Management of appropriate radiation dose in pediatric patients from computed tomography scans using diagnostic reference levels (DRLs)
Keywords:
Pediatric computed tomography, Age and weight specific protocols, diagnostic reference levels, OptimizationAbstract
Children's cells are more sensitive to the effects of radiation than those of adults. Therefore, selecting age- and weight-specific protocols is more appropriate than applying adult protocols to pediatric patients. Diagnostic Reference Levels (DRLs) are an effective tool for adjusting radiation doses in pediatric computed tomography (CT) scans to ensure that the doses are within acceptable levels and that the image quality is sufficient for diagnostic purposes, in accordance with the principle of radiation protection to prevent unnecessary harm to the patient. DRLs are not dose limits, but they can be adjusted up or down to match the required image quality. Another important benefit of DRLs is their use as a benchmark for comparing against national radiation reference levels or other international standards, and applying them in the process of radiation dose optimization. The purpose of this article is to provide guidelines for adjusting appropriate radiation doses, especially for pediatric patients.
Downloads
References
Rehani MM. Radiological protection in computed tomography and cone beam computed tomography. Ann ICRP 2015;44: 229-35.
Kanal KM, Butler PF, Sengupta D, Bhargavan-Chatfield M, Coombs LP, Morin RL. U.S. diagnostic reference levels and achievable doses for 10 adult CT examinations. Radiology 2017;284: 120-33.
Parakh A, Kortesniemi M, Schindera ST. CT Radiation Dose Management: A Comprehensive optimization process for improving patient safety. Radiology 2016;280: 663-73.
Bibbo G, Brown S, Linke R. Diagnostic reference levels of paediatric computed tomography examinations performed at a dedicated Australian paediatric hospital. J Med Imaging Radiat Oncol 2016;60: 475-84.
Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001;176: 289-96.
Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med 2007;357: 2277-84.
Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013; 21;346:f2360.
Nelson TR. Practical strategies to reduce pediatric CT radiation dose. J Am Coll Radiol. 2014;11(3): 292–9.
Cousins C, Miller D, Bernardi G, Rehani M, Schofield P, Vañó E, et al. International commission on radiological protection. 2011;120: 1-125.
Ministry of Public Health. National diagnostic reference levels in Thailand 2021. Available from: https://webapp1.dmsc.moph.go.th/
petitionxray/web3/download/DRLs66.pdf.
Strauss K, Boone J, Cody D, McCollough C, McNitt-Gray M, Toth T. Size specific dose estimates in pediatric and adult body CT examinations, AAPM Task Group 20142011.
European Guidelines on Diagnostic Reference Levels for Paediatric Imaging [Internet]. 2018. Available from: http://www.eurosafeimaging.org/
pidrl.Vañó
E, Miller D, Martin C, Rehani M, Kang K, Rosenstein M, et al. ICRP publication 135: diagnostic reference levels in medical imaging. Annals of the ICRP 2017;46: 1-144.
สํานักนโยบายและวิชาการสถิติ. เทคนิคการสุ่มตัวอย่างและการประมาณค่า [Available from: http://service.nso.go.th
Current Australian national diagnostic reference levels for multi detector computed tomography [Internet]. 2017. Available from: https://www.arpansa.gov.au/research-and-expertise/surveys/national-diagnostic-reference-level-service/current-australian-drls/mdct.
Kanal KM, Butler PF, Chatfield MB, Wells J, Samei E, Simanowith M, et al. US diagnostic reference levels and achievable doses for 10 pediatric CT examinations. Radiology 2022;302: 164-74.
Edyvean S, Lewis M, Britten A. Radiation dose metrics and the effect of CT scan protocol parameters. Radiation dose from multidetector CT: Springer; 2012:101-18.
Granata C, Sorantin E, Seuri R, Owens CM. European Society of Paediatric Radiology Computed Tomography and Dose Task Force: European guidelines on diagnostic reference levels for paediatric imaging. Pediatr Radiol. 2019;49(5):702–5.
Matsunaga Y, Chida K, Kondo Y, Kobayashi K, Kobayashi M, Minami K, et al. Diagnostic reference levels and achievable doses for common computed tomography examinations: Results from the Japanese nationwide dose survey. Br J Radiol 2019;92: 20180290.
Kanda R, Akahane M, Koba Y, Chang W, Akahane K, Okuda Y, et al. Developing diagnostic reference levels in Japan. Jpn J Radiol. 2021;39(3): 307–14.
Brady Z, Ramanauskas F, Cain TM, Johnston PN. Assessment of paediatric CT dose indicators for the purpose of optimisation. Br J Radiol 2012;85: 1488-98.
Hwang J-Y, Choi YH, Yoon HM, Ryu YJ, Shin HJ, Kim HG, et al. Establishment of local diagnostic reference levels of pediatric abdominopelvic and chest CT examinations based on body weight and size in Korea. Korean J Radiol. 2021;22(7): 1172–82.
Admontree S, Junsorn S, Tathip R, Todsatidpaisan S, Buachan P, Asavaphatiboon S. Evaluation of size-specific dose estimates (SSDE) in pediatric body imaging using 320-detector CT. Naresuan Univ J Sci Technol. 2019;27(2):28-35.
Kritsaneepaiboon S, Trinavarat P, Visrutaratna PJAr. Survey of pediatric MDCT radiation dose from university hospitals in Thailand: a preliminary for national dose survey. Acta radiologica 2012;53: 820-6.
Bosmans H, Damilakis J, Ducou le Pointe H, Foley SJ. Radiation protection no. 185 European guidelines on diagnostic reference levels for paediatric imaging. 2018.
McCollough C, Bakalyar DM, Bostani M, Brady S, Boedeker K, Boone JM, et al. Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT: The Report of AAPM Task Group 220. AAPM Rep. 2014:6-23.
Pimsorn P. Factors affecting size-specific dose estimates in addition to scanning parameters for chest-abdomen-pelvis computed tomography using automatic tube current modulation at Chiangrai prachanukroh hospital. Thai J Rad Tech 2022 ;47(1):43-54.
Wattanasriroj Y, Punthaisiri P, Kingkaew S, Wisetrinthong M, Oonsiri S. The effect of tube voltage and current on the CT number and relative electron density in computed tomography simulator. Thai J Rad Tech 2023;48(1):18-28.
Poosiri S, Krisanachinda A, Khamwan K. Evaluation of patient radiation dose and risk of cancer from CT examinations. Radiol Phys Technol. 2024 Mar;17(1):176-85.
Ruenjit S, Siricharoen P, Khamwan K. Automated size-specific dose estimates framework in thoracic CT using convolutional neural network based on U-Net model. J Appl Clin Med Phys. 2024 Mar;25(3):e14283.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Thai Society of Radiological Technologists

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของสมาคมรังสีเทคนิคแห่งประเทศไทย (The Thai Society of Radiological Technologists)
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับสมาคมรังสีเทคนิคแห่งประเทศไทยและบุคคลากรท่านอื่น ๆในสมาคม ฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว