMC5549288
Sommer F, Bäckhed F. The gut microbiota-masters of host development and physiology. Nature reviews Microbiology. 2013; 11(4): 227-38. https://doi.org/10.1038/nrmicro2974 PMid:23435359
Renz H, Brandtzaeg P, Hornef M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nature reviews Immunology. 2011; 12(1): 9-23. https://doi.org/10.1038/nri3112 PMid:22158411
Hildebrand F, Gossmann TI, Frioux C, Özkurt E, Myers PN, Ferretti P, et al. Dispersal strategies shape persistence and evolution of human gut bacteria. Cell Host & Microbe. 2021; 29(7): 1167-76. https://doi.org/10.1016/j.chom.2021.05.008 PMid:34111423 PMCid:PMC8288446
Obeng N, Bansept F, Sieber M, Traulsen A, Schulenburg H. Evolution of Microbiota-Host Associations: The Microbe's Perspective. Trends Microbiol. 2021; 29(9): 779-87. https://doi.org/10.1016/j.tim.2021.02.005 PMid:33674142
McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity. Immunology. 2014; 142(1): 24-31. https://doi.org/10.1111/imm.12231 PMid:24329495 PMCid:PMC3992044
LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013; 24(2): 160-8. https://doi.org/10.1016/j.copbio.2012.08.005 PMid:22940212
Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res. 2017; 4: 14. https://doi.org/10.1186/s40779-017-0122-9 PMid:28465831 PMCid:PMC5408367
Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: A major player in the toxicity of environmental pollutants? NPJ Biofilms and Microbiomes. 2016; 4(2): 16003. https://doi.org/10.1038/npjbiofilms.2016.3 PMid:28721242 PMCid:PMC5515271
Koppel N, Maini Rekdal V, Balskus EP. Chemical transformation of xenobiotics by the human gut microbiota. Science. 2017; 356(6344). https://doi.org/10.1126/science.aag2770 PMid:28642381 PMCid:PMC5534341
Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016; 352 (6285): 539. https://doi.org/10.1126/science.aad9378 PMid:27126036 PMCid:PMC5050524
Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, et al. Microbiomewide association studies link dynamic microbial consortia to disease. Nature. 2016; 535(7610): 94-103. https://doi.org/10.1038/nature18850 PMid:27383984
Gosalbes MJ, Durban A, Pignatelli M, Abellan JJ, Jimenez-Hernandez N, Perez-Cobas AE, et al. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One. 2011; 6(3): e17447. https://doi.org/10.1371/journal.pone.0017447 PMid:21408168 PMCid:PMC3050895
Schirmer M, Franzosa EA, Lloyd-Price J, McIver LJ, Schwager R, Poon TW, et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol. 2018; 3(3): 337-46. https://doi.org/10.1038/s41564-017-0089-z PMid:29311644 PMCid:PMC6131705
Visconti A, Le Roy CI, Rosa F, Rossi N, Martin TC, Mohney RP, et al. Interplay between the human gut microbiome and host metabolism. Nat Commun. 2019; 10(1): 4505. https://doi.org/10.1038/s41467-019-12476-z PMid:31582752 PMCid:PMC6776654
Ranjbar R, Vahdati SN, Tavakoli S, Khodaie R, Behboudi H. Immunomodulatory roles of microbiota-derived short-chain fatty acids in bacterial infections. Biomed Pharmacother. 2021;141:111817. https://doi.org/10.1016/j.biopha.2021.111817 PMid:34126349
Ratajczak W, Ryl A, Mizerski A, Walczakiewicz K, Sipak O, Laszczynska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol. 2019; 66(1): 1-12. https://doi.org/10.18388/abp.2018_2648 PMid:30831575
Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett. 2002; 217(2): 133-9. https://doi.org/10.1111/j.1574-6968.2002.tb11467.x PMid:12480096
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of lipid research. 2013; 54(9): 2325-40. https://doi.org/10.1194/jlr.R036012 PMid:23821742 PMCid:PMC3735932
Schilderink R, Verseijden C, de Jonge WJ. Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis. Front Immunol. 2013; 4: 226. https://doi.org/10.3389/fimmu.2013.00226 PMid:23914191 PMCid:PMC3730085
Íñiguez-Gutiérrez L, Godínez-Méndez LA, Fafutis-Morris M, Padilla-Arellano JR, Corona-Rivera A, Bueno-Topete MR, et al. Physiological concentrations of short-chain fatty acids induce the formation of neutrophil extracellular traps in vitro. Int J Immunopathol Pharmacol. 2020; 34: 205873842095 8949. https://doi.org/10.1177/2058738420958949 PMid:33373277 PMCid:PMC7783874
Astakhova L, Ngara M, Babich O, Prosekov A, Asyakina L, Dyshlyuk L, et al. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells. PLoS One. 2016; 11(7): e0154102. https://doi.org/10.1371/journal.pone.0154102 PMid:27441625 PMCid:PMC4956219
Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity. 2019; 50(2): 432-45.e7. https://doi.org/10.1016/j.immuni.2018.12.018 PMid:30683619 PMCid:PMC6382411
Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J, et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunology. 2015; 8(1): 80-93. https://doi.org/10.1038/mi.2014.44 PMid:24917457 PMCid:PMC4263689
Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity. 2010; 32(6): 743-53. https://doi.org/10.1016/j.immuni.2010.06.002 PMid:20620941 PMCid:PMC2911434
Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nature Immunology. 2011; 12(4): 295-303. https://doi.org/10.1038/ni.2005 PMid:21358638 PMCid:PMC3077821
Karin M, Lawrence T, Nizet V. Innate Immunity Gone Awry: Linking Microbial Infections to Chronic Inflammation and Cancer. Cell. 2006; 124(4): 823-35. https://doi.org/10.1016/j.cell.2006.02.016 PMid:16497591
Chakaroun RM, Massier L, Kovacs P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients. 2020; 12(4): 1082. https://doi.org/10.3390/nu12041082 PMid:32295104 PMCid:PMC7230435
Comito D, Romano C. Dysbiosis in the pathogenesis of pediatric inflammatory bowel diseases. Int J Inflam. 2012; 2012: 687143. https://doi.org/10.1155/2012/687143 PMid:22685684 PMCid:PMC3363416
Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci. 2007; 104(34): 13780-5. https://doi.org/10.1073/pnas.0706625104 PMid:17699621 PMCid:PMC1959459
Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflammatory bowel diseases. 2009; 15(8): 1183-9. https://doi.org/10.1002/ibd.20903 PMid:19235886
Zhou L, Zhang M, Wang Y, Dorfman RG, Liu H, Yu T, et al. Faecalibacterium prausnitzii Produces Butyrate to Maintain Th17/Treg Balance and to Ameliorate Colorectal Colitis by Inhibiting Histone Deacetylase 1. Inflammatory bowel diseases. 2018; 24(9): 1926-40. https://doi.org/10.1093/ibd/izy182 PMid:29796620
Fachi JL, Felipe JS, Pral LP, da Silva BK, Correa RO, de Andrade MCP, et al. Butyrate Protects Mice from Clostridium difficile-Induced Colitis through an HIF-1-Dependent Mechanism. Cell Rep. 2019; 27(3): 750-61 e7. https://doi.org/10.1016/j.celrep.2019.03.054 PMid:30995474
