Bridging Life: The Science and Practice of ECMO in Severe Cardiopulmonary Failure

Main Article Content

Permyos Ruengsakulrach, MD, PhD, FRCST, FCCP, AFEEAT

Abstract

Extracorporeal Membrane Oxygenation (ECMO) is a life-saving intervention for patients with severe cardiopulmonary failure, providing critical support when conventional therapies are inadequate. This review aims to offer a concise, comprehensive overview of ECMO, covering its theoretical foundations, clinical applications, and recent advancements. Designed as a practical resource for medical professionals involved in ECMO care, this review also serves as a guide for those interested in exploring ECMO’s role in managing respiratory and heart failure, including post-ECMO care. The review discusses the physiological mechanisms of ECMO, key clinical indications, patient selection criteria, and its evolving role in modern critical care. Common ECMO-related complications, such as thrombosis, bleeding, and mechanical failure, are highlighted, along with strategies for management and troubleshooting. Ethical considerations, including resource allocation and end-of-life decisions, are explored, as well as the psychosocial impacts on patients and their families. This review also contextualizes ECMO within current clinical practices, identifying global disparities in access to ECMO services. Looking ahead, it discusses the future of ECMO, including technological innovations and the potential for personalized treatments. By bridging theoretical principles with practical applications, this article aims to enhance understanding of ECMO’s pivotal role in saving lives and improving patient outcomes.

Article Details

How to Cite
1.
Ruengsakulrach, MD, PhD, FRCST, FCCP, AFEEAT P. Bridging Life: The Science and Practice of ECMO in Severe Cardiopulmonary Failure. BKK Med J [internet]. 2025 Feb. 28 [cited 2025 Mar. 28];21(1):78. available from: https://he02.tci-thaijo.org/index.php/bkkmedj/article/view/273101
Section
Speacial Feature

References

Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965-75. doi: 10.1056/NEJMoa1800385.

Brodie D, Bacchetta M. Extracorporeal membrane oxygenation for ARDS in adults. N Engl J Med. 2011;365(20):1905-14. doi: 10.1056/NEJMct1103720.

Benenati S, Toma M, Canale C, et al. Mechanical circulatory support in patients with cardiogenic shock not secondary to cardiotomy: a network meta-analysis. Heart Fail Rev. 2022;27(3):927-34. doi: 10.1007/s10741-021-10092-y.

Megaly M, Buda K, Alaswad K, et al. Comparative analysis of patient characteristics in cardiogenic shock studies: differences between trials and registries. JACC Cardiovasc Interv. 2022;15(3):297-304. doi: 10.1016/j.jcin.2021.11.036.

Lim H. The physiology of extracorporeal membrane oxygenation: The Fick principle. Perfusion. 2023;38(2):236-44. doi: 10.1177/02676591211055971.

Makdisi G, Wang IW. Extra corporeal membrane oxygenation (ECMO) review of a lifesaving technology. J Thorac Dis. 2015;7(7):E166-76. doi: 10.3978/j.issn.2072-1439.2015.07.17.

Harnisch LO, Moerer O. Contraindications to the initiation of veno-venous ECMO for severe acute respiratory failure in adults: a systematic review and practical approach based on the current literature. Membranes (Basel). 2021;11(8):584. doi: 10.3390/membranes11080584.

Shah A, Dave S, Goerlich CE, et al. Hybrid and parallel extracorporeal membrane oxygenation circuits. JTCVS Tech. 2021;8:77-85. doi: 10.1016/j.xjtc.2021.02.024.

Sorokin V, MacLaren G, Vidanapathirana PC, et al. Choosing the appropriate configuration and cannulation strategies for extracorporeal membrane oxygenation: the potential dynamic process of organ support and importance of hybrid modes. Eur J Heart Fail. 2017;19 (Suppl 2):75-83. doi: 10.1002/ejhf.849.

Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374(9698):1351-63. doi: 10.1016/S0140-6736(09)61069-2.

Grasselli G, Calfee CS, Camporota L, et al. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensive Care Med. 2023;49(7):727-59. doi: 10.1007/s00134-023-07050-7.

Gattinoni L, Quintel M, Marini JJ. Volutrauma and atelectrauma: which is worse? Crit Care. 2018;22(1):264. doi: 10.1186/s13054-018-2199-2.

