The Efficacy and Biocompatibility of Hydroxyapatite Composites Impregnated with Vancomycin as a Local Drug Delivery System

Main Article Content

Klabklay P
Oungbho K
Tangtrakulwanich B

Abstract

Objective: This study investigated the efficacy and biocompatibility of local biodegradable composites composed of hydroxyapatite, plaster of Paris, and binders (chitosan or alginate) impregnated with vancomycin.


Material and Method: Local biodegradable tablet composed of hydroxyapatite, plaster of Paris, and binders (chitosan or alginate) were prepared and mixed with vancomycin. The tablet was tested for releasing profile using dissolution apparatus for 1 week. Biocompatibility of each composite was tested using MTT test.


Results: Vancomycin could be released from the composite from both using binder either chitosan or alginate for at least one week but the release profile of the composite using alginate showed a better pattern of elution than those using chitosan. Biocompatibility test against osteoblast demonstrated good biocompatibility of the both composites at different concentration of drug use comparing to the control group. 


Conclusion: The local hydroxyapatite composite composed of hydroxyapatite, plaster of Paris and binder either chitosan or alginate seems to be a promising local biodegradable delivery system for vancomycin in treating of methicillin-resistant Staphylococcus aureus osteomyelitis.

Article Details

Section
Original Articles

References

1. Blaha JD, Nelson CL, Frevert LF, Henry SL, Seligson D, Esterhai JL Jr, et al. The use of septopal (polymethylmethacrylate beads with gentamicin) in the treatment of chronic osteomyelitis. Instr Course Lect 1990; 39: 509-14.
2. Mousset B, Benoit MA, Delloye C, Bouillet R, Gillard J. Biodegradable implants for potential use in bone infection: An in vitro study of antibiotic-loaded calcium sulphate. Int Orthop 1995; 19(3): 157-61.
3. Musher DM. The gram-positive cocci III: Resistance to antibiotics. Hosp Pract (Off Ed) 1988; 23: 105-7.
4. Sheftel TG, Mader JT, Pennick JJ, Cierny III G. Methicillin-resistant Staphylococcus aureus osteomyelitis. Clin Orthop Relat Res 1985; (198): 231-9.
5. Watanakunakorn C. Treatment of infection due to methicillin-resistant Staphylococcus aureus osteomylitis in a neonate. Ann Intern Med 1982; 97: 376-8.
6. Buranapanitkit B, Wongsiri S. Home–made local antibiotic cement for chronic osteomyelitis caused by resistant organisms. J ASEAN Orthop Assoc 2001; 14(1): 27-31.
7. Buranapanitkit B, Wongsiri S. MRSA (methicillin-resistant Staphylococcus aureus) osteomylitis: Factors and results compared to non-MRSA osteomyelitis. J ASEAN Orthop Assoc 2000; 13(1): 34-6.
8. Adams K, Couch L, Cierny G, Calhoun J, Mader JT. In vitro and in vivo evaluation of antibiotic diffusion from antibiotic–impregnated polymethylmethacrylate beads. Clin Orthop Relat Res 1992; (278): 244-52.
9. Cole WG. The management of chronic osteomyelitis. Clin Orthop Relat Res 1991; (264): 84-9.
10. Jain AK, Panchagnula R. Skeletal drug delivery systems. Int J Pharm 2000; 206(1-2): 1-12.
11. Mader JT, Wang J, Calhoun JH. Antibiotic therapy for musculoskeletal infection. J Bone Joint Surg 2001; 83A: 1878-901.
12. Aimin C, Chunlin H, Juliang B, Tinyin Z, Zinchao D. Antibiotic loaded chitosan bar: An in vitro, in vivo study of a possible treatment for osteomyelitis. Clin Orthop Relat Res 1999; (366): 239-47.
13. Buranapanitkit B, Wongsiri S, Ingviya N, et al: In vitro elution characteristic of antibiotic cement on MRSA organism. J ASEAN Orthop Assoc 2000; 13: 53-6.
14. Buranapanitkit B, Srinilta V, Ingviga N, Oungbho K, Geater A, Ovatlarnporn C. The efficacy of a hydroxyapatite composite as a biodegradable antibiotic delivery system. Clin Orthop Relat Res 2004; (424): 244-52.
15. Calhoun JH, Mader JT. Treatment of osteomyelitis with a biodegradable antibiotic implant. Clin Orthop Relat Res 1997; (341): 206-14.
16. Ebraheim NA, Elgafy H, Xu R. Bone-graft harvesting from iliac and fibular donor sites: Techniques and complications. J Am Acad Orthop Surg 2001; 9(3): 210-8.
17. Rauschmann MA, Wichelhaus TA, Stirnal V, Dingeldein E, Zichner L, Schnettler R, et al. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials 2005; 26(15): 2677-84.
18. Yamashita Y, Uchida A, Yamakawa T, Shinto Y, Araki N, Kato K. Treatment of chronic osteomyelitis using calcium hydroxyapatite ceramic implants impregnated with antibiotic. Int Orthop 1998; 22(4): 247-51.
19. Oungbho K, Muller BW. Chitosan sponges as sustained release drug carriers. Int J Pharm 1997; 156(2): 229-37.
20. Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 1997; 18(7): 567-75.
21. Greene N, Holtom PD, Warren CA, Ressler RL, Shepherd L, McPherson EJ, et al. In vitro elution of tobramycin and vancomycin polymethylmethacrylate beads and spacers from Simplex and Palacos. Am J Orthop (Belle Mead NJ) 1998; 27(3): 201-5.
22. Kuechle DK, Landon GC, Musher DM, Noble PC. Elution of vancomycin, daptomycin, and amikacin from acrylic bone cement. Clin Orthop Relat Res 1991; (264): 302-8.
23. Kanellakopoulou K, Giamarellos-Bourboulis EJ. Carrier systems for the local delivery of antibiotics in bone infections. Drugs 2000; 59(6): 1223-32.
24. Kendall RW, Duncan CP, Smith JA, Ngui-Yen JH. Persistence of bacteria on antibiotic loaded acrylic depots. Clin Orthop Relat Res 1996; (329): 273-80.
25. Sidqui M, Collin P, Vitte C, Forest N. Osteoblast adherence and resorption activity of isolated osteoclasts on calcium sulphate hemihydrate. Biomaterials 1995; 16(17): 1327-32.
26. Muzzarelli R, Tarsi R, Filippini O, Giovanetti E, Biagini G, Varaldo PE. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother 1990; 34(10): 2019–23.
27. Peluso G, Petillo O, Ranieri M, Santin M, Ambrosio L, Calabró D, et al. Chitosan-mediated stimulation of macrophage function. Biomaterials 1994; 15(15): 1215-20.