Fluorescence intensity of anti—nuclear antibodies patterns on anti—extractable nuclear antigens detection

Authors

  • วิศันสนีย์ การุญบุญญานันท์ กลุ่มงานเทคนิคการแพทย์และพยาธิวิทยาคลินิก โรงพยาบาลขอนแก่น

Keywords:

anti-nuclear antibodies, Fluorescence intensity, anti-extractable nuclear antigens

Abstract

OBJECTIVE

To provide assistive information for diagnosis of patients with autoantibodies.

 

METHODS

This study reviewed laboratory records of patients who were suspected of autoimmune diseases by clinicians and underwent ANA and anti—ENA tests at Khon Kaen Hospital, Thailand, from January 2012 to January 2016. 543 anti—ENA results with positive ANA were analyzed. Anti—ENA test was used to identify a group of specific autoantibodies, including anti—RNP, anti—Sm, anti—SSA, anti—Ro52, anti—SSB and anti—Scl70 antibodies.

 

RESULTS

The detection rate of anti—ENA antibodies in ANA positive serum samples was 66.1% (95% confidence interval (CI); 62 to 70). ANA patterns of homogeneous and fine speckled types with high fluorescence intensities from 3+ to 4+ showed 23.4%—35.9% of anti—SSA and anti—Ro52 antibodies detection. Meanwhile, the coarse speckle 3+ to 4+ could detect anti—SSA and anti—Ro52 antibodies by up to 50.0%—63.6% and started to detect anti—Sm antibody by 18.8% and 33.8%. Moreover, the coarse speckle 4+ showed 66.2% of anti—RNP and 20.8% of anti—SSB antibodies detection. Nucleolar 4+ showed the highest detection rate of anti—Scl70 antibody at 77.8%. Similar tendency of anti—Scl70 antibody detection could be found from low to high intensities of fine speckled and homogeneous patterns, which usually show up in mix patterns. Centromere pattern 4+ showed 10.5%—26.3% of anti—SSA, anti—Ro52, anti—SSB and anti—Scl70 antibodies detection. At low fluorescence intensities, fine speckled 1+ and homogeneous 1+ (titer 1:100) could detect anti—SSA antibody with highest probability of 17.5% and 13.5%, respectively. The coarse speckle 1+ also showed 5.6% of anti—SSA, anti—Ro52 and anti—SSB antibodies detection, while speckle 2+ had the increasing rate of anti—SSA, anti—Ro52 and anti—RNP antibodies detection from 15.1% to 33.3%.

 

CONCLUSION

The tendency of detection of some specific anti—ENA antibodies can be roughly estimated as the fluorescence intensity is 3+ or above. However, low intensities 2+ or below do not rule out the expected anti—ENA antibodies related to clinical diagnosis.

References

Meroni PL, Schur PH. ANA screening: an old test with new recommendations. Ann Rheum Dis. 2010 Aug;69(8):1420–2.

Kumar Y, Bhatia A, Minz RW. Antinuclear antibodies and their detection methods in diagnosis of connective tissue diseases: a journey revisited. Diagn Pathol. 2009 Jan 2;4:1.

Mengeloglu Z, Tas T, Kocoglu E, Aktas G, Karabork S. Determination of Anti—nuclear Antibody Pattern Distribution and Clinical Relationship. Pak J Med Sci. 2014 Mar;30(2):380–3.

Wichainun R, Kasitanon N, Wangkaew S, Hongsongkiat S, Sukitawut W, Louthrenoo W. Sensitivity and specificity of ANA and anti—dsDNA in the diagnosis of systemic lupus erythematosus: a comparison using control sera obtained from healthy individuals and patients with multiple medical problems. Asian Pac J Allergy Immunol. 2013 Dec;31(4):292–8.

Agustinelli RA, Rodrigues SH, Mariz HA, Prado MS, Andrade LEC. Distinctive features of positive anti—cell antibody tests (indirect immunofluorescence on HEp—2 cells) in patients with non—autoimmune diseases. Lupus. 2019 Apr;28(5):629–34.