Qadir N, Sahetya S, Munshi L, et al. An update on management of adult patients with acute respiratory distress syndrome: an official american thoracic society clinical practice guideline. Am J Respir Crit Care Med. 2024;209(1):24-36. doi: 10.1164/ rccm.202311-2011ST.

Farmakis IT, Sagoschen I, Barco S, et al. Extracorporeal membrane oxygenation and reperfusion strategies in high-risk pulmonary embolism hospitalizations. Crit Care Med. 2024;52(10):e512-e21. doi: 10.1097/ CCM.0000000000006361.

Davies MG, Hart JP. Current status of ECMO for massive pulmonary embolism. F ro n t C a rd i o v a s c M e d . 2023;10:1298686. doi: 10.3389/fcvm.2023.1298686.

Bertini P, Guarracino F, Falcone M, et al. ECMO in COVID-19 patients: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2022;36(8 Pt A):2700-6. doi: 10.1053/j. jvca.2021.11.006.

Ramanathan K, Antognini D, Combes A, et al. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir Med. 2020;8(5):518-26. doi: 10.1016/S2213-2600(20)30121-1.

Morisson L, Duceau B, Do Rego H, et al. A new machine learning algorithm to predict veno-arterial ECMO implantation after post-cardiotomy low cardiac output syndrome. Anaesth Crit Care Pain Med. 2023;42(1):101172. doi: 10.1016/j.accpm.2022.101172.

Chan KM, Wan WTP, Ling L, et al. Management of circuit air in extracorporeal membrane oxygenation: a single center experience. ASAIO J. 2022;68(3):e39-e43. doi: 10.1097/ MAT.0000000000001494.

Han D, Leibowitz JL, Han L, et al. Computational fluid dynamics analysis and experimental hemolytic performance of three clinical centrifugal blood pumps: Revolution, Rotaflow and CentriMag. Med Nov Technol Devices. 2022;15:100153. doi: 10.1016/j.medntd.2022.100153.

Nakazawa T, Makinouchi K, Takami Y, et al. The effect of the impeller-driver magnetic coupling distance on hemolysis in a compact centrifugal pump. Artif Organs. 1996;20(3):252-7. doi: 10.1111/j.1525-1594.1996.tb04434.x.

Puentener P, Schuck M, Kolar JW. The Influence of impeller geometries on hemolysis in bearingless centrifugal pumps. IEEE Open J Eng Med Biol. 2020;1:316-23. doi: 10.1109/ OJEMB.2020.3037507.

Mouzakis FL, Kashefi A, Hima F, et al. Has Extracorporeal Gas Exchange Performance Reached Its Peak? Membranes (Basel). 2024;14(3):68. doi: 10.3390/membranes14030068.

Devlin JW, Skrobik Y, Gélinas C, et al. Executive summary: clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):1532-48. doi: 10.1097/CCM.0000000000003259.

Xia J, Gu S, Li M, et al. Spontaneous breathing in patients with severe acute respiratory distress syndrome receiving prolonged extracorporeal membrane oxygenation. BMC Pulm Med. 2019;19(1):237. doi: 10.1186/s12890-019-1016-2.

Deng L, Xia Q, Chi C, et al. Awake veno-arterial extracorporeal membrane oxygenation in patients with perioperative period acute heart failure in cardiac surgery. J Thorac Dis. 2020;12(5):2179-87. doi: 10.21037/jtd.2020.04.38.

Gao X, Ninan J, Bohman JK, et al. Extracorporeal membrane oxygenation and acute kidney injury: a single-center retrospective cohort. Sci Rep. 2023;13(1):15112. doi: 10.1038/s41598- 023-42325-5.

Ortuno S, Delmas C, Diehl JL, et al. Weaning from veno-arterial extra-corporeal membrane oxygenation: which strategy to use? Ann Cardiothorac Surg. 2019;8(1):E1-E8. doi: 10.21037/acs.2018.08.05.

Lüsebrink E, Stremmel C, Stark K, et al. Update on Weaning from Veno-Arterial Extracorporeal Membrane Oxygenation. J Clin Med. 2020;9(4):992. doi: 10.3390/jcm9040992.

Tsiouris A, Protos AN, Saikus CE, et al. Fundamentals of weaning veno-arterial and veno-venous extracorporeal membrane oxygenation. Indian J Thorac Cardiovasc Surg. 2023;39(Suppl 1):1-11. doi: 10.1007/s12055-023-01474-y.

