Prospects of Proteomics in Goat Breeding in Nigeria: A Narrative Review
คำสำคัญ:
Proteomics, Goat, Breeding, Nigeriaบทคัดย่อ
Proteomics, the large-scale study of proteins and their functions, is emerging as a transformative tool in animal breeding and genetics. This narrative review explores the prospects of proteomics in enhancing goat breeding programs in Nigeria, with a focus on improving productivity, disease resistance, and adaptation to environmental stressors in indigenous breeds such as the West African Dwarf, Sokoto Red, and Sahel goats. Although these breeds are rich in genetic diversity and important for local economies, they remain underexploited in terms of targeted genetic improvement. Proteomics offers a pathway to understand the complex biological processes underlying economically important traits by identifying key protein biomarkers associated with growth, reproduction, lactation, and resistance to endemic diseases. Integrating proteomic data into conventional and molecular breeding strategies can enable more precise selection, resulting in improved herd performance and sustainability. In addition, proteomic profiling can aid in characterizing breed-specific responses to nutrition and climate variability, thereby contributing to resilience in the face of climate change. Despite its potential, proteomics remains underutilized in Nigerian livestock research due to limited infrastructure, funding, and technical expertise. This review highlights the need for strategic investments in proteomics research facilities, capacity building, and collaborative networks among academic institutions, government agencies, and the private sector. Myostatin (MSTN), Myogenic regulatory factors (MRFs), Insulin-like growth factor 1 (IGF-1), actin, and myosin have been studied to regulate muscle growth and development thus vital for meat animals. The adoption of proteomics in Nigerian goat breeding holds significant promise for advancing animal productivity and food security while preserving the genetic integrity of indigenous breeds. Emphasizing a multidisciplinary approach, this paper advocates for the inclusion of proteomics in future breeding programs to drive sustainable genetic improvement in Nigeria’s goat population.
เอกสารอ้างอิง
Adamude FA, Dingwoke EJ, Abubakar MS, Ibrahim S, Mohamed G, Klein A, et al. Proteomic analysis of three medically important Nigerian Naja (Naja haje, Naja katiensis and Naja nigricollis) snake venoms. Toxicon. 2021;197:24-32.
Adeoye SAO. Reproductive performance of West African dwarf goats in southwestern Nigeria. In: Wilson RT, Bourzat D, editors. Small ruminants in African agriculture. Proceedings of a conference held at ILCA, Addis Ababa, Ethiopia; 1985.
Adu IF, Buvanendran V, Lakpini CAM. The reproductive performance of Red Sokoto goats in Nigeria. J Agric Sci. 1979;93(3):563-6.
Aduba P, Salako AE. Breeding objectives for West African Dwarf goat under small holder system in Oyo State, Nigeria. J For Environ Sustain Dev. 2024;10(2):105-13.
Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347-55.
Akintunde AO, Mustofa I, Ndubuisi-Ogbonna LC, Oyekale OO, Shobo BA. Exploring the Genetic Diversity: A Review of Germplasm in Nigerian Indigenous Goat Breeds. Small Rumin Res. 2024;234:107236.
Akpa GN, Alphonsus C, Dalha SY, Garba Y. Goat breeding structure and repeatability of litter size in smallholder goat herds in Kano, Nigeria. Anim Res Int. 2010;7(3):1274-80.
Allai L, Li C, Quan G. An updated review on the application of proteomics to explore sperm cryoinjury mechanisms in livestock animals. Anim Reprod Sci. 2024;107441.
Awobajo OK, Peters SO, Ilori BM. Analysis of genetic structure of Nigerian West African Dwarf goats by microsatellite markers. Univ Ibadan Institutional Repository. 2015. https://repository.ui.edu.ng/items/e80796b8-8e62-4326-b955-886e61c0beff.
Ayoola MO, Oluwatoyinbo TO, Oguntunji AO. Evaluation of serum biochemical indices on heat-stressed Nigerian indigenous goat breeds in the South-West agro-ecological zone. In: Proceedings of the 29th conference of the Animal Science Association of Nigeria. 2024; Lagos, Nigeria. p. 190-3.
Bachmann J, Burté F, Pramana S, Conte I, Brown BJ, Orimadegun AE, et al. Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria. PLoS Pathog. 2014;10(4):e1004038.
Bitrus I, Ezema C, Makun HJ, Aronu CJ, Arinzechukwu ES, Gilbert T, et al. Reproductive efficiencies and productive potentials of female Nigerian indigenous goat breeds. Anim Health J. 2023;4(1):38-53.
Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918-20.
Choudhary RK, Kumar BVS, Mukhopadhyay CS, Kashyap N, Singh N, Salajegheh Tazerji S, et al. Animal wellness: the power of multiomics and integrative strategies. Vet Med Int. 2024;2024:4125118.
CRC Press. Proteomics-based advancements in research toward sustainable production of dairy livestock. In: Proteomics-Based Advancements in Research Toward Sustainable Production of Dairy Livestock. Boca Raton: CRC Press; 2022. p. 231-8.
