Predicting Cardiovascular Diseases Risk in Thai Population by Machine Learning

Main Article Content

Gumpanart Veerakul
Kitsuchart Pasupa
Yod Pinroj
Lertlak Chaothawee
Pradit Somprakit
Pongtorn Kietdumrongwong
Somkiat Tonphu
Warut Chaiwong
Saowaluck Yasri

Abstract

OBJECTIVES: To establish a clinical data lake for artificial intelligence (AI) and develop a machine learning model to predict cardiovascular disease (CVD) risk.


MATERIALS AND METHODS: Following IRB approval, de-identified clinical data from 2.9 million patients (2010–2019) across eight Bangkok Dusit Medical Services (BDMS) hospitals were collected in compliance with the Personal Data Protection Act (PDPA). Two datasets were constructed: BDMS-CVD-large (n = 9,072), comprising 3-year clinical records with 20 SHAP-selected features plus age and sex; and BDMS-CVD-Small (n = 107), incorporating coronary artery calcium scores (CACS) and time-from-test. XGBoost models were trained using 5-fold cross-validation, grid search, and repeated across 10 random splits.


RESULTS: The BDMS-CVD-Large model achieved strong performance (F1-score: Macro 0.93 ± 0.008; Weighted 0.97 ± 0.003), with age, HDL, and LDL as key predictors. Including CACS improved the F1-score (0.92 ± 0.032 vs. 0.87 ± 0.031), confirming its value. Limitations included potential occult CVD, exclusion of over 40% of cases due to incomplete data, and missing longitudinal data in many patients.


CONCLUSION: This study demonstrates the feasibility of machine learning (ML) based CVD prediction using large-scale clinical data under PDPA compliance. Prospective validation over 5–10 years is warranted, and integrating CACS may enhance future predictive accuracy.

Article Details

How to Cite
1.
Veerakul G, Pasupa K, Pinroj Y, Chaothawee L, Somprakit P, Kietdumrongwong P, Tonphu S, Chaiwong W, Yasri S. Predicting Cardiovascular Diseases Risk in Thai Population by Machine Learning. BKK Med J [internet]. 2025 Sep. 30 [cited 2026 Feb. 1];21(2):133. available from: https://he02.tci-thaijo.org/index.php/bkkmedj/article/view/275665
Section
Original Article

References

Division of Health Statistics Bureau of Health Policy and Planning. Public Health Statistics AD 2018-2022, Bangkok: Office of the Permanent Secretary, Ministry of Public Health 2022. ISSN 0857-3093. ((Accessed January 10,2024, at https://spd.moph.go.th/wp-content/uploads/2022/11/Hstatis tic64.pdf)

Centers for Disease Control and Prevention (CDC). Decline in deaths from heart disease and stroke, 1900-1999. MMWR Morb Mortal Wkly Rep1999;48(30):649-56.

Ford ES, Ajani UA, Croft JB, et al. Explaining the decrease in U.S. deaths from coronary disease, 1980-2000. N Engl J Med 2007;356(23):2388–98. doi: 10.1056/NEJMsa053935.

Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guideline on cardiovascular disease prevention in clinical practice. Eur Heart J 2021;42(34):3227-37. doi:10.1093/eurheartj/ ehab484.

Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Dis ease: A Report of the American College of Cardiology/ American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019;140(11):e596-e646. doi: 10.1161/CIR.0000000000000678.

Veerakul G, Khajornyai A, Wongkasia S. et al. Predicting and preventing cardiovascular events in asymptomatic patients: A 10-year prospective study. BKK Med J 2017;13: 1-12. doi: 10.31524/bkkmedj.2017.02.001.

The Rama-EGAT study group. Development of novel CVD score for Thai population. [Internet]. [updated 30 July 2017]. (Accessed January 10,2024, at http://www.thaiheart.org/ EGAT/PDF2013.html).

The Rama-EGAT study group. Development of novel CVD score for Thai population. [Internet]. [updated 30 July 2017]. (Accessed January 10,2024, at http://www.thaiheart.org/World Health Organization. Prevention of cardiovascular disease: pocket guidelines for assessment and management of cardio vascular risk: ( WHO/ISH cardiovascular risk prediction charts for the African Region) . World Health Organization 2007. (Accessed January 10,2024, at https://iris.who.int/ handle/10665/43787).

Na-witayanan J, Kanoksilp A, Kehasukcharoen W. et al. Incidence of low cardiovascular disease risk in patients with ST elevation myocardial infarction in Central Chest Institute. Thesis for interventional cardiology fellow board examination 2017.

Weng S, Resp J, Kai J, et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One 2017;12(4):e0174944. doi: 10.1371/journal. pone.0174944.

Zhao J, Feng QP, Wu P. et al. Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction. Sci Rep 2019;9(1):717. doi: 10.1038/s41598-018-36745-x.

Alaa AM, Bolton T, Angelantonio ED. et al. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. PLoS One 2019;14(5):e0213653. doi: 10.1371/journal. pone.0213653.

Erbel R, Möhlenkamp S, Moebus S, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: The Heinz Nixdorf Recall study. J Am Coll Cardiol 2010;56(17):1397-406. doi: 10.1016/j. jacc.2010.06.030.

Budoff MJ, Möhlenkamp S, McClelland R, et al. A comparison of outcomes with coronary artery calcium scanning in unselected populations: The Multi-Ethnic Study of Atherosclerosis (MESA) and Heinz Nixdorf RECALL study (HNR). J Cardiovasc Comput Tomogr 2013;7(3):182-91. doi: 10.1016/j.jcct.2013.05.009.

Hermann DM, Gronewold J, Lehmann N, et al. Coronary artery calcification is an independent stroke predictor in the general population. Stroke 2013 Apr;44(4):1008-13. doi: 10.1161/STROKEAHA.111.678078.

Chaothawee L, Veerakul G, Poonsawas P. et al. Low or Even Zero CAC may not be Warranted as Safe in Thai Officers: A 10-year prospective cohort study. BKK Med J 2020;16 (1):1-8. doi: 10.31524/bkkmedj.2020.11.001

Pedregosa F, Varoquaux G, Gramfort A, et al. Machine learn ing in Python. J Mach Learn Res 2011;12:2825-30.

Veerakul G, Khajornyai A, Wongkasai S, et al. Predicting and Preventing Cardiovascular Events in Asymptomatic Patients: A 10-Year Perspective Study. BKK Med J 2017;13(1):1-12. doi: 10.31524/bkkmedj.2017.02.001

Thomson SP, Gibbons RJ, Smars PA, et al. Incremental value of the leukocyte differential and the rapid creatine kinase-MB isoenzyme for the early diagnosis of myocardial infarction. Ann Intern Med 1995;122(5):335-41. doi: 10.7326/0003-4819 122-5-199503010-00003.

Korniluk A, Koper-Lenkiewicz OM, Kemona H et al. Mean Platelet Volume (MPV): New Perspectives for an Old Mark er in the Course and Prognosis of Inflammatory Conditions. Mediators Inflamm 2019;2019:9213074. doi: 10.1155/2019/9213074.

Chu SG, Becker RC, Berger PB, et al. Mean platelet volume as a predictor of cardiovascular risk: A systematic review and meta-analysis. J Thromb Haemost 2010;8(1):148-56. doi: 10.1111/j.1538-7836.2009.03584.x.

Williams H, Mack CD, Li SCH, et al. Nature versus Number: Monocytes in Cardiovascular Disease. Int J Mol Sci 2021;22(17):9119. doi: 10.3390/ijms22179119.

Rogacev KS, Cremers B, Zawada AM, et al. CD14++CD16+ monocytes independently predict cardiovascular events: A cohort study of 951 patients referred for elective coronary angiography. J Am Coll Cardiol 2012;60(16):1512-20. doi: 10.1016/j.jacc.2012.07.019.

Urra, X, Villamor N, Amaro S. et al. Monocyte subtypes predict clinical course and prognosis in human stroke. J Cereb Blood Flow Metab 2009;29(5):994-1002. doi: 10.1038/jcb fm.2009.25.

Tapp LD, Shantsila E, Wrigley BJ, et al. The CD14++CD16+ monocyte subset and monocyte-platelet interactions in patients with ST-elevation myocardial infarction. J Thromb Haemost 2012;10(7):1231-41. doi: 10.1111/j.1538-7836.2011.04603.x.

Grundy S M, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/ AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/ NLA/PCNA Guideline on the Management of Blood Choles terol: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019;139(25):e1046 e1081. doi: 10.1161/CIR.0000000000000624

Veerakul G, Chaothawee L, Chaiwong W, et al. Prevalence of calcified coronary plaque burden in thais. BKK Med J 2024;20(2):115-124. doi: 10.31524/bkkmedj.2024.21.010

Bild DE, Detrano R, Peterson D, et al. Ethnic differences in coronary calcification: the multi-ethnic study of atherosclerosis (MESA). Circulation 2005;111(10):1313-20. doi: 10.1161/01.CIR.0000157730.94423.4B.

Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 2008;358(13):1336-45. doi: 10.1056/NEJ Moa072100.

Valenti V, Ó Hartaigh B, Heo R, et al. A 15-year warranty period for asymptomatic individuals without coronary artery calcium: A prospective follow-up of 9,715 individuals. JACC Cardiovasc Imaging 2015;8(8):900-9. doi:10.1016/j. jcmg.2015.01.02