Tonna JE, Boonstra PS, MacLaren G, et al. Extracorporeal life support organization registry international report 2022: 100,000 Survivors. ASAIO J. 2024;70(2):131-43. doi: 10.1097/ MAT.0000000000002128.

Pisano DV, Ortoleva JP, Wieruszewski PM. Short-term neurologic complications in patients undergoing extracorporeal membrane oxygenation support: areview on pathophysiology, incidence, risk factors, and outcomes. Pulm Ther. 2024;10(3):267-78. doi: 10.1007/s41030-024-00265-z.

Helms J, Frere C, Thiele T, et al. Anticoagulation in adult patients supported with extracorporeal membrane oxygenation: guidance from the scientific and standardization committees on perioperative and critical care haemostasis and thrombosis of the international society on thrombosis and haemostasis. J Thromb Haemost. 2023;21(2):373-96. doi: 10.1016/j. jtha.2022.11.014.

Liu Y, Yuan Z, Han X, et al. A Comparison of cctivated partial thromboplastin time and activated coagulation time for anticoagulation monitoring during extracorporeal membrane oxygenation therapy. Hamostaseologie. 2023;43(3):171-8. doi: 10.1055/a-1796-8652.

Rajsic S, Breitkopf R, Oezpeker UC, et al. The role of excessive anticoagulation and missing hyperinflammation in ECMO-associated bleeding. J Clin Med. 2022;11(9):2314. doi: 10.3390/jcm11092314.

Murphy DA, Hockings LE, Andrews RK, et al. Extracorporeal membrane oxygenation-hemostatic complications. Transfus Med Rev. 2015;29(2):90-101. doi: 10.1016/j.tmrv.2014.12.001.

Lotz C, Streiber N, Roewer N, et al. Therapeutic interventions and risk factors of bleeding during extracorporeal membrane oxygenation. ASAIO J. 2017;63(5):624-30. doi: 10.1097/ MAT.0000000000000525.

Abruzzo A, Gorantla V, Thomas SE. Venous thromboembolic events in the setting of extracorporeal membrane oxygenation support in adults: A systematic review. Thrombosis Res. 2022;212:58-71. doi: 10.1016/j.thromres.2022.02.015.

Rajsic S, Breitkopf R, Jadzic D, et al. Anticoagulation Strategies during Extracorporeal Membrane Oxygenation: A Narrative Review. J Clin Med. 2022;11(17):5147. doi: 10.3390/ jcm11175147.

Rajsic S, Breitkopf R, Rugg C, et al. Thrombotic Events Develop in 1 Out of 5 Patients Receiving ECMO Support: An 11-Year Referral Centre Experience. J Clin Med. 2023;12(3):1082. doi: 10.3390/jcm12031082.

Zeibi Shirejini S, Carberry J, et al. Current and future strategies to monitor and manage coagulation in ECMO patients. Thromb J. 2023;21(1):11. doi: 10.1186/s12959-023- 00452-z.

Dufour N, Radjou A, Thuong M. Hemolysis and plasma free hemoglobin during extracorporeal membrane oxygenation support: from clinical implications to laboratory details. ASAIO J . 2020;66(3):239-46. doi: 10.1097/ MAT.0000000000000974.

Bonicolini E, Martucci G, Simons J, et al. Limb ischemia in peripheral veno-arterial extracorporeal membrane oxygenation: a narrative review of incidence, prevention, monitoring, and treatment. Crit Care. 2019;23(1):266. doi: 10.1186/s13054- 019-2541-3.

Ait Hssain A, Vahedian-Azimi A, Ibrahim AS, et al. Incidence, risk factors and outcomes of nosocomial infection in adult patients supported by extracorporeal membrane oxygenation: a systematic review and meta-analysis. Crit Care. 2024;28(1):158. doi: 10.1186/s13054-024-04946-8.

Li X, Wang L, Wang H, Hou X. Outcome and clinical characteristics of nosocomial infection in adult patients undergoing extracorporeal membrane oxygenation: a systematic review and meta-analysis. Front Public Health. 2022;10:857873. doi: 10.3389/fpubh.2022.857873.

Peña-López Y, Machado MC, Rello J. Infection in ECMO patients: Changes in epidemiology, diagnosis and prevention. Anaesth Crit Care Pain Med. 2024;43(1):101319. doi: 10.1016/j.accpm.2023.101319.

Diehl A, Gantner D. Pump head thrombosis in extracorporeal membrane oxygenation (ECMO). Intensive Care Med. 2018;44(3):376-7. doi: 10.1007/s00134-017-4976-9.

Lehle K, Philipp A, Gleich O, et al. Efficiency in extracorporeal membrane oxygenation-cellular deposits on polymethylpentene membranes increase resistance to blood flow and reduce gas exchange capacity. ASAIO J. 2008;54(6):612-7. doi: 10.1097/MAT.0b013e318186a807.

Patel B, Arcaro M, Chatterjee S. Bedside troubleshooting during venovenous extracorporeal membrane oxygenation (ECMO). J Thorac Dis. 2019;11(Suppl 14):S1698-S707. doi: 10.21037/jtd.2019.04.81.

Zakhary B, Vercaemst L, Mason P, et al. How I approach membrane lung dysfunction in patients receiving ECMO. Crit Care. 2020;24(1):671. doi: 10.1186/s13054-020-03388-2.

Butt SP, Razzaq N, Saleem Y, et al. Improving ECMO therapy: Monitoring oxygenator functionality and identifying key indicators, factors, and considerations for changeout. J Extra Corpor Technol. 2024;56(1):20-9. doi: 10.1051/ject/2023047.

Yan S, Lou S, Zhao Y, et al. Air in extracorporeal membrane oxygenation: can never be overemphasized. Perfusion. 2021;36(1):97-9. doi: 10.1177/0267659120918471.

Kim DH, Cho WH, Son J, Lee SK, Yeo HJ. Catastrophic mechanical complications of extracorporeal membrane oxygenation. ASAIO J. 2021;67(9):1000-5. doi: 10.1097/ MAT.0000000000001354.

Kurniawati ER, Rutjens VGH, Vranken NPA, et al. Quality of life following adult veno-venous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review. Qual Life Res. 2021;30(8):2123-35. doi: 10.1007/s11136-021-02834-0.

Kolle A, Irgens EC, Moi AL, et al. The psychological and HRQoL related aftermaths of extra corporeal membrane oxygenation treatment: a cross-sectional study. Intensive Crit Care Nurs. 2021;65:103058. doi: 10.1016/j.iccn.2021.103058.

Kalra A, Kang JK, Khanduja S, et al. Long-term neuropsychiatric, beurocognitive, and functional outcomes of patients receiving ECMO: a systematic review and meta-analysis. Neurology. 2024;102(3):e208081. doi: 10.1212/WNL.0000000000208081.

Herridge MS, Tansey CM, Matté A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293-304. doi: 10.1056/NEJMoa1011802.

Kourek C, Nanas S, Kotanidou A, et al. Modalities of exercise training in patients with extracorporeal membrane oxygenation support. J Cardiovasc Dev Dis. 2022;9(2):34. doi: 10.3390/jcdd9020034.

Rivera JD, Fox ES, Fernando SM, et al. Physical rehabilitation and mobilization in patients receiving extracorporeal life support: a systematic review. Crit Care Explor. 2024;6(6):e1095. doi: 10.1097/CCE.0000000000001095.

Onrust M, Lansink-Hartgring AO, van der Meulen I, et al. Coping strategies, anxiety and depressive symptoms in family members of patients treated with extracorporeal membrane oxygenation: a prospective cohort study. Heart Lung. 2022;52:146-51. doi: 10.1016/j.hrtlng.2022.01.002.

Peetz AB, Sadovnikoff N, O’Connor MF. Is informed consent for extracorporeal life support even possible? AMA J Ethics. 2015;17(3):236-42. doi: 10.1001/journalofethics.2015.17.3.s tas1-1503.

Lin PJ. Some ethical legal issues in heart disease surgery. Acta Cardiol Sin. 2014;30(6):529-37. doi: 10.6515/acs20140929b.

Paris JJ, Schreiber MD, Statter M, et al. Beyond autonomy— physicians’ refusal to use life-prolonging extracorporeal membrane oxygenation. N Engl J Med. 1993;329(5):354-7. doi: 10.1056/NEJM199307293290512.

Moynihan KM, Taylor LS, Siegel B, et al. “Death as the One Great Certainty”: ethical implications of children with irreversible cardiorespiratory failure and dependence on extracorporeal membrane oxygenation. Front Pediatr. 2023;11:1325207. doi: 10.3389/fped.2023.1325207.