Crowther JM, Lassé M, Suzuki H, Kessans SA, Loo TS, Norris GE, et al. Ultra-high resolution crystal structure of recombinant caprine β-lactoglobulin. FEBS Lett. 2014;588(21):3816-22.
Dehau T, Ducatelle R, Van Immerseel F, Goossens E. Omics technologies in poultry health and productivity - Part 1: current use in poultry research. Avian Pathol. 2022;51(5):407-17.
Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006;312(5771):212-7.
Fakoya EO, Oloruntoba A. Socio-economic determinants of small ruminants production among farmers in Osun State, Nigeria. J Hum Soc Sci Cretv Arts. 2009;4(1):90-100.
Funmilayo AJ, Agboola O, Agboola S, Oluboyo B, Egbebi A, Sijuade A, et al. The roles of genomics and proteomics in human parasitology: Closing the knowledge gap. Infect Epidemiol Microbiol. 2024;10(2):157-74.
Girei MI, Ayoola JB. Socio-economic factors influencing small ruminant production in Adamawa State; policy implications for livestock transformation in Nigeria. Int J Sci Eng Res. 2017;8(3):1261-72.
Han B, Zhang L, Zhou P. Comparative proteomics of whey proteins: New insights into quantitative differences between bovine, goat and camel species. Int J Biol Macromol. 2023;227:10-6.
Hwang YH, Lee EY, Lim HT, Joo ST. Multi‑omics approaches to improve meat quality and taste characteristics. Food Sci Anim Resour. 2023;43(6):1067-86.
Jesuyon OMA, Boluwaji O, Orunmuyi M, Aganga AA, Ogunjimi SI. Assessment of management and breeding practices among indigenous goat farmers in a tropical humid forest zone. In: Goat science-environment, health and economy. London: IntechOpen; 2023.
Kajin F, Šmit I, Stevanović V, Rešetar Maslov D, Rubić I, Mrljak V, et al. Current application of proteomics in the veterinary field-a short summary and literature review. Vet Stanica. 2025;56(2):245-56.
Kubkomawa IH, Ahmadu A, Tizhe MA, Abubakar NS. Influence of genes, morphology, physiology and the environment on reproductive characteristics of indigenous goats in Nigeria: a review. Int J Agric Res Food Sci. 2017;4(1):107-32.
Lamri M, Della Malva A, Djenane D, López-Pedrouso M, Franco D, Albenzio M, et al. Towards the discovery of goat meat quality biomarkers using label-free proteomics. J Proteomics. 2023;278:104868.
Li M, Lu Y, Gao Z, Yue D, Hong J, Wu J, et al. Pan-omics in sheep: unveiling genetic landscapes. Animals. 2024;14(2):273.
Makun HJ, Ajanusi JO, Ehoche OW, Lakpini CA, Otaru SM. Growth rates and milk production potential of Sahelian and Red Sokoto breeds of goats in northern Guinea Savannah. Pak J Biol Sci. 2008;11(4):601-6.
Marai IFM, Abou-Fandoud EI, Daader AH, Abu-Ella AA. Reproductive doe traits of the Nubian (Zaraibi) goats in Egypt. Small Rumin Res. 2002;46(2-3):201-5.
Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res. 2011;10(4):1785-93.
Mumby M, Brekken D. Phosphoproteomics: new insights into cellular signaling. Genome Biol. 2005;6(9):230.
Ogunjobi TT, Ohaeri PN, Akintola OT, Atanda DO, Orji FP, Adebayo JO, et al. Bioinformatics applications in chronic diseases: a comprehensive review of genomic, transcriptomics, proteomic, metabolomics, and machine learning approaches. Medinformatics. 2024;2024:2335.
Ogunyinka BI, Oyinloye BE, Osunsanmi FO, Opoku AR, Kappo AP. Proteomic analysis of differentially-expressed proteins in the liver of streptozotocin-induced diabetic rats treated with Parkia biglobosa protein isolate. Molecules. 2018;23(2):156.
Ojo VOA, Ozoje MO, Adebambo OA, Peters SO. Microsatellite analysis of West African Dwarf goats in Nigeria. Niger J Anim Prod. 2024;51(1):37-46.
Okpeku M, Ogah DM, Adeleke MA. A review of challenges to genetic improvement of indigenous livestock for improved food production in Nigeria. Afr J Food Agric Nutr Dev. 2019;19(1):13959-78.
Okpeku M, Peters SO, Ozoje MO, Adebambo OA, Agaviezor BO, O'Neill MJ, et al. Preliminary analysis of microsatellite-based genetic diversity of goats in southern Nigeria. Trop Anim Health Prod. 2011;49(49):33-41.
Omics Tutorials. Comprehensive guide to proteomics types: Delving into expression, functional, and structural proteomics [Internet]. 2025 [cited 2025 May 16]. Available from: https://omicstutorials.com/comprehensive-guide-to-proteomics-types-delving-into-expression-functional-and-structural-proteomics/.
Omotosho BO, Bemji MN, Bamisile K, Ozoje MO, Wheto M, Lawal AM, et al. Comparative study of growth patterns of Kalahari Red goats and West African dwarf goats reared in Southwest Nigeria. Niger J Anim Prod. 2020;47(5):213-26.
Oni OO, Ibhaze GA, Ogunwande IO, Onibi GE. Socioeconomic characteristics of farmers, profitability and militating factors affecting small ruminant production in Ondo State, South-West, Nigeria. Int J Environ Agric Biotechnol. 2022;7(2):69-77.
Onile OS, Calder B, Soares NC, Anumudu CI, Blackburn JM. Quantitative label-free proteomic analysis of human urine to identify novel candidate protein biomarkers for schistosomiasis. PLoS Negl Trop Dis. 2017;11(11):e0006045.
Paula Junior AR, van Tilburg MF, Lobo MDP, Monteiro-Moreira ACO, Moreira RA, Melo CHS, et al. Proteomic analysis of follicular fluid from tropically-adapted goats. Anim Reprod Sci. 2018;188:35-44.
Qureshi MI, Sabir JSM, Mutwakil M, Hanafy E, Ashmaoui HM, Ramadan H, et al. Review of modern strategies to enhance livestock genetic performance: from molecular markers to next‑generation sequencing technologies in goats. J Food Agric Environ. 2014;7(5):541-53.
Rathod P, Dixit S. Effect of improved management practices on productive and reproductive performance of Osmanabadi goats under semi-intensive rearing systems. Indian J Anim Sci. 2021;91(6):499-504.
Smith R, Hall B, Taylor D. Gene expression regulation of muscle growth in livestock. Livest Sci. 2023;260:104942.
Tamang S. Proteomics: types, methods, steps, applications [Internet]. 2023 [cited 2025 May 16]. Available from: https://microbenotes.com/proteomics/.
Tian R, Mahmoodi M, Tian J, Esmailizadeh Koshkoiyeh S, Zhao M, Saminzadeh M, et al. Leveraging functional genomics for understanding beef quality complexities and breeding beef cattle for improved meat quality [Preprint]. 2024 [cited 2025 May 16]. Available from: https://doi.org/10.20944/preprints202408.1038.v1.
Tiwari M, Gujar G, Shashank CG, Sriranga KR, Singh RJ. Omics strategies for unveiling male fertility-related biomarkers in livestock: a review. Gene Rep. 2024;101928.
U.S. Department of Agriculture, Foreign Agricultural Service. Planned livestock sector reforms could lead to trade opportunities. Rep. No.: NI2025 0011. Washington (DC): USDA. 2025 [cited 2025 Jun 3]. Available from: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Planned+Livestock+Sector+Reforms+Could+Lead+to+Trade+Opportunities_Lagos_Nigeria_NI2025-0011.pdf.
UniProt Consortium. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2023;51(D1):D523-31.
Urgessa OE, Woldesemayat AA. OMICs approaches and technologies for understanding low-high feed efficiency traits in chicken: implication to breeding. Anim Biotechnol. 2023:1-20.
Veenstra BT, Veenstra TD. Proteomic applications in identifying protein-protein interactions. Adv Protein Chem Struct Biol. 2024;138:1-48.
Wan X, Jing J, Lv F-H. Whole-genome selective scans detect genes associated with important phenotypic traits in goat (Capra hircus). Front Genet. 2023;14:1173017.
Wang J, Fu Y, Su T, Wang Y, Soladoye OP, Huang Y, et al. A role of multi-omics technologies in sheep and goat meats: progress and way ahead. Foods. 2023;12(22):4069.
Wani SA, Sahu AR, Khan RIN, Praharaj MR, Saxena S, Rajak KK, et al. Proteome modulation in peripheral blood mononuclear cells of Peste des Petits ruminants vaccinated goats and sheep. Front Vet Sci. 2021;8:670968.
Xiang Y, Sun J, Ma G, Dai X, Meng Y, Fu C, et al. Integrating multi-omics data to identify key functional variants affecting feed efficiency in Large White boars. Genes. 2024;15(8):980.
Yakubu A, Achapu MM. Assessment of production objective and breeding practices of rural goat keepers and implications for a breeding programme in north central Nigeria. Niger J Anim Prod. 2021;43(1):50-61.
Yakubu A. Path coefficient and path analysis of body weight and biometric traits in Yankasa lambs. Afr J Biotechnol. 2010;9(38):6419-23.
Yanagida M. Functional proteomics; current achievements. J Chromatography B. 2002;771(1-2):89-106.
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113(4):2343-94.
Zhang Z, Wu H, Zhao Y. The role of transcriptomic analysis in heat stress adaptation of livestock. Anim Biotechnol. 2022;33(6):1275-90.
ดาวน์โหลด
เผยแพร่แล้ว
รูปแบบการอ้างอิง
ฉบับ
ประเภทบทความ
สัญญาอนุญาต
ลิขสิทธิ์ (c) 2025 คณะสัตวแพทยศาสตร์ มหาวิทยาลัยมหิดล

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสาร Journal of Applied Animal Science ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสาร Journal of Applied Animal Science ถือเป็นลิขสิทธิ์ของวารสาร Journal of Applied Animal Science หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใด ๆ จะต้องได้รับอนุญาตเป็นลายลักอักษรจากวารสาร Journal of Applied Animal Science ก่อนเท่านั้น