Mariz HA, Sato EI, Barbosa SH, Rodrigues SH, Dellavance A, Andrade LEC. Pattern on the antinuclear antibody—HEp—2 test is a critical parameter for discriminating antinuclear antibody—positive healthy individuals and patients with autoimmune rheumatic diseases. Arthritis Rheum. 2011 Jan;63(1):191–200.

Didier K, Bolko L, Giusti D, Toquet S, R o b b i n s A , A n t o n i c e l l i F, e t a l . Autoantibodies Associated With Connective Ti ss u e D i s ea s e s : W h a t M ea n i n g f o r Clinicians? Front Immunol. 2018;9:1–20.

Tozzoli R, Bizzaro N, Tonutti E, Villalta D, Bassetti D, Manoni F, et al. Guidelines for the laboratory use of autoantibody tests in the diagnosis and monitoring of autoimmune rheumatic diseases. Am J Clin Pathol. 2002 Feb;117(2):316–24.

. A g m o n — L e v i n N , D a m o i s e a u x J , Kallenberg C, Sack U, Witte T, Herold M, et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti—nuclear a n t i b o d i e s . A n n R h e u m D i s . 2 0 1 4 Jan;73(1):17–23.

Mimori T. Autoantibodies in connective tissue diseases: clinical significance and analysis of target autoantigens. Intern Med Tokyo Jpn. 1999 Jul;38(7):523–32.

Murakami K, Mimori T. Recent Advances in Research Regarding Autoantibodies in Connective Tissue Diseases and Related Disorders. Intern Med Tokyo Jpn. 2019 Jan;58(1):5–14.

Lee SA, Kahng J, Kim Y, Park Y—J, Han K, Kwok S—K, et al. Comparative study of immunofluorescent antinuclear antibody test and line immunoassay detecting 15 specific autoantibodies in patients with systemic rheumatic disease. J Clin Lab Anal. 2012 Jul;26(4):307–14.

Rehman HU. Antinuclear antibodies: when to test and how to interpret findings. J Fam Pract. 2015 Jan;64(1):E5—8.

Damoiseaux J, Andrade LEC, Carballo OG, Conrad K, Francescantonio PLC, Fritzler MJ, et al. Clinical relevance of HEp—2 indirect immunofluorescent patterns: the International Consensus on ANA patterns (ICAP) perspective. Ann Rheum Dis. 2019(0):1–11.

5 . Ro d s a w a rd P, C h o tt a w o r n s a k N , Suwanchote S, Rachayon M, Deekajorndech T, Wright HL, et al. The clinical significance of a n t i n u c l e a r a n t i b o d i e s a n d s p e c i fi c autoantibodies in juvenile and adult systemic lupus erythematosus patients. Asian Pac J Allergy Immunol. 2019 Apr 23;

Peene I, Meheus L, Veys EM, De Keyser F. Detection and identification of antinuclear antibodies (ANA) in a large and consecutive cohort of serum samples referred for ANA t e s t i n g . A n n R h e u m D i s . 2 0 0 1 Dec;60(12):1131–6.

Kang I, Siperstein R, Quan T, Breitenstein ML. Utility of age, gender, ANA titer and pattern as predictors of anti—ENA and —dsDNA antibodies. Clin Rheumatol. 2004 Dec;23(6):509–15.

Verstegen G, Duyck MC, Meeus P, Ravelingien I, De Vlam K. Detection and identification of antinuclear antibodies (ANA) in a large community hospital. Acta Clin Belg. 2009 Aug;64(4):317–23.

Robert M. Nakamura, Linda Ivor, W. Harry Hannon, A. Myron Johnson, J. Mehsen Joseph, Robert F. Ritchie, et al. Quality A s s u r a n c e f o r t h e I n d i r e c t Immunofluorescence Test for Autoantibodies to Nuclear Antigen (IF—ANA); Approved Guideline. NCCLS Doc ILA2—A. 1996 Dec;16(11):1–22.

Wiik AS, Hoier—Madsen M, Forslid J, Charles P, Meyrowitsch J. Antinuclear antibodies: a contemporary nomenclature using HEp—2 cells. J Autoimmun. 2010 Nov;35(3):276–90.

Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjogren’s syndrome: A consensus and data—driven methodology involving three international patient cohorts. Ann Rheum Dis. 2017 Jan;76(1):9–16.