Enumah ZO, Carrese J, Choi CW. The ethics of extracorporeal membrane oxygenation: revisiting the principles of clinical bioethics. Ann Thorac Surg. 2021;112(1):61-6. doi: 10.1016/j. athoracsur.2020.08.045.

Han JJ, Shin M, Patrick WL, et al. How should ECMO be used under conditions of severe scarcity? A population study of public perception. J Cardiothorac Vasc Anesth. 2022;36(6):1662-9. doi: 10.1053/j.jvca.2021.05.058.

Gerall C, Cheung EW, Klein-Cloud R, et al. Allocation of resources and development of guidelines for extracorporeal membrane oxygenation (ECMO): experience from a pediatric center in the epicenter of the COVID-19 pandemic. J Pediatr Surg. 2020;55(12):2548-54. doi: 10.1016/j.jpedsurg.2020.08.015.

Xue B, Shah N, Yang H, et al. Multi-horizon predictive models for guiding extracorporeal resource allocation in critically ill COVID-19 patients. J Am Med Inform Assoc. 2023;30(4):656-67. doi: 10.1093/jamia/ocac256.

Peek GJ, Elbourne D, Mugford M, et al. Randomised controlled trial and parallel economic evaluation of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR). Health Technol Assess. 2010;14(35):1-46. doi: 10.3310/ hta14350.

Abrams D, MacLaren G, Lorusso R, et al. Extracorporeal cardiopulmonary resuscitation in adults: evidence and implications. Intensive Care Med. 2022;48(1):1-15. doi: 10.1007/s00134-021-06514-y.

DeMartino ES, Braus NA, Sulmasy DP, et al. Decisions to withdraw extracorporeal membrane oxygenation support: patient characteristics and ethical considerations. Mayo Clin Proc. 2019;94(4):620-7. doi: 10.1016/j.mayocp.2018.09.020.

Sade RM, Gibney BC, Hawkins RB. When life support is pointless, stop it. J Thorac Cardiovasc Surg. 2023;165(6):2165- 8. doi: 10.1016/j.jtcvs.2022.09.027.

Williams SB, Dahnke MD. Clarification and Mitigation of Ethical Problems Surrounding Withdrawal of Extracorporeal Membrane Oxygenation. Crit Care Nurse. 2016;36(5):56-65. doi: 10.4037/ccn2016504.

Siegel MD. End-of-life decision making in the ICU. Clin Chest Med. 2009;30(1):181-94, x. doi: 10.1016/j.ccm.2008.11.002.

Griggs S, Hampton D, Edward J, et al. Impact of case review debriefings on moral distress of extracorporeal membrane oxygenation nurses. Crit Care Nurse. 2023;43(3):12-8. doi: 10.4037/ccn2023870.

Au SS, Couillard P, Roze des Ordons A, et al. Outcomes of ethics consultations in adult ICUs: a systematic review and meta-analysis. Crit Care Med. 2018;46(5):799-808. doi: 10.1097/CCM.0000000000002999.

Bartlett ES, Lim A, Kivlehan S, et al. Critical care delivery across health care systems in low-income and low-middleincome country settings: A systematic review. J Glob Health. 2023;13:04141. doi: 10.7189/jogh.13.04141.

Zakhary B, Shekar K, Diaz R, et al. Position paper on global extracorporeal membrane oxygenation education and educational agenda for the future: a statement from the extracorporeal life support organization ECMOed taskforce. Crit Care Med. 2020;48(3):406-14. doi: 10.1097/ CCM.0000000000004158.

Tukacs M, Cato KD. Extubation during extracorporeal membrane oxygenation in adults: An international qualitative study on experts’ opinions. Heart Lung. 2021;50(2):299-306. doi: 10.1016/j.hrtlng.2021.01.010.

Akdeniz M, Yardımcı B, Kavukcu E. Ethical considerations at the end-of-life care. SAGE Open Med. 2021;9:20503121211000918. doi: 10.1177/20503121211000918.

Ramanathan K. Ethical challenges of adult ECMO. Indian J Thorac Cardiovasc Surg. 2021;37(Suppl 2):303-8. doi: 10.1007/s12055-020-00922-3.