Milani C, Ticinesi A, Gerritsen J, Nouvenne A, Lugli GA, Mancabelli L, et al. Gut microbiota composition and Clostridium difficile infection in hospitalized elderly individuals: a metagenomic study. Sci Rep. 2016; 6: 25945. https://doi.org/10.1038/srep25945 PMid:27166072 PMCid:PMC4863157
Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, et al. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol. 2013; 51(9): 2884-92. https://doi.org/10.1128/JCM.00845-13 PMid:23804381 PMCid:PMC3754663
Zhang L, Dong D, Jiang C, Li Z, Wang X, Peng Y. Insight into alteration of gut microbiota in Clostridium difficile infection and asymptomatic C. difficile colonization. Anaerobe. 2015; 34: 1-7. https://doi.org/10.1016/j.anaerobe.2015.03.008 PMid:25817005
Herrera G, Vega L, Patarroyo MA, Ramirez JD, Munoz M. Gut microbiota composition in health-care facility-and community-onset diarrheic patients with Clostridioides difficile infection. Sci Rep. 2021; 11(1): 10849. https://doi.org/10.1038/s41598-021-90380-7 PMid:34035404 PMCid:PMC8149855
De Re V, Magris R, Cannizzaro R. New Insights into the Pathogenesis of Celiac Disease. Frontiers in Medicine. 2017; 4(137). https://doi.org/10.3389/fmed.2017.00137 PMid:28913337 PMCid:PMC5583152
Akobeng AK, Singh P, Kumar M, Al Khodor S. Role of the gut microbiota in the pathogenesis of coeliac disease and potential therapeutic implications. European journal of nutrition. 2020; 59(8): 3369-90. https://doi.org/10.1007/s00394-020-02324-y PMid:32651763 PMCid:PMC7669811
Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. Journal of clinical pathology. 2009; 62(3): 264-9. https://doi.org/10.1136/jcp.2008.061366 PMid:18996905
Ou G, Hedberg M, Hörstedt P, Baranov V, Forsberg G, Drobni M, et al. Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease. The American journal of gastroenterology. 2009; 104(12): 3058-67. https://doi.org/10.1038/ajg.2009.524 PMid:19755974
Collado MC, Calabuig M, Sanz Y. Differences between the fecal microbiota of coeliac infants and healthy controls. Current issues in intestinal microbiology. 2007; 8(1): 9-14.
Sánchez E, Donat E, Ribes-Koninckx C, Fernández-Murga ML, Sanz Y. Duodenal-mucosal bacteria associated with celiac disease in children. Appl Environ Microbiol. 2013; 79(18): 5472-9. https://doi.org/10.1128/AEM.00869-13 PMid:23835180 PMCid:PMC3754165
Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venalainen J, Maki M, et al. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol. 2008; 152(3): 552-8. https://doi.org/10.1111/j.1365-2249.2008.03635.x PMid:18422736 PMCid:PMC2453197
Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front Immunol. 2021; 12(178). https://doi.org/10.3389/fimmu.2021.578386 PMid:33717063 PMCid:PMC7953067
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci. 2005; 102(31): 11070-5. https://doi.org/10.1073/pnas.0504978102 PMid:16033867 PMCid:PMC1176910
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444(7122): 1027-31. https://doi.org/10.1038/nature05414 PMid:17183312
Pedersen R, Ingerslev HC, Sturek M, Alloosh M, Cirera S, Christoffersen B, et al. Characterisation of gut microbiota in Ossabaw and Göttingen minipigs as models of obesity and metabolic syndrome. PLoS One. 2013; 8(2): e56612. https://doi.org/10.1371/journal.pone.0056612 PMid:23437186 PMCid:PMC3577853
Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013; 341(6150): 1241214. https://doi.org/10.1126/science.1241214 PMid:24009397 PMCid:PMC3829625
Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One. 2009; 4(9): e7125. https://doi.org/10.1371/journal.pone.0007125 PMid:19774074 PMCid:PMC2742902
Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes. 2012; 36(6): 817-25. https://doi.org/10.1038/ijo.2011.153 PMid:21829158 PMCid:PMC3374072
Zuo H-J, Xie Z-M, Zhang W-W, Li Y-R, Wang W, Ding X-B, et al. Gut bacteria alteration in obese people and its relationship with gene polymorphism. World J Gastroenterol. 2011; 17(8): 1076-81. https://doi.org/10.3748/wjg.v17.i8.1076 PMid:21448362 PMCid:PMC3057153
Zuo H-J, Xie Z-M, Zhang W-W, Li Y-R, Wang W, Ding X-B, et al. Gut bacteria alteration in obese people and its relationship with gene polymorphism. World J Gastroenterol. 2011; 17(8): 1076-81. https://doi.org/10.3748/wjg.v17.i8.1076 PMid:21448362 PMCid:PMC3057153
Ott B, Skurk T, Hastreiter L, Lagkouvardos I, Fischer S, Büttner J, et al. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Scientific reports. 2017; 7(1): 11955. https://doi.org/10.1038/s41598-017-12109-9 PMid:28931850 PMCid:PMC5607294
Dong TS, Luu K, Lagishetty V, Sedighian F, Woo S-L, Dreskin BW, et al. The Intestinal Microbiome Predicts Weight Loss on a CalorieRestricted Diet and Is Associated With Improved Hepatic Steatosis. Front Nutr. 2021; 8: 718661. https://doi.org/10.3389/fnut.2021.718661 PMid:34307440 PMCid:PMC8295485
McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr. 1984; 39 :338-42. https://doi.org/10.1093/ajcn/39.2.338 PMid:6320630
Ussar S, Fujisaka S, Kahn CR. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Mol Metab. 2016; 5(9): 795- 803. https://doi.org/10.1016/j.molmet.2016.07.004 PMid:27617202 PMCid:PMC5004229
Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003; 278: 11312-9. https://doi.org/10.1074/jbc.M211609200 PMid:12496283
Bindels LB, Dewulf EM, Delzenne NM. GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol Sci. 2013; 34: 226-32. https://doi.org/10.1016/j.tips.2013.02.002 PMid:23489932
Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord. 2014; 15: 189-96. https://doi.org/10.1007/s11154-014-9288-6 PMid:24789701
Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The shortchain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014; 5: 3611. https://doi.org/10.1038/ncomms4611 PMid:24781306 PMCid:PMC4015327
Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone R, et al. Acetate mediates a microbiome-brains-b-cell axis to promote metabolic syndrome. Nature. 2016; 534: 213-7. https://doi.org/10.1038/nature18309 PMid:27279214 PMCid:PMC4922538
Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, et al. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res. 2010; 51: 1101-12. https://doi.org/10.1194/jlr.M002774 PMid:20040631 PMCid:PMC2853437
Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care. 2010; 33: 2277-84. https://doi.org/10.2337/dc10-0556 PMid:20876708 PMCid:PMC2945175
Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci. 2004; 101: 15718-23. https://doi.org/10.1073/pnas.0407076101 PMid:15505215 PMCid:PMC524219
Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol. 2013; 27(1): 73-83.
Everard A, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci. 2013; 110 (22): 9066-71. https://doi.org/10.1073/pnas.1219451110 PMid:23671105 PMCid:PMC3670398
Yang JY, et al. Gut commensal bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol. 2017; 10(1): 104-16. https://doi.org/10.1038/mi.2016.42 PMid:27118489
Kang JH, et al. Anti-obesity effect of lactobacillus gasseri BNR17 in highsucrose diet-induced obese mice. PLoS One. 2013; 8(1): e54617. https://doi.org/10.1371/journal.pone.0054617 PMid:23382926 PMCid:PMC3559800
Kim SH, et al. The anti-diabetic activity of bifidobacterium lactis HY8101 in vitro and in vivo. J Appl Microbiol. 2014; 117(3): 834-45. https://doi.org/10.1111/jam.12573 PMid:24925305
Wang G, et al. Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food Funct. 2017; 8(9): 3155-64. https://doi.org/10.1039/C7FO00593H PMid:28782784
Li X, et al. Effects of lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef Microbes. 2017; 8(3): 421-32. https://doi.org/10.3920/BM2016.0167 PMid:28504567
Singh S, et al. Lactobacillus rhamnosus NCDC17 ameliorates type-2 diabetes by improving gut function, oxidative stress and inflammation in high-fat-diet fed and streptozotocintreated rats. Benef Microbes. 2017; 8(2): 243-55. https://doi.org/10.3920/BM2016.0090 PMid:28008783
Dang F, et al. Administration of lactobacillus paracasei ameliorates type 2 diabetes in mice. Food Funct. 2018; 9(7): 3630-9. https://doi.org/10.1039/C8FO00081F PMid:29961787
Turnbaugh, P.J., Backhed, F., Fulton, L., Gordon, J.I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008; 3: 213e223. https://doi.org/10.1016/j.chom.2008.02.015 PMid:18407065 PMCid:PMC3687783
Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci. 2005; 102: 11070-5. https://doi.org/10.1073/pnas.0504978102 PMid:16033867 PMCid:PMC1176910
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444: 1022-3. https://doi.org/10.1038/4441022a PMid:17183309
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009; 457: 480-4. https://doi.org/10.1038/nature07540 PMid:19043404 PMCid:PMC2677729
Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010; 5: e9085. https://doi.org/10.1371/journal.pone.0009085 PMid:20140211 PMCid:PMC2816710
Ussar, S., Griffin, N.W., Bezy, O., Fujisaka, S., Vienberg, S., Softic, S., et al., 2015. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metabolism. 2015; 22: 516e530. https://doi.org/10.1016/j.cmet.2015.07.007 PMid:26299453 PMCid:PMC4570502
Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K., Knight, R., 2012. Diversity, stability and resilience of the human gut microbiota. Nature. 2012; 489: 220e230. https://doi.org/10.1038/nature11550 PMid:22972295 PMCid:PMC3577372
Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009; 9: 799-809. https://doi.org/10.1038/nri2653 PMid:19855405
Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008; 57: 1470-81. https://doi.org/10.2337/db07-1403 PMid:18305141
Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palù G, et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2007; 292: G518-25. https://doi.org/10.1152/ajpgi.00024.2006 PMid:17023554
Muccioli GG, Naslain D, Backhed F, Reigstad CS, Lambert DM, Delzenne NM, et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol. 2010; 6: 392. https://doi.org/10.1038/msb.2010.46 PMid:20664638 PMCid:PMC2925525
Koyama I, Matsunaga T, Harada T, Hokari S, Komoda T. Alkaline phosphatases reduce toxicity of lipopolysaccharides in vivo and in vitro through dephosphorylation. Clin Biochem. 2002; 35: 455-61. https://doi.org/10.1016/S0009-9120(02)00330-2 PMid:12413606
De La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol. 2010; 299: G440-8. https://doi.org/10.1152/ajpgi.00098.2010 PMid:20508158 PMCid:PMC2928532
Bates JM, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007; 2: 371-82. https://doi.org/10.1016/j.chom.2007.10.010 PMid:18078689 PMCid:PMC2730374
Everard A, Geurts L, Van Roye M, Delzenne NM, Cani PD. Tetrahydro iso-alpha acids from hops improve glucose homeostasis and reduce body weight gain and metabolic endotoxemia in high-fat diet-fed mice. PLoS One. 2012; 7: e33858. https://doi.org/10.1371/journal.pone.0033858 PMid:22470484 PMCid:PMC3314685
O'Mahony D, Murphy S, Boileau T, Park J, O'Brien F, Groeger D, et al. Bifidobacterium animalis AHC7 protects against pathogen-induced NF-kappaB activation in vivo. BMC Immuno. 2010 ;11: 63. https://doi.org/10.1186/1471-2172-11-63 PMid:21176205 PMCid:PMC3016395
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Greater Mekong Sub-region Medical Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.