Franceschini F, Cavazzana I, Andreoli L, Tincani A. The 2016 classification criteria for primary Sjogren’s syndrome: what’s new? BMC Med. 2017 Mar;15(1):69.

Theander E, Jonsson R, Sjostrom B, Brokstad K, Olsson P, Henriksson G. Prediction of Sjogren’s Syndrome Years Before Diagnosis and Identification of Patients With Early Onset and Severe Disease Course by Autoantibody Profiling. Arthritis Rheumatol Hoboken NJ. 2015 Sep;67(9):2427–36.

Luo J, Xu S, Lv Y, Huang X, Zhang H, Zhu X, et al. Clinical features and potential relevant factors of renal involvement in primary Sjogren’s syndrome. Int J Rheum Dis. 2019 Feb;22(2):182–90.

Dugar M, Cox S, Limaye V, Gordon TP, Roberts—Thomson PJ. Diagnostic utility of a n t i — R o 5 2 d e t e c t i o n i n s y s t e m i c autoimmunity. Postgrad Med J. 2010 Feb;86(1012):79–82.

Robbins A, Hentzien M, Toquet S, Didier K, Servettaz A, Pham B—N, et al. Diagnostic Utility of Separate Anti—Ro60 and Anti—Ro52/TRIM21 Antibody Detection in Autoimmune Diseases. Front Immunol. 2019;10:444.

Yang Z, Liang Y, Zhong R. Is identification of anti—SSA and/or —SSB antibodies necessary in serum samples referred for antinuclear antibodies testing? J Clin Lab Anal. 2012 Nov;26(6):447–51.

Frodlund M, Dahlstrom O, Kastbom A, Skogh T, Sjowall C. Associations between antinuclear antibody staining patterns and c l i n i c a l f e a t u r e s o f s y s t e m i c l u p u s erythematosus: analysis of a regional Swedish register. BMJ Open. 2013 Oct 25;3(10):e003608.

Rayes HA, Al—Sheikh A, Al Dalaan A, Al Saleh S. Mixed connective tissue disease: t h e K i n g Fa i s a l S p e c i a l i s t H o s p i t a l e x p e r i e n c e . A n n S a u d i M e d . 2 0 0 2 Mar;22(1–2):43–6.

Cappelli S, Bellando Randone S, Martinovic D, Tamas M—M, Pasalic K, Allanore Y, et al. ‘To be or not to be,’ ten years after: evidence for mixed connective tissue disease as a distinct entity. Semin Arthritis Rheum. 2012 Feb;41(4):589–98.

Ahsan T, Erum U, Dahani A, Khowaja D. Clinical and immunological profile in patients with mixed connective tissue disease. JPMA J Pak Med Assoc. 2018 Jun;68(6):959–62.

Amezcua—Guerra LM, Higuera—Ortiz V, Arteaga—Garcia U, Gallegos—Nava S, Hubbe—Tena C. Performance of the 2012 Systemic Lupus International Collaborating Clinics and the 1997 American College of Rheumatology classification criteria for systemic lupus erythematosus in a real—life s c e n a r i o . A r t h r i t i s C a r e R e s . 2 0 1 5 Mar;67(3):437–41.

Alba P, Bento L, Cuadrado MJ, Karim Y, Tungekar MF, Abbs I, et al. Anti—dsDNA, anti— S m a n t i b o d i e s , a n d t h e l u p u s anticoagulant: significant factors associated with lupus nephritis. Ann Rheum Dis. 2003 Jun;62(6):556–60.

Varela D—C, Quintana G, Somers EC, Rojas—Villarraga A, Espinosa G, Hincapie M—E, et al. Delayed lupus nephritis. Ann Rheum Dis. 2008 Jul;67(7):1044–6.

Kwon OC, Lee JS, Ghang B, Kim Y—G, Lee C—K, Yoo B, et al. Predicting eventual development of lupus nephritis at the time o f d i a g n o s i s o f s y s t e m i c l u p u s erythematosus. Semin Arthritis Rheum. 2018 Dec;48(3):462–6.

Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey—Goldman R, et a l . 2 0 1 9 E u r o p e a n Le a g u e A g a i n s t R h e u m a t i s m / A m e r i c a n C o l l e g e o f Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol Hoboken NJ. 2019(0):1–13.

Wisuthsarewong W, Soongswang J, Chantorn R. Neonatal lupus erythematosus: clinical character, investigation, and o u t c o m e . P e d i a t r D e r m a t o l . 2 0 1 1 Apr;28(2):115–21.

Salomonsson S, Dzikaite V, Zeffer E, Eliasson H, Ambrosi A, Bergman G, et al. A population—based investigation of the autoantibody profile in mothers of children with atrioventricular block. Scand J Immunol. 2011 Nov;74(5):511–7.

Adelowo OO, Ohagwu KA, Aigbokhan EE, Akintayo RO. The Child as a Surrogate for Diagnosis of Lupus in the Mother. Case Rep Rheumatol. 2017;2017:8247591.

Li X, Huang X, Lu H. Two case reports of n e o n a t a l a u t o a n t i b o d y — a s s o c i a t e d c o n g e n i t a l h e a r t b l o c k . M e d i c i n e (Baltimore). 2018 Nov;97(45):e13185.

Fredi M, Andreoli L, Bacco B, Bertero T, Bortoluzzi A, Breda S, et al. First Report of the Italian Registry on Immune—Mediated Congenital Heart Block (Lu.Ne Registry). Front Cardiovasc Med. 2019;6:11.

Bernstein RM, Steigerwald JC, Tan EM. Association of antinuclear and antinucleolar antibodies in progressive systemic sclerosis. Clin Exp Immunol. 1982 Apr;48(1):43–51.

Khan S, Alvi A, Holding S, Kemp ML, Raine D, Dore PC, et al. The clinical significance of antinucleolar antibodies. J Clin Pathol. 2008 Mar;61(3):283–6.

Aeschlimann A, Meyer O, Bourgeois P, Haim T, Belmatoug N, Palazzo E, et al. Anti—S c l — 7 0 a n t i b o d i e s d e t e c t e d b y immunoblotting in progressive systemic sclerosis: specificity and clinical correlations. Ann Rheum Dis. 1989 Dec;48(12):992–7.

Dellavance A, Gallindo C, Soares MG, da Silva NP, Mortara RA, Andrade LEC. R e d e fi n i n g t h e S c l — 7 0 i n d i r e c t i m m u n o fl u o r e s c e n c e p a t t e r n : autoantibodies to DNA topoisomerase I y i e l d a s p e c i fi c c o m p o u n d immunofluorescence pattern. Rheumatol Oxf Engl. 2009 Jun;48(6):632–7.

Andrade LEC, Klotz W, Herold M, Conrad K, Ronnelid J, Fritzler MJ, et al. International consensus on antinuclear antibody patterns: definition of the AC—29 pattern associated with antibodies to DNA topoisomerase I. C l i n C h e m L a b M e d . 2 0 1 8 S e p 25;56(10):1783–8.

Pakunpanya K, Verasertniyom O, V a n i c h a p u n t u M , P i s i t k u n P , Totemchokchyakarn K, Nantiruj K, et al. Incidence and clinical correlation of anticentromere antibody in Thai patients. Clin Rheumatol. 2006 May;25(3):325–8.

van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 2013 Nov;65(11):2737–47.

Avouac J, Fransen J, Walker UA, Riccieri V, Smith V, Muller C, et al. Preliminary criteria for the very early diagnosis of systemic sclerosis: results of a Delphi Consensus Study from EULAR Scleroderma Trials and Research Group. Ann Rheum Dis. 2011 Mar;70(3):476–81.

Perilloux BC, Shetty AK, Leiva LE, Gedalia A. Antinuclear antibody (ANA) and ANA profile tests in children with autoimmune disorders: a retrospective study. Clin Rheumatol. 2000;19(3):200–3.

Additional Files

Published

2019-12-31

How to Cite

การุญบุญญานันท์ ว. (2019). Fluorescence intensity of anti—nuclear antibodies patterns on anti—extractable nuclear antigens detection. The Clinical Academia, 43(6), 208–219. Retrieved from https://he02.tci-thaijo.org/index.php/theclinicalacademia/article/view/226773