Burrell A, Kim J, Alliegro P, et al. Extracorporeal membrane oxygenation for critically ill adults. Cochrane Database Syst Rev. 2023;9(9):CD010381. doi: 10.1002/14651858. CD010381.pub3.

Lackermair K, Brunner S, Orban M, et al. Outcome of patients treated with extracorporeal life support in cardiogenic shock complicating acute myocardial infarction: 1-year result from the ECLS-Shock study. Clin Res Cardiol. 2021;110(9):1412- 20. doi: 10.1007/s00392-020-01778-8.

Belohlavek J, Smalcova J, Rob D, et al. Effect of intra-arrest transport, extracorporeal cardiopulmonary resuscitation, and immediate invasive assessment and treatment on functional neurologic outcome in refractory out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. 2022;327(8):737-47. doi: 10.1001/jama.2022.1025.

Yannopoulos D, Bartos J, Raveendran G, et al. Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation (ARREST): a phase 2, single centre, open-label, randomised controlled trial. Lancet. 2020;396(10265):1807-16. doi: 10.1016/S0140-6736(20)32338-2.

Mondellini GM, van den Enden AJM, Van Mieghem NM. Perspectives on why DanGer shock is the first positive trial on mechanical circulatory support in cardiogenic shock. Heart Fail Rev. 2025;30(2):381-5. doi: 10.1007/s10741-024-10470-2.

Frye J, Tao M, Gupta S, et al. Safety and utility of mechanical circulatory support in patients with acute myocardial infarction complicated by cardiogenic shock: A systematic review and meta-analysis. Cardiovasc Revasc Med. 2025;70:23-33. doi: 10.1016/j.carrev.2024.06.016.

Udesen NLJ, Beske RP, Hassager C, et al. Microaxial flow pump hemodynamic and metabolic effects in infarct-related cardiogenic shock: a substudy of the DanGer shock randomized clinical trial. JAMA Cardiol. 2025;10(1):9-16. doi: 10.1001/jamacardio.2024.4197.

Patel B, Davis RP, Saatee S. Mechanical circulatory support devices in the older adults. Clin Geriatr Med. 2025;41(1):51-63. doi: 10.1016/j.cger.2024.03.006.

Tarantini G, Panza A, Lorenzoni G, et al. Breaking down cardiogenic shock: an analytical reflection on the DanGer-SHOCK and ECLS-SHOCK trials. Am J Cardiol. 2025;236:30-3. doi: 10.1016/j.amjcard.2024.10.032.

Strudthoff LJ, Lüken H, Jansen SV, et al. In Vitro and In Vivo feasibility study for a portable VV-ECMO and ECCO(2)R system. Membranes (Basel). 2022;12(2):133. doi: 10.3390/ membranes12020133.

Fuchs A, Schmucki R, Meuli L, et al. Helicopter inter-hospital transfer for patients undergoing extracorporeal membrane oxygenation: a retrospective 12-year analysis of a service system. Scand J Trauma Resusc Emerg Med. 2022;30(1):33. doi: 10.1186/s13049-022-01018-0.

Schmack B, Hanke JS, Schmitto JD, et al. ECMO-TO-GO: application of a portable on the body veno-arterial ECMO device in a bridge-to-transplantation setting. JHLT Open. 2024;4:100069. doi: 10.1016/j.jhlto.2024.100069.

Wolf J, Wolfer V, Halbe M, et al. Comparing the effectiveness of augmented reality-based and conventional instructions during single ECMO cannulation training. Int J Comput Assist Radiol Surg. 2021;16(7):1171-80. doi: 10.1007/s11548-021- 02408-y.

Willers A, Arens J, Mariani S, et al. New trends, advantages and disadvantages in anticoagulation and coating methods used in extracorporeal life support devices. Membranes (Basel). 2021;11(8):617. doi: 10.3390/membranes11080617.

Ashcraft M, Garren M, Lautner-Csorba O, et al. Surface engineering for endothelium-mimicking functions to combat infection and thrombosis in extracorporeal life support technologies. Adv Healthc Mater. 2024;13(22):e2400492. doi: 10.1002/adhm.202400492.

Luu CH, Nguyen NT, Ta HT. Unravelling surface modification strategies for preventing medical device-induced thrombosis. Adv Healthc Mater. 2024;13(1):e2301039. doi: 10.1002/ adhm.202301039.

He T, He J, Wang Z, Cui Z. Modification strategies to improve the membrane hemocompatibility in extracorporeal membrane oxygenator (ECMO). Adv Compos Hybrid Mater. 2021;4(4):847-64. doi: 10.1007/s42114-021-00244-x.

Alabdullh HA, Pflaum M, Mälzer M, et al. Biohybrid lung development: towards complete endothelialization of an assembled extracorporeal membrane oxygenator. Bioengineering (Basel). 2023;10(1):72. doi: 10.3390/bioengineering10010072.

Pearse I, Corley A, Qu Y, Fraser J. Tissue adhesives for bacterial inhibition in extracorporeal membrane oxygenation cannulae. Intensive Care Med Exp. 2021;9(1):25. doi: 10.1186/s40635-021-00388-6.

Allou N, Lo Pinto H, Persichini R, et al. Cannula-related infection in patients supported by peripheral ECMO: clinical and microbiological characteristics. ASAIO J. 2019;65(2): 180-6. doi: 10.1097/MAT.0000000000000771.

Sheng K, Gao Y, Bao T, Wang S. Covalent coating strategy for enhancing the biocompatibility and hemocompatibility of blood-contacting medical materials. Pharmaceutical Science Advances. 2023;1(1):100001. doi: :10.1016/j. pscia.2022.100001.

Walz JM, Avelar RL, Longtine KJ, et al. Anti-infective external coating of central venous catheters: A randomized, noninferiority trial comparing 5-fluorouracil with chlorhexidine/silver sulfadiazine in preventing catheter colonization. Critical Care Medicine. 2010;38(11):2095- 102. doi: 10.1097/CCM.0b013e3181f265ba.

Chang HH, Hou KH, Chiang TW, et al. Using signal features of functional near-infrared spectroscopy for acute physiological score estimation in ECMO patients. Bioengineering (Basel). 2023;11(1):26. doi: 10.3390/bioengineering11010026.

Ali J, Cody J, Maldonado Y, et al. Near-infrared spectroscopy (NIRS) for cerebral and tissue oximetry: analysis of evolving applications. J Cardiothorac Vasc Anesth. 2022;36(8 Pt A):2758-66. doi: 10.1053/j.jvca.2021.07.015.

Phongmekhin T, Wang R. Continuous glucose monitor accuracy during extracorporeal membrane oxygenation. Crit Care Resusc. 2024;26(1):58-9. doi: 10.1016/j. ccrj.2023.11.003.

Aguirre AD, Shelton KT. Remote monitoring in the use of extracorporeal membrane oxygenation and acute mechanical circulatory support. Curr Opin Crit Care. 2022;28(3):308- 14. doi: 10.1097/MCC.0000000000000949.

Stephens AF, Šeman M, Diehl A, et al. ECMO PAL: using deep neural networks for survival prediction in venoarterial extracorporeal membrane oxygenation. Intensive Care Med. 2023;49(9):1090-9. doi: 10.1007/s00134-023-07157-x.

Kalra A, Bachina P, Shou BL, et al. Using machine learning to predict neurologic injury in venovenous extracorporeal membrane oxygenation recipients: an ELSO Registry analysis. JTCVS Open. 2024;21:140-67. doi: 10.1016/j. xjon.2024.06.013.

Kalra A, Bachina P, Shou BL, et al. Acute brain injury risk prediction models in venoarterial extracorporeal membrane oxygenation patients with tree-based machine learning: An Extracorporeal Life Support Organization Registry analysis. JTCVS Open. 2024;20:64-88. doi: 10.1016/j. xjon.2024.06.001.

Lee H, Song MJ, Cho YJ, et al. Supervised machine learning model to predict mortality in patients undergoing venovenous extracorporeal membrane oxygenation from a nationwide multicentre registry. BMJ Open Respir Res. 2023;10(1):e002025. doi: 10.1136/bmjresp-2023-002025.

Roberts JA, Bellomo R, Cotta MO, et al. Machines that help machines to help patients: optimising antimicrobial dosing in patients receiving extracorporeal membrane oxygenation and renal replacement therapy using dosing software. Intensive Care Med. 2022;48(10):1338-51. doi: 10.1007/ s00134-022-06847-2.

Fuller J, Abramov A, Mullin D, et al. A deep learning framework for predicting patient decannulation on extracorporeal membrane oxygenation devices: development and model analysis study. JMIR Biomed Eng. 2024;9:e48497. doi: 10.2196/48497.

Thiara S, Serpa Neto A, Burrell AJC, et al. Association of respiratory parameters at venovenous extracorporeal membrane oxygenation liberation with duration of mechanical ventilation and ICU length of stay: a prospective cohort study. Crit Care Explor. 2022;4(5):e0689. doi: 10.1097/CCE.0000000000000689.

Suzuki S, Teraoka N, Ito K, et al. A novel predictive score model for successful weaning from mechanical circulatory support in patients with cardiogenic shock. J Card Fail. 2024:1071-9164(24)00314-2. doi: 10.1016/j.cardfail.2024.07.023.

Balian J, Sakowitz S, Verma A, et al. Machine learning based predictive modeling of readmissions following extracorporeal membrane oxygenation hospitalizations. Surg Open Sci. 2024;19:125-30. doi: 10.1016/j.sopen.2024.04.003.

Kalra A, Bachina P, Shou BL, et al. Utilizing machine learning to predict neurological injury in venovenous extracorporeal membrane oxygenation patients: an extracorporeal life support organization registry analysis. Res Sq. 2023 :rs.3.rs-3779429. doi: 10.21203/rs.3.rs-3779429/ v1.

Pladet L, Luijken K, Fresiello L, et al. Clinical decision support for ExtraCorporeal Membrane Oxygenation: Will we fly by wire? Perfusion. 2023;38(1_suppl):68-81. doi: 10.1177/02676591231163688.

Unoki T, Uemura K, Yokota S, et al. Closed-Loop automated control system of extracorporeal membrane oxygenation and left ventricular assist device support in cardiogenic shock. ASAIO J. 2024. doi: 10.1097/ MAT.0000000000002359.

Brendle C, Hackmack KF, Kühn J, et al. Closed-loop control of extracorporeal oxygen and carbon dioxide gas transfer. Control Engineer Practice. 2017;59:173-82. doi: 10.1016/j. conengprac.2016.09.016.

Abbasi A, Karasu Y, Li C, et al. Machine learning to predict hemorrhage and thrombosis during extracorporeal membrane oxygenation. Crit Care. 2020;24(1):689. doi: 10.1186/s13054-020-03403-6.

Hsiao YJ, Chiang SC, Wang CH, et al. Epigenomic biomarkers insights in PBMCs for prognostic assessment of ECMO-treated cardiogenic shock patients. Clin Epigenetics. 2024;16(1):137. doi: 10.1186/s13148-024-01751-6.

Beaini H, Chunawala Z, Cheeran D, et al. Cardiogenic Shock: Focus on Non-Cardiac Biomarkers. Curr Heart Fail Rep. 2024;21(6):604-14. doi: 10.1007/s11897-024-00676-8.

Senoner T, Treml B, Breitkopf R, et al. ECMO in myocardial infarction-associated cardiogenic shock: blood biomarkers as predictors of mortality. Diagnostics (Basel). 2023;13(24):3683. doi: 10.3390/diagnostics13243683.

Thiara S, Stukas S, Hoiland R, et al. Characterizing the relationship between arterial carbon dioxide trajectory and serial brain biomarkers with central nervous system injury during veno-venous extracorporeal membrane oxygenation: a prospective cohort study. Neurocrit Care. 2024;41(1):20- 8. doi: 10.1007/s12028-023-01923-x.

Battaglini D, Al-Husinat L, Normando AG, et al. Personalized medicine using omics approaches in acute respiratory distress syndrome to identify biological phenotypes. Respir Res. 2022;23(1):318. doi: 10.1186/s12931-022-02233-0.

Martucci G, Arcadipane A, Tuzzolino F, et al. Circulating miRNAs as promising biomarkers to evaluate ECMO treatment responses in ARDS patients. Membranes (Basel). 2021;11(8):551. doi: 10.3390/membranes11080551.

Samant S, Bakhos JJ, Wu W, et al. Artificial intelligence, computational simulations, and extended reality in cardiovascular interventions. JACC Cardiovasc Interv. 2023;16(20):2479-97. doi: 10.1016/j.jcin.2023.07.022.

Gu K, Guan Z, Lin X, et al. Numerical analysis of aortic hemodynamics under the support of venoarterial extracorporeal membrane oxygenation and intra-aortic balloon pump. Comput Methods Programs Biomed. 2019;182:105041. doi: 10.1016/j.cmpb.2019